[1] |
C.R. Catlow, M. Davidson, C. Hardacre, G.J. Hutchings. Catalysis making the world a better place. Philos Trans R Soc A Eng Sci, 374 (2061) (2016), p. 20150089.
|
[2] |
R. Schlögl. Heterogeneous catalysis. Angew Chem Int Ed Engl, 54 (11) (2015), pp. 3465-3520.
|
[3] |
A.Q. Wang, J. Li, T. Zhang. Heterogeneous single-atom catalysis. Nat Rev Chem, 2 (6) (2018), pp. 65-81.
|
[4] |
J.R. Rostrup-Nielsen, J. Sehested, J.K. Nørskov. Hydrogen and synthesis gas by steam- and CO2 reforming. Adv Catal, 47 (2002), pp. 65-139.
|
[5] |
Q.R. Wang, J.P. Guo, P. Chen. Recent progress towards mild-condition ammonia synthesis. J Energy Chem, 36 (2019), pp. 25-36.
|
[6] |
E.T.C. Vogt, B.M. Weckhuysen. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem Soc Rev, 44 (20) (2015), pp. 7342-7370.
|
[7] |
X. Jiang, X. Nie, X. Guo, C. Song, J.G.G. Chen. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem Rev, 120 (15) (2020), pp. 7984-8034.
|
[8] |
K. Tomishige, Y. Nakagawa, M. Tamura. Taming heterogeneous rhenium catalysis for the production of biomass-derived chemicals. Chin Chem Lett, 31 (5) (2020), pp. 1071-1077.
|
[9] |
P. Schwach, X. Pan, X. Bao. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chem Rev, 117 (13) (2017), pp. 8497-8520.
|
[10] |
Y. Dai, X. Gao, Q. Wang, X. Wan, C. Zhou, Y. Yang. Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane. Chem Soc Rev, 50 (9) (2021), pp. 5590-5630.
|
[11] |
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, T.F. Jaramillo. Combining theory and experiment in electrocatalysis: insights into materials design. Science, 355 (6321) (2017), Article eaad4998.
|
[12] |
R.M. Bullock, J.G.G. Chen, L. Gagliardi, P.J. Chirik, O.K. Farha, C.H. Hendon, et al. Using nature’s blueprint to expand catalysis with Earth-abundant metals. Science, 369 (6505) (2020), Article eabc3183.
|
[13] |
S. Chu, Y. Cui, N. Liu. The path towards sustainable energy. Nat Mater, 16 (1) (2016), pp. 16-22.
|
[14] |
P. Nikolaidis, A. Poullikkas. A comparative overview of hydrogen production processes. Renew Sustain Energy Rev, 67 (2017), pp. 597-611.
|
[15] |
M.F. Lagadec, A. Grimaud. Water electrolysers with closed and open electrochemical systems. Nat Mater, 19 (11) (2020), pp. 1140-1150.
|
[16] |
L. Zhang, Z.J. Zhao, J. Gong. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew Chem Int Ed Engl, 56 (38) (2017), pp. 11326-11353.
|
[17] |
D.F. Gao, R.M. Aran-Ais, H.S. Jeon, C.B. Roldan. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat Catal, 2 (3) (2019), pp. 198-210.
|
[18] |
S. Nitopi, E. Bertheussen, S.B. Scott, X. Liu, A.K. Engstfeld, S. Horch, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev, 119 (12) (2019), pp. 7610-7672.
|
[19] |
M.B. Ross, P. De Luna, Y.F. Li, C.T. Dinh, D. Kim, P. Yang, et al. Designing materials for electrochemical carbon dioxide recycling. Nat Catal, 2 (8) (2019), pp. 648-658.
|
[20] |
X.Y. Liu, B.Q. Li, B. Ni, L. Wang, H.J. Peng. A perspective on the electrocatalytic conversion of carbon dioxide to methanol with metallomacrocyclic catalysts. J Energy Chem, 64 (2022), pp. 263-275.
|
[21] |
Z. Zhu, Z. Li, J. Wang, R. Li, H. Chen, Y. Li, et al. Improving NiNx and pyridinic N active sites with space-confined pyrolysis for effective CO2 electroreduction. eScience, 2 (4) (2022), pp. 445-452.
