基于蝶翅三级微纳米结构的定制光子工程辐射制冷纺织品

郭竑宇, 牛田野, 俞建勇, 王学利, 斯阳

工程(英文) ›› 2023, Vol. 31 ›› Issue (12) : 120-126.

PDF(3576 KB)
PDF(3576 KB)
工程(英文) ›› 2023, Vol. 31 ›› Issue (12) : 120-126. DOI: 10.1016/j.eng.2023.07.019
研究论文
Article

基于蝶翅三级微纳米结构的定制光子工程辐射制冷纺织品

作者信息 +

Tailoring Photonic-Engineered Textiles with Butterfly-Mimetic Tertiary Micro/Nano Architectures for Superior Passive Radiative Cooling

Author information +
History +

摘要

通过将被动辐射制冷策略与个人热管理技术相结合,为缓解人体在户外活动中的热不适感提供了新的思路。然而,目前大多数被动辐射制冷材料在穿着舒适性和耐用性方面存在不足。本文采用微阵列技术,成功制备出了具有辐射制冷能力的定制光子工程可穿戴纺织品。所开发的辐射制冷纺织品(RCTs)具有一定的透气透湿性、结构稳定性和扩展光谱响应性(太阳光反射率91.7%、大气窗口发射率95.8%)。在正午炎热环境的室外降温测试中,RCTs所覆盖的皮肤模拟器温度比棉织物低4.4 ℃。这种仿生结构的开发为可穿戴、热湿舒适和结构稳定的辐射制冷纺织品在个人热管理领域的应用提供了新的见解。

Abstract

People could potentially mitigate heat discomfort when outdoors by combining passive radiative cooling (PRC) strategies with personal thermal management techniques. However, most current PRC materials lack wearing comfort and durability. In this study, a microarray technique is applied to fabricate the tailoring photonic-engineered textiles with intriguing PRC capability and appealing wearability. The developed radiative cooling textiles (RCTs) demonstrate appropriate air-moisture permeability, structural stability, and extended spectroscopic response with high sunlight reflectivity (91.7%) and robust heat emissivity (95.8%) through the atmospheric transparent spectral window (ATSW). In a hot outdoor cooling test, a skin simulator covered by the RCTs displays a temperature drop of approximately 4.4 °C at noon compared with cotton textiles. The evolution of our mimetic structures may provide new insights into the generation of wearable, thermal-wet comfortable, and robust textiles for exploring PRC techniques in personal thermal management applications.

关键词

仿生材料 / 个人热管理 / 纺织品 / 辐射制冷

Keywords

Biomimetic materials / Personal thermal management / Textiles / Passive radiative cooling

引用本文

导出引用
郭竑宇, 牛田野, 俞建勇. 基于蝶翅三级微纳米结构的定制光子工程辐射制冷纺织品. Engineering. 2023, 31(12): 120-126 https://doi.org/10.1016/j.eng.2023.07.019

