过一硫酸盐体系中铜分布模式控制活性物种的产生和污染物降解路径

Ning Li, Haoxi Dai, Mengting He, Jun Wang, Zhanjun Cheng, Beibei Yan, Wenchao Peng, Guanyi Chen

工程(英文) ›› 2024, Vol. 35 ›› Issue (4) : 168-179.

PDF(4013 KB)
PDF(4013 KB)
工程(英文) ›› 2024, Vol. 35 ›› Issue (4) : 168-179. DOI: 10.1016/j.eng.2023.07.020
研究论文
Article

过一硫酸盐体系中铜分布模式控制活性物种的产生和污染物降解路径

作者信息 +

Cu Distribution Pattern Controlled Active Species Generation and Sulfamethoxazole Degradation Routes in a Peroxymonosulfate System

Author information +
History +

Highlight

・The metal distribution patterns were altered by controlling ALD cycles.

SO 4 oxidation contributed most in the C-Cu-MXene/PMS system.

・The Cu cluster exhibited superior activity to generate more oxidative species.

・Metal distribution pattern altered contaminants degradation pathways in a PMS system.

Abstract

The distribution pattern of metals as active centers on a substrate can influence the peroxymonosulfate (PMS) activation and contaminants degradation. Herein, atomic layer deposition is applied to prepare Cu single atom (SA-Cu), cluster (C-Cu), and film (F-Cu) decorated MXene catalysts by regulating the number of deposition cycles. In comparison with SA-Cu-MXene (adsorption energy (Eads) = −4.236 eV) and F-Cu-MXene (Eads = −3.548 eV), PMS is shown to adsorb preferably on the C-Cu-MXene surface for activation (Eads = −5.435 eV), realizing higher utilization efficiency. More SO 4 are generated in C-Cu-MXene/PMS system with steady-state concentration and 1-3 orders of magnitude higher than those in the SA-Cu-MXene and F-Cu-MXene activated PMS systems. Particularly, the contribution of SO 4 oxidation to sulfamethoxazole (SMX) degradation followed the order, C-Cu-MXene (97.3%) > SA-Cu-MXene (90.4%) > F-Cu-MXene (71.9%), realizing the larger SMX degradation rate in the C-Cu-MXene/PMS system with the degradation rate constants (k) at 0.0485 min−1. Additionally, SMX degradation routes in C-Cu-MXene/PMS system are found with fewer toxic intermediates. Through this work, we highlighted the importance of guided design of heterogeneous catalysts in the PMS system. Appropriate metal distribution patterns need to be selected according to the actual water treatment demand. Metal sites could be then fully utilized to produce specific active species to improve the utilization efficiency of the oxidants.

Keywords

Cu cluster / Distribution pattern / Peroxymonosulfate / Active species / Degradation routes

引用本文

导出引用
Ning Li, Haoxi Dai, Mengting He. . Engineering. 2024, 35(4): 168-179 https://doi.org/10.1016/j.eng.2023.07.020