|
[22] |
Z.Q. Gao, J.J. Li, Z.C. Zhang, W.P. Hu. Recent advances in carbon-based materials for electrochemical CO2 reduction reaction. Chin Chem Lett, 33 (5) (2022), pp. 2270-2280.
|
[23] |
J.G. Chen, R.M. Crooks, L.C. Seefeldt, K.L. Bren, R.M. Bullock, M.Y. Darensbourg, et al. Beyond fossil fuel-driven nitrogen transformations. Science, 360 (6391) (2018), Article eaar6611.
|
[24] |
B.H.R. Suryanto, H.L. Du, D.B. Wang, J. Chen, A.N. Simonov, D.R. MacFarlane. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat Catal, 2 (4) (2019), pp. 290-296.
|
[25] |
S.Z. Andersen, V. Čolić, S. Yang, J.A. Schwalbe, A.C. Nielander, J.M. McEnaney, et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature, 570 (7762) (2019), pp. 504-508.
|
[26] |
X.Y. Cui, C. Tang, Q. Zhang. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv Energy Mater, 8 (22) (2018), Article 1800369.
|
[27] |
Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev, 44 (8) (2015), pp. 2060-2086.
|
[28] |
C.C.L. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc, 137 (13) (2015), pp. 4347-4357.
|
[29] |
M. Shao, Q. Chang, J.P. Dodelet, R. Chenitz. Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev, 116 (6) (2016), pp. 3594-3657.
|
[30] |
J. Kibsgaard, I. Chorkendorff. Considerations for the scaling-up of water splitting catalysts. Nat Energy, 4 (6) (2019), pp. 430-433.
|
[31] |
J.K. Nørskov, T. Bligaard, J. Rossmeisl, C.H. Christensen. Towards the computational design of solid catalysts. Nat Chem, 1 (1) (2009), pp. 37-46.
|
[32] |
A. Bruix, J.T. Margraf, M. Andersen, K. Reuter. First-principles-based multiscale modelling of heterogeneous catalysis. Nat Catal, 2 (8) (2019), pp. 659-670.
|
[33] |
B.W.J. Chen, L. Xu, M. Mavrikakis. Computational methods in heterogeneous catalysis. Chem Rev, 121 (2) (2021), pp. 1007-1048.
|
[34] |
A.H. Motagamwala, J.A. Dumesic. Microkinetic modeling: a tool for rational catalyst design. Chem Rev, 121 (2) (2021), pp. 1049-1076.
|
[35] |
J. Greeley. Theoretical heterogeneous catalysis: scaling relationships and computational catalyst design. Annu Rev Chem Biomol Eng, 7 (1) (2016), pp. 605-635.
|
[36] |
Z.J. Zhao, S.H. Liu, S.J. Zha, D.F. Cheng, F. Studt, G. Henkelman, et al. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nat Rev Mater, 4 (12) (2019), pp. 792-804.
|
[37] |
C.T. Campbell. Energies of adsorbed catalytic intermediates on transition metal surfaces: calorimetric measurements and benchmarks for theory. Acc Chem Res, 52 (4) (2019), pp. 984-993.
|
[38] |
A.J. Medford, A. Vojvodic, J.S. Hummelshoj, J. Voss, F. Abild-Pedersen, F. Studt, et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J Catal, 328 (2015), pp. 36-42.
|
[39] |
K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A. Walsh. Machine learning for molecular and materials science. Nature, 559 (7715) (2018), pp. 547-555.
|
[40] |
V. Tshitoyan, J. Dagdelen, L. Weston, A. Dunn, Z. Rong, O. Kononova, et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature, 571 (7763) (2019), pp. 95-98.
|
[41] |
T. Zhou, Z. Song, K. Sundmacher. Big data creates new opportunities for materials research: a review on methods and applications of machine learning for materials design. Engineering, 5 (6) (2019), pp. 1017-1026.
|
[42] |
A. Chen, X. Zhang, Z. Zhou. Machine learning: accelerating materials development for energy storage and conversion. InfoMat, 2 (3) (2020), pp. 553-576.
