[1] |
M.G. Jacox, M.A. Alexander, D. Amaya, E. Becker, S.J. Bograd, S. Brodie, et al.. Global seasonal forecasts of marine heatwaves. Nature, 604 (7906) ( 2022), pp. 486-490 DOI: 10.1038/s41586-022-04573-9
|
[2] |
|
[3] |
B. Chen, M.M. Xie, Q.Q. Feng, R.R. Wu, L. Jiang. Diurnal heat exposure risk mapping and related governance zoning: a case study of Beijing, China. Sustain Cities Soc, 81 ( 2022), Article 103831
|
[4] |
V. How, S. Singh, T. Dang, L. Fang Lee, H.R. Guo. The effects of heat exposure on tropical farm workers in Malaysia: six-month physiological health monitoring. Int J Environ Health Res, 33 (4) ( 2023), pp. 413-429
CrossRef
ADS
Google scholar
|
[5] |
P.C. Hsu, A.Y. Song, P.B. Catrysse, C. Liu, Y. Peng, J. Xie, et al.. Radiative human body cooling by nanoporous polyethylene textile. Science, 353 (6303) ( 2016), pp. 1019-1023 DOI: 10.1126/science.aaf5471
|
[6] |
S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu, X. Liu, et al.. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science, 373 (6555) ( 2021), pp. 692-696 DOI: 10.1126/science.abi5484
|
[7] |
L. Cai, A.Y. Song, W. Li, P.C. Hsu, D. Lin, P.B. Catrysse, et al.. Spectrally selective nanocomposite textile for outdoor personal cooling. Adv Mater, 30 (35) (2018), Article e1802152
|
[8] |
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, et al.. A radiative cooling structural material. Science, 364 (6442) ( 2019), pp. 760-763 DOI: 10.1126/science.aau9101
|
[9] |
K. Tang, K. Dong, J. Li, M.P. Gordon, F.G. Reichertz, H. Kim, et al.. Temperature-adaptive radiative coating for all-season household thermal regulation. Science, 374 (6574) ( 2021), pp. 1504-1509 DOI: 10.1126/science.abf7136
|
[10] |
M. Kim, D. Lee, S. Son, Y. Yang, H. Lee, J. Rho. Visibly transparent radiative cooler under direct sunlight. Adv Opt Mater, 9 (13) ( 2021), p. 2002226
|
[11] |
S. So, Y. Yang, S. Son, D. Lee, D. Chae, H. Lee, et al.. Highly suppressed solar absorption in a daytime radiative cooler designed by genetic algorithm. Nanophotonics, 11 (9) ( 2022), pp. 2107-2115 DOI: 10.1515/nanoph-2021-0436
|
[12] |
A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan. Passive radiative cooling below ambient air temperature under direct sunlight. Nature, 515 (7528) ( 2014), pp. 540-544 DOI: 10.1038/nature13883
|
[13] |
D. Lee, M. Go, S. Son, M. Kim, T. Badloe, H. Lee, et al.. Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide. Nano Energy, 79 ( 2021), Article 105426
|
[14] |
J. Mandal, M.X. Jia, A. Overvig, Y.K. Fu, E. Che, N.F. Yu, et al.. Porous polymers with switchable optical transmittance for optical and thermal regulation. Joule, 3 (12) ( 2019), pp. 3088-3099
|
[15] |
J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun, N.N. Shi, et al.. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science, 362 (6412) ( 2018), pp. 315-319 DOI: 10.1126/science.aat9513
|
[16] |
D. Li, X. Liu, W. Li, Z. Lin, B. Zhu, Z. Li, et al.. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat Nanotechnol, 16 (2) ( 2021), pp. 153-158 DOI: 10.1038/s41565-020-00800-4
|
[17] |
Y. Zhai, Y.G. Ma, S.N. David, D.L. Zhao, R.N. Lou, G. Tan, et al.. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science, 355 (6329) ( 2017), pp. 1062-1066 DOI: 10.1126/science.aai7899
|
[18] |
P.L. Li, A. Wang, J.J. Fan, Q. Kang, P.K. Jiang, H. Bao, et al.. Thermo-optically designed scalable photonic films with high thermal conductivity for subambient and above-ambient radiative cooling. Adv Funct Mater, 32 (5) ( 2022), Article 2109542
|
[19] |
M. Alberghini, S. Hong, L.M. Lozano, V. Korolovych, Y. Huang, F. Signorato, et al.. Sustainable polyethylene fabrics with engineered moisture transport for passive cooling. Nat Sustain, 4 (8) ( 2021), pp. 715-724 DOI: 10.1038/s41893-021-00688-5
|
[20] |
Y.C. Peng, J. Chen, A.Y. Song, P.B. Catrysse, P.C. Hsu, L.L. Cai, et al.. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat Sustain, 1 (2) ( 2018), pp. 105-112 DOI: 10.1038/s41893-018-0023-2
|
[21] |
X. Zhang, W. Yang, Z. Shao, Y. Li, Y. Su, Q. Zhang, et al.. A moisture-wicking passive radiative cooling hierarchical metafabric. ACS Nano, 16 (2) ( 2022), pp. 2188-2197 DOI: 10.1021/acsnano.1c08227
|
[22] |
D. Chae, H. Lim, S. So, S. Son, S. Ju, W. Kim, et al.. Spectrally selective nanoparticle mixture coating for passive daytime radiative cooling. ACS Appl Mater Interfaces, 13 (18) ( 2021), pp. 21119-21126 DOI: 10.1021/acsami.0c20311
|
[23] |