参考文献

[1]
M.G. Jacox, M.A. Alexander, D. Amaya, E. Becker, S.J. Bograd, S. Brodie, et al.. Global seasonal forecasts of marine heatwaves. Nature, 604 (7906) ( 2022), pp. 486-490 DOI: 10.1038/s41586-022-04573-9
[2]
E. Pennisi. Living with heat. Science, 370 (6518) ( 2020), pp. 778-781 DOI: 10.1126/science.370.6518.778
[3]
B. Chen, M.M. Xie, Q.Q. Feng, R.R. Wu, L. Jiang. Diurnal heat exposure risk mapping and related governance zoning: a case study of Beijing, China. Sustain Cities Soc, 81 ( 2022), Article 103831
[4]
V. How, S. Singh, T. Dang, L. Fang Lee, H.R. Guo. The effects of heat exposure on tropical farm workers in Malaysia: six-month physiological health monitoring. Int J Environ Health Res, 33 (4) ( 2023), pp. 413-429
CrossRef ADS Google scholar
[5]
P.C. Hsu, A.Y. Song, P.B. Catrysse, C. Liu, Y. Peng, J. Xie, et al.. Radiative human body cooling by nanoporous polyethylene textile. Science, 353 (6303) ( 2016), pp. 1019-1023 DOI: 10.1126/science.aaf5471
[6]
S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu, X. Liu, et al.. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science, 373 (6555) ( 2021), pp. 692-696 DOI: 10.1126/science.abi5484
[7]
L. Cai, A.Y. Song, W. Li, P.C. Hsu, D. Lin, P.B. Catrysse, et al.. Spectrally selective nanocomposite textile for outdoor personal cooling. Adv Mater, 30 (35) (2018), Article e1802152
[8]
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, et al.. A radiative cooling structural material. Science, 364 (6442) ( 2019), pp. 760-763 DOI: 10.1126/science.aau9101
[9]
K. Tang, K. Dong, J. Li, M.P. Gordon, F.G. Reichertz, H. Kim, et al.. Temperature-adaptive radiative coating for all-season household thermal regulation. Science, 374 (6574) ( 2021), pp. 1504-1509 DOI: 10.1126/science.abf7136
[10]
M. Kim, D. Lee, S. Son, Y. Yang, H. Lee, J. Rho. Visibly transparent radiative cooler under direct sunlight. Adv Opt Mater, 9 (13) ( 2021), p. 2002226
[11]
S. So, Y. Yang, S. Son, D. Lee, D. Chae, H. Lee, et al.. Highly suppressed solar absorption in a daytime radiative cooler designed by genetic algorithm. Nanophotonics, 11 (9) ( 2022), pp. 2107-2115 DOI: 10.1515/nanoph-2021-0436
[12]
A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan. Passive radiative cooling below ambient air temperature under direct sunlight. Nature, 515 (7528) ( 2014), pp. 540-544 DOI: 10.1038/nature13883
[13]
D. Lee, M. Go, S. Son, M. Kim, T. Badloe, H. Lee, et al.. Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide. Nano Energy, 79 ( 2021), Article 105426
[14]
J. Mandal, M.X. Jia, A. Overvig, Y.K. Fu, E. Che, N.F. Yu, et al.. Porous polymers with switchable optical transmittance for optical and thermal regulation. Joule, 3 (12) ( 2019), pp. 3088-3099
[15]
J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun, N.N. Shi, et al.. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science, 362 (6412) ( 2018), pp. 315-319 DOI: 10.1126/science.aat9513
[16]
D. Li, X. Liu, W. Li, Z. Lin, B. Zhu, Z. Li, et al.. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat Nanotechnol, 16 (2) ( 2021), pp. 153-158 DOI: 10.1038/s41565-020-00800-4
[17]
Y. Zhai, Y.G. Ma, S.N. David, D.L. Zhao, R.N. Lou, G. Tan, et al.. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science, 355 (6329) ( 2017), pp. 1062-1066 DOI: 10.1126/science.aai7899
[18]
P.L. Li, A. Wang, J.J. Fan, Q. Kang, P.K. Jiang, H. Bao, et al.. Thermo-optically designed scalable photonic films with high thermal conductivity for subambient and above-ambient radiative cooling. Adv Funct Mater, 32 (5) ( 2022), Article 2109542
[19]
M. Alberghini, S. Hong, L.M. Lozano, V. Korolovych, Y. Huang, F. Signorato, et al.. Sustainable polyethylene fabrics with engineered moisture transport for passive cooling. Nat Sustain, 4 (8) ( 2021), pp. 715-724 DOI: 10.1038/s41893-021-00688-5
[20]
Y.C. Peng, J. Chen, A.Y. Song, P.B. Catrysse, P.C. Hsu, L.L. Cai, et al.. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat Sustain, 1 (2) ( 2018), pp. 105-112 DOI: 10.1038/s41893-018-0023-2
[21]
X. Zhang, W. Yang, Z. Shao, Y. Li, Y. Su, Q. Zhang, et al.. A moisture-wicking passive radiative cooling hierarchical metafabric. ACS Nano, 16 (2) ( 2022), pp. 2188-2197 DOI: 10.1021/acsnano.1c08227
[22]
D. Chae, H. Lim, S. So, S. Son, S. Ju, W. Kim, et al.. Spectrally selective nanoparticle mixture coating for passive daytime radiative cooling. ACS Appl Mater Interfaces, 13 (18) ( 2021), pp. 21119-21126 DOI: 10.1021/acsami.0c20311