|
[43] |
Y. Liu, B.R. Guo, X.X. Zou, Y.J. Li, S.Q. Shi. Machine learning assisted materials design and discovery for rechargeable batteries. Energy Storage Mater, 31 (2020), pp. 434-450.
|
[44] |
X. Chen, X. Liu, X. Shen, Q. Zhang. Applying machine learning to rechargeable batteries: from the microscale to the macroscale. Angew Chem Int Ed, 60 (46) (2021), pp. 24354-24366.
|
[45] |
J.Z. Li, X.B. Huang, P. Pianetta, Y.J. Liu. Machine-and-data intelligence for synchrotron science. Nat Rev Phys, 3 (12) (2021), pp. 766-768.
|
[46] |
S. Xu, J. Li, P. Cai, X. Liu, B. Liu, X. Wang. Self-improving photosensitizer discovery system via Bayesian search with first-principle simulations. J Am Chem Soc, 143 (47) (2021), pp. 19769-19777.
|
[47] |
S.N. Li, Y.J. Liu, D. Chen, Y. Jiang, Z.W. Nie, F. Pan. Encoding the atomic structure for machine learning in materials science. Wiley Interdiscip Rev Comput Mol Sci, 12 (1) (2022), p. e1558.
|
[48] |
T. Lombardo, M. Duquesnoy, H. El-Bouysidy, F. Årén, A. Gallo-Bueno, P.B. Jørgensen, et al. Artificial intelligence applied to battery research: hype or reality>. Chem Rev, 122 (12) (2022), pp. 10899-10969.
|
[49] |
X.Y. Liu, X.Q. Zhang, X. Chen, G.L. Zhu, C. Yan, J.Q. Huang, et al. A generalizable, data-driven online approach to forecast capacity degradation trajectory of lithium batteries. J Energy Chem, 68 (2022), pp. 548-555.
|
[50] |
M. Lin, J. Xiong, M. Su, F. Wang, X. Liu, Y. Hou, et al. A machine learning protocol for revealing ion transport mechanisms from dynamic NMR shifts in paramagnetic battery materials. Chem Sci, 13 (26) (2022), pp. 7863-7872.
|
[51] |
X. Wang, S. Jiang, W. Hu, S. Ye, T. Wang, F. Wu, et al. Quantitatively determining surface-adsorbate properties from vibrational spectroscopy with interpretable machine learning. J Am Chem Soc, 144 (35) (2022), pp. 16069-16076.
|
[52] |
J.C.A. Oliveira, J. Frey, S.Q. Zhang, L.C. Xu, X. Li, S.W. Li, et al. When machine learning meets molecular synthesis. Trends Chem, 4 (10) (2022), pp. 863-885.
|
[53] |
X. Liu, H.J. Peng, B.Q. Li, X. Chen, Z. Li, J.Q. Huang, et al. Untangling degradation chemistries of lithium-sulfur batteries through interpretable hybrid machine learning. Angew Chem Int Ed Engl, 61 (48) (2022), p. e202214037.
|
[54] |
Z.P. Yao, Y.W. Lum, A. Johnston, L.M. Mejia-Mendoza, X. Zhou, Y.G. Wen, et al. Machine learning for a sustainable energy future. Nat Rev Mater, 8 (3) (2022), pp. 202-215.
|
[55] |
J.A. Esterhuizen, B.R. Goldsmith, S. Linic. Interpretable machine learning for knowledge generation in heterogeneous catalysis. Nat Catal, 5 (3) (2022), pp. 175-184.
|
[56] |
A.J. Medford, M.R. Kunz, S.M. Ewing, T. Borders, R. Fushimi. Extracting knowledge from data through catalysis informatics. ACS Catal, 8 (8) (2018), pp. 7403-7429.
|
[57] |
P.S. Lamoureux, K.T. Winther, J.A.G. Torres, V. Streibel, M. Zhao, M. Bajdich, et al. Machine learning for computational heterogeneous catalysis. ChemCatChem, 11 (16) (2019), pp. 3581-3601.