参考文献

[1]
X. Mi, H. Zhong, H. Zhang, S. Xu, Y. Li, H. Wang, et al. Facilitating redox cycles of copper species by pollutants in peroxymonosulfate activation. Environ Sci Technol, 56 (4) (2022), pp. 2637-2646.
[2]
J. Lee, U. von Gunten, J.H. Kim. Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks. Environ Sci Technol, 54 (6) (2020), pp. 3064-3081.
[3]
T. Zeng, X. Zhang, S. Wang, H. Niu, Y. Cai. Spatial confinement of a Co3O4 catalyst in hollow metal-organic frameworks as a nanoreactor for improved degradation of organic pollutants. Environ Sci Technol, 49 (4) (2015), pp. 2350-2357.
[4]
C. Meng, B. Ding, S. Zhang, L. Cui, K.K. Ostrikov, Z. Huang, et al. Angstrom-confined catalytic water purification within Co-TiOx laminar membrane nanochannels. Nat Commun, 13 (1) (2022), p. 4010.
[5]
B. Huang, Z. Xiong, P. Zhou, H. Zhang, Z. Pan, G. Yao, et al. Ultrafast degradation of contaminants in a trace cobalt(II) activated peroxymonosulfate process triggered through borate: indispensable role of intermediate complex. J Hazard Mater, 424 (Pt D) (2022), 127641.
[6]
D. Guo, Y. Liu, H. Ji, C.C. Wang, B. Chen, C. Shen, et al. Silicate-enhanced heterogeneous flow-through electro-Fenton system using iron oxides under nanoconfinement. Environ Sci Technol, 55 (6) (2021), pp. 4045-4053.
[7]
P. Cai, J. Zhao, X. Zhang, T. Zhang, G. Yin, S. Chen, et al. Synergy between cobalt and nickel on NiCo2O4 nanosheets promotes peroxymonosulfate activation for efficient norfloxacin degradation. Appl Catal B, 306 (2022), 121091.
[8]
Y.D. Chen, R. Wang, X. Duan, S. Wang, N.Q. Ren, S.H. Ho. Production. properties, and catalytic applications of sludge derived biochar for environmental remediation. Water Res, 187 (2020), 116390.
[9]
Y. Gao, Y. Zhu, L. Lyu, Q. Zeng, X. Xing, C. Hu. Electronic structure modulation of graphitic carbon nitride by oxygen doping for enhanced catalytic degradation of organic pollutants through peroxymonosulfate activation. Environ Sci Technol, 52 (24) (2018), pp. 14371-14380.
[10]
M. Tam Do, M.C. Ncibi, V. Srivastava, S.K. Thangaraj, J. Janis, M. Sillanpaa. Gingerbread ingredient-derived carbons-assembled CNT foam for the efficient peroxymonosulfate-mediated degradation of emerging pharmaceutical contaminants. Appl Catal B, 244 (2019), pp. 367-384.
[11]
Y. Wang, Y. Song, N. Li, W. Liu, B. Yan, Y. Yu, et al. Tunable active sites on biogas digestate derived biochar for sulfanilamide degradation by peroxymonosulfate activation. J Hazard Mater, 421 (2022), 126794.
[12]
L. Jin, S. You, N. Ren, B. Ding, Y. Liu. Mo vacancy-mediated activation of peroxymonosulfate for ultrafast micropollutant removal using an electrified MXene filter functionalized with Fe single atoms. Environ Sci Technol, 56 (16) (2022), pp. 11750-11759.
[13]
F. Li, Z. Lu, T. Li, P. Zhang, C. Hu. Origin of the excellent activity and selectivity of a single-atom copper catalyst with unsaturated Cu-N2 sites via peroxydisulfate activation: Cu(III) as a dominant oxidizing species. Environ Sci Technol, 56 (12) (2022), pp. 8765-8775.
[14]
J. Liu, H. He, Z. Shen, H.H. Wang, W. Li. Photoassisted highly efficient activation of persulfate over a single-atom Cu catalyst for tetracycline degradation: process and mechanism. J Hazard Mater, 429 (2022), 128398.
[15]
C. Yao, N. Guo, S. Xi, C.Q. Xu, W. Liu, X. Zhao, et al. Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction. Nat Commun, 11 (1) (2020), p. 4389.
[16]
Q. Hu, K. Gao, X. Wang, H. Zheng, J. Cao, L. Mi, et al. Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction. Nat Commun, 13 (1) (2022), p. 3958.
[17]
L. Peng, X. Duan, Y. Shang, B. Gao, X. Xu. Engineered carbon supported single iron atom sites and iron clusters from Fe-rich Enteromorpha for Fenton-like reactions via nonradical pathways. Appl Catal B Environ, 287 (2021), 119963.
[18]
X. Wang, Z. Xiong, H. Shi, Z. Wu, B. Huang, H. Zhang, et al. Switching the reaction mechanisms and pollutant degradation routes through active center size-dependent Fenton-like catalysis. Appl Catal B Environ, 329 (2023), 122569.
[19]