[23]
G. Kim, K. Park, K.J. Hwang, S. Jin. Highly sunlight reflective and infrared semi-transparent nanomesh textiles. ACS Nano, 15 (10) ( 2021), pp. 15962-15971 DOI: 10.1021/acsnano.1c04104
[24]
D. Chae, M. Kim, H. Lim, D. Lee, S. Son, J. Ha, et al.. Selectively emissive fluoropolymer film for passive daytime radiative cooling. Opt Mater, 128 ( 2022), Article 112273
[25]
Y. Zhang, W. Zhu, C. Zhang, J. Peoples, X. Li, A.L. Felicelli, et al.. Atmospheric water harvesting by large-scale radiative cooling cellulose-based fabric. Nano Lett, 22 (7) ( 2022), pp. 2618-2626 DOI: 10.1021/acs.nanolett.1c04143
[26]
Y.R. Liu, H.F. Zhang, Y.H. Zhang, C. Liang, Q. An. Rendering passive radiative cooling capability to cotton textile by an alginate/CaCO3 coating via synergistic light manipulation and high water permeation. Compos B Eng, 240 ( 2022), Article 109988
[27]
W. Wei, Y. Zhu, Q. Li, Z.F. Cheng, Y.J. Yao, Q. Zhao, et al.. An Al2O3-cellulose acetate-coated textile for human body cooling. Sol Energy Mater Sol Cells, 211 ( 2020), Article 110525
[28]
Y. Ji, Y. Sun, J. Muhammad, X. Li, Z. Liu, P. Tu, et al.. Fabrication of hydrophobic multilayered fabric for passive daytime radiative cooling. Mater Des, 307 (4) ( 2022), Article 2100795
[29]
N.N. Shi, C.C. Tsai, M.J. Carter, J. Mandal, A.C. Overvig, M.Y. Sfeir, et al.. Nanostructured fibers as a versatile photonic platform: radiative cooling and waveguiding through transverse Anderson localization. Light Sci Appl, 7 (1) ( 2018), Article 37
[30]
D. Miao, N. Cheng, X. Wang, J. Yu, B. Ding. Integration of Janus wettability and heat conduction in hierarchically designed textiles for all-day personal radiative cooling. Nano Lett, 22 (2) ( 2022), pp. 680-687 DOI: 10.1021/acs.nanolett.1c03801
[31]
R. Hu, Y.D. Liu, S.M. Shin, S.Y. Huang, X.C. Ren, W.C. Shu, et al.. Emerging materials and strategies for personal thermal management. Adv Energy Mater, 10 (17) ( 2020), Article 1903921
[32]
Y.C. Peng, Y. Cui. Advanced textiles for personal thermal management and energy. Joule, 4 (4) ( 2020), pp. 724-742
[33]
M.N. Cramer, D. Gagnon, O. Laitano, C.G. Crandall.Human temperature regulation under heat stress in health, disease, and injury. Physiol Rev, 102 (4) ( 2022), pp. 1907-1989
CrossRef ADS Google scholar
[34]
H.T. Zhai, D.S. Fan, Q. Li. Dynamic radiation regulations for thermal comfort. Nano Energy, 100 ( 2022), Article 107435
[35]
X.H. Liu, D.T. Wang, Z.W. Yang, H. Zhou, Q.B. Zhao, T.X. Fan. Bright silver brilliancy from irregular microstructures in butterfly Curetis acuta Moor. Adv Opt Mater, 7 (18) ( 2019), Article 1900687
[36]
C.H. Lou, S. An, R.H. Yang, H.R. Zhu, Q.C. Shen, M.D. Jiang, et al.. Enhancement of infrared emissivity by the hierarchical microstructures from the wing scales of butterfly Rapala dioetas. APL Photonics, 6 (3) ( 2021), Article 036101
[37]
N.N. Shi, C.C. Tsai, F. Camino, G.D. Bernard, N. Yu, R. Wehner. Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science, 349 (6245) ( 2015), pp. 298-301 DOI: 10.1126/science.aab3564
[38]
H. Zhang, K.C.S. Ly, X. Liu, Z. Chen, M. Yan, Z. Wu, et al.. Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc Natl Acad Sci USA, 117 (26) ( 2020), pp. 14657-14666
CrossRef ADS Google scholar
[39]
D. Xie, Z. Yang, X. Liu, S. Cui, H. Zhou, T. Fan. Broadband omnidirectional light reflection and radiative heat dissipation in white beetles Goliathus goliatus. Soft Matter, 15 (21) ( 2019), pp. 4294-4300 DOI: 10.1039/c9sm00566h
[40]
X.L. Zheng, Q.S. Yang, Y.W. Hu, C.L. Lei, X.P. Wang.Latitudinal variation of morphological characteristics in the swallowtail Sericinus montelus Gray, 1798 (Lepidoptera: Papilionidae). Acta Zool, 96 (2) ( 2015), pp. 242-252
CrossRef ADS Google scholar
[41]
C.C. Tsai, R.A. Childers, N. Nan Shi, C. Ren, J.N. Pelaez, G.D. Bernard, et al.. Physical and behavioral adaptations to prevent overheating of the living wings of butterflies. Nat Commun, 11 (1) ( 2020), Article 551
[42]
W. Wang, Y. Yao, T. Luo, L. Chen, J. Lin, L. Li, et al.. Deterministic reshaping of breath figure arrays by directional photomanipulation. ACS Appl Mater Interfaces, 9 (4) ( 2017), Article 4223 DOI: 10.1021/acsami.6b14024
[43]
W. Liu, C. Li, X. Lin, H. Xie, Y. Chen, Z. Li, et al.. Ordered porous films of biomass-based polymers by breath figure: a review. Cellul, 29 ( 2022), Article 6463 DOI: 10.1007/s10570-022-04679-3
PDF(3576 KB)

Accesses

Citation

Detail

段落导航
相关文章

/