G. Kim, K. Park, K.J. Hwang, S. Jin. Highly sunlight reflective and infrared semi-transparent nanomesh textiles. ACS Nano, 15 (10) ( 2021), pp. 15962-15971 DOI: 10.1021/acsnano.1c04104
|
[24] |
D. Chae, M. Kim, H. Lim, D. Lee, S. Son, J. Ha, et al.. Selectively emissive fluoropolymer film for passive daytime radiative cooling. Opt Mater, 128 ( 2022), Article 112273
|
[25] |
Y. Zhang, W. Zhu, C. Zhang, J. Peoples, X. Li, A.L. Felicelli, et al.. Atmospheric water harvesting by large-scale radiative cooling cellulose-based fabric. Nano Lett, 22 (7) ( 2022), pp. 2618-2626 DOI: 10.1021/acs.nanolett.1c04143
|
[26] |
Y.R. Liu, H.F. Zhang, Y.H. Zhang, C. Liang, Q. An. Rendering passive radiative cooling capability to cotton textile by an alginate/CaCO3 coating via synergistic light manipulation and high water permeation. Compos B Eng, 240 ( 2022), Article 109988
|
[27] |
W. Wei, Y. Zhu, Q. Li, Z.F. Cheng, Y.J. Yao, Q. Zhao, et al.. An Al2O3-cellulose acetate-coated textile for human body cooling. Sol Energy Mater Sol Cells, 211 ( 2020), Article 110525
|
[28] |
Y. Ji, Y. Sun, J. Muhammad, X. Li, Z. Liu, P. Tu, et al.. Fabrication of hydrophobic multilayered fabric for passive daytime radiative cooling. Mater Des, 307 (4) ( 2022), Article 2100795
|
[29] |
N.N. Shi, C.C. Tsai, M.J. Carter, J. Mandal, A.C. Overvig, M.Y. Sfeir, et al.. Nanostructured fibers as a versatile photonic platform: radiative cooling and waveguiding through transverse Anderson localization. Light Sci Appl, 7 (1) ( 2018), Article 37
|
[30] |
D. Miao, N. Cheng, X. Wang, J. Yu, B. Ding. Integration of Janus wettability and heat conduction in hierarchically designed textiles for all-day personal radiative cooling. Nano Lett, 22 (2) ( 2022), pp. 680-687 DOI: 10.1021/acs.nanolett.1c03801
|
[31] |
R. Hu, Y.D. Liu, S.M. Shin, S.Y. Huang, X.C. Ren, W.C. Shu, et al.. Emerging materials and strategies for personal thermal management. Adv Energy Mater, 10 (17) ( 2020), Article 1903921
|
[32] |
Y.C. Peng, Y. Cui. Advanced textiles for personal thermal management and energy. Joule, 4 (4) ( 2020), pp. 724-742
|
[33] |
M.N. Cramer, D. Gagnon, O. Laitano, C.G. Crandall.Human temperature regulation under heat stress in health, disease, and injury. Physiol Rev, 102 (4) ( 2022), pp. 1907-1989
CrossRef
ADS
Google scholar
|
[34] |
H.T. Zhai, D.S. Fan, Q. Li. Dynamic radiation regulations for thermal comfort. Nano Energy, 100 ( 2022), Article 107435
|
[35] |
X.H. Liu, D.T. Wang, Z.W. Yang, H. Zhou, Q.B. Zhao, T.X. Fan. Bright silver brilliancy from irregular microstructures in butterfly Curetis acuta Moor. Adv Opt Mater, 7 (18) ( 2019), Article 1900687
|
[36] |
C.H. Lou, S. An, R.H. Yang, H.R. Zhu, Q.C. Shen, M.D. Jiang, et al.. Enhancement of infrared emissivity by the hierarchical microstructures from the wing scales of butterfly Rapala dioetas. APL Photonics, 6 (3) ( 2021), Article 036101
|
[37] |
N.N. Shi, C.C. Tsai, F. Camino, G.D. Bernard, N. Yu, R. Wehner. Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science, 349 (6245) ( 2015), pp. 298-301 DOI: 10.1126/science.aab3564
|
[38] |
H. Zhang, K.C.S. Ly, X. Liu, Z. Chen, M. Yan, Z. Wu, et al.. Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc Natl Acad Sci USA, 117 (26) ( 2020), pp. 14657-14666
CrossRef
ADS
Google scholar
|
[39] |
D. Xie, Z. Yang, X. Liu, S. Cui, H. Zhou, T. Fan. Broadband omnidirectional light reflection and radiative heat dissipation in white beetles Goliathus goliatus. Soft Matter, 15 (21) ( 2019), pp. 4294-4300 DOI: 10.1039/c9sm00566h
|
[40] |
X.L. Zheng, Q.S. Yang, Y.W. Hu, C.L. Lei, X.P. Wang.Latitudinal variation of morphological characteristics in the swallowtail Sericinus montelus Gray, 1798 (Lepidoptera: Papilionidae). Acta Zool, 96 (2) ( 2015), pp. 242-252
CrossRef
ADS
Google scholar
|
[41] |
C.C. Tsai, R.A. Childers, N. Nan Shi, C. Ren, J.N. Pelaez, G.D. Bernard, et al.. Physical and behavioral adaptations to prevent overheating of the living wings of butterflies. Nat Commun, 11 (1) ( 2020), Article 551
|
[42] |
W. Wang, Y. Yao, T. Luo, L. Chen, J. Lin, L. Li, et al.. Deterministic reshaping of breath figure arrays by directional photomanipulation. ACS Appl Mater Interfaces, 9 (4) ( 2017), Article 4223 DOI: 10.1021/acsami.6b14024
|
[43] |
W. Liu, C. Li, X. Lin, H. Xie, Y. Chen, Z. Li, et al.. Ordered porous films of biomass-based polymers by breath figure: a review. Cellul, 29 ( 2022), Article 6463 DOI: 10.1007/s10570-022-04679-3
|