J. Fonseca, J. Lu. Single-atom catalysts designed and prepared by the atomic layer deposition technique. ACS Catal, 11 (12) (2021), pp. 7018-7059.
[20]
S. Nimai, H. Zhang, Z. Wu, N. Li, B. Lai. Efficient degradation of sulfamethoxazole by acetylene black activated peroxydisulfate. Chinese Chem Lett, 31 (10) (2020), pp. 2657-2660.
[21]
Y. Wang, C. Zhou, J. Wu, J. Niu. Insights into the electrochemical degradation of sulfamethoxazole and its metabolite by Ti/SnO2-Sb/Er-PbO2 anode. Chinese Chem Lett, 31 (10) (2020), pp. 2673-2677.
[22]
Y. Wang, W. Peng, J. Wang, G. Chen, N. Li, Y. Song, et al. Sulfamethoxazole degradation by regulating active sites on distilled spirits lees-derived biochar in a continuous flow fixed bed peroxymonosulfate reactor. Appl Catal B, 310 (2022), 121342.
[23]
G. Kresse. Ab initio molecular dynamics for liquid metals. J Non-Cryst Solids, 192-193 (1995), pp. 222-229.
[24]
G. Kresse, J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter, 54 (16) (1996), pp. 11169-11186.
[25]
G. Kresse, J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 6 (1) (1996), pp. 15-50.
[26]
G. Kresse, J. Hafner. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B Condens Matter, 49 (20) (1994), pp. 14251-14269.
[27]
G. Kresse, D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B Condens Matter Mater Phys, 59 (3) (1999), pp. 1758-1775.
[28]
J.P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys Rev Lett, 77 (18) (1996), pp. 3865-3868.
[29]
S. Grimme, J. Antony, S. Ehrlich, H. Krieg. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys, 132 (15) (2010), 154104.
[30]
D.J. Chadi. Special points for Brillouin-zone integrations. Phys Rev B, 16 (4) (1977), pp. 1746-1747.
[31]
H. Bao, Y. Qiu, X. Peng, J.A. Wang, Y. Mi, S. Zhao, et al. Isolated copper single sites for high-performance electroreduction of carbon monoxide to multicarbon products. Nat Commun, 12 (1) (2021), p. 238.
[32]
X. Zhou, C. Luo, M. Luo, Q. Wang, J. Wang, Z. Liao, et al. Understanding the synergetic effect from foreign metals in bimetallic oxides for PMS activation: a common strategy to increase the stoichiometric efficiency of oxidants. Chem Eng J, 381 (2020), 122587.
[33]
Y. Gao, Z. Chen, Y. Zhu, T. Li, C. Hu. New insights into the generation of singlet oxygen in the metal-free peroxymonosulfate activation process: important role of electron-deficient carbon atoms. Environ Sci Technol, 54 (2) (2020), pp. 1232-1241.
[34]
H. Dong, Y. Li, S. Wang, W. Liu, G. Zhou, Y. Xie, et al. Both Fe(IV) and radicals are active oxidants in the Fe(II)/peroxydisulfate process. Environ Sci Technol Lett, 7 (3) (2020), pp. 219-224.
[35]
S. Zhu, X. Li, J. Kang, X. Duan, S. Wang. Persulfate activation on crystallographic manganese oxides: mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants. Environ Sci Technol, 53 (1) (2019), pp. 307-315.
[36]
D. He, H. Yang, D. Jin, J. Qu, X. Yuan, Y.N. Zhang, et al. Rapid water purification using modified graphitic carbon nitride and visible light. Appl Catal B, 285 (2021), 119864.
[37]
X. Cheng, H. Guo, Y. Zhang, X. Wu, Y. Liu. Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes. Water Res, 113 (2017), pp. 80-88.
[38]
J. Hu, X. Li, F. Liu, W. Fu, L. Lin, B. Li. Comparison of chemical and biological degradation of sulfonamides: solving the mystery of sulfonamide transformation. J Hazard Mater, 424 (Pt D) (2022), 127661.
[39]
A. Wang, J. Ni, W. Wang, X. Wang, D. Liu, Q. Zhu. MOF-derived N-doped ZnO carbon skeleton@hierarchical Bi2MoO6 S-scheme heterojunction for photodegradation of SMX: mechanism, pathways and DFT calculation. J Hazard Mater, 426 (2022), 128106.
[40]
Z. Cai, X. Hao, X. Sun, P. Du, W. Liu, J. Fu. Highly active WO3@anatase-SiO2 aerogel for solar-light-driven phenanthrene degradation: mechanism insight and toxicity assessment. Water Res, 162 (2019), pp. 369-382.
[41]
L. Liang, Y. Wang, N. Li, B. Yan, G. Chen, L.A. Hou. Breaking rate-limiting steps in a red mud-sewage sludge carbon catalyst activated peroxymonosulfate system: effect of pyrolysis temperature. Separ Purif Tech, 299 (2022), 121805.
PDF(4013 KB)

Accesses

Citation

Detail

段落导航
相关文章

/