|
[58] |
T. Toyao, Z. Maeno, S. Takakusagi, T. Kamachi, I. Takigawa, K. Shimizu. Machine learning for catalysis informatics: recent applications and prospects. ACS Catal, 10 (3) (2020), pp. 2260-2297.
|
[59] |
G.H. Gu, C. Choi, Y. Lee, A.B. Situmorang, J. Noh, Y.H. Kim, et al. Progress in computational and machine-learning methods for heterogeneous small-molecule activation. Adv Mater, 32 (35) (2020), p. 1907865.
|
[60] |
S.C. Ma, Z.P. Liu. Machine learning for atomic simulation and activity prediction in heterogeneous catalysis: current status and future. ACS Catal, 10 (22) (2020), pp. 13213-13226.
|
[61] |
J. Xu, X.M. Cao, P. Hu. Perspective on computational reaction prediction using machine learning methods in heterogeneous catalysis. Phys Chem Chem Phys, 23 (19) (2021), pp. 11155-11179.
|
[62] |
L.T. Chen, X. Zhang, A. Chen, S. Yao, X. Hu, Z. Zhou. Targeted design of advanced electrocatalysts by machine learning. Chin J Catal, 43 (1) (2022), pp. 11-32.
|
[63] |
L. Cao. Recent advances in the application of machine-learning algorithms to predict adsorption energies. Trends Chem, 4 (4) (2022), pp. 347-360.
|
[64] |
H. Li, Y. Jiao, K. Davey, S.Z. Qiao. Data-driven machine learning for understanding surface structures of heterogeneous catalysts. Angew Chem Int Ed, 62 (9) (2023), Article e202216383.
|
[65] |
T.Y. Mou, H.S. Pillai, S.W. Wang, M.Y. Wan, X. Han, N.M. Schweitzer, et al. Bridging the complexity gap in computational heterogeneous catalysis with machine learning. Nat Catal, 6 (2) (2023), pp. 122-136.
|
[66] |
H. Yang, Z.Q. He, M.D. Zhang, X.J. Tan, K. Sun, H.Y. Liu, et al. Reshaping the material research paradigm of electrochemical energy storage and conversion by machine learning. EcoMat, 5 (5) (2023), p. e12330.
|
[67] |
B. Hammer, J.K. Nørskov. Why gold is the noblest of all the metals. Nature, 376 (6537) (1995), pp. 238-240.
|
[68] |
J.K. Nørskov, F. Studt, F. Abild-Pedersen, T. Bligaard. Fundamental concepts in heterogeneous catalysis. John Wiley & Sons, Inc., Hoboken (2014).
|
[69] |
F. Abild-Pedersen, J. Greeley, F. Studt, J. Rossmeisl, T.R. Munter, P.G. Moses, et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett, 99 (1) (2007), Article 016105.
|
[70] |
A.J. Chowdhury, W.Q. Yang, E. Walker, O. Mamun, A. Heyden, G.A. Terejanu. Prediction of adsorption energies for chemical species on metal catalyst surfaces using machine learning. J Phys Chem C, 122 (49) (2018), pp. 28142-28150.
|
[71] |
I.C. Man, H.Y. Su, F. Calle-Vallejo, H.A. Hansen, J.I. Martinez, N.G. Inoglu, et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem, 3 (7) (2011), pp. 1159-1165.
|
[72] |
A.A. Latimer, A.R. Kulkarni, H. Aljama, J.H. Montoya, J.S. Yoo, C. Tsai, et al. Understanding trends in C-H bond activation in heterogeneous catalysis. Nat Mater, 16 (2) (2017), pp. 225-229.
|
[73] |
T. Wang, X.J. Cui, K.T. Winther, F. Abild-Pedersen, T. Bligaard, J.K. Nørskov. Theory-aided discovery of metallic catalysts for selective propane dehydrogenation to propylene. ACS Catal, 11 (10) (2021), pp. 6290-6297.
|
[74] |
O. Mamun, K.T. Winther, J.R. Boes, T. Bligaard. A Bayesian framework for adsorption energy prediction on bimetallic alloy catalysts. npj Comput Mater, 6 (1) (2020), p. 177.
|
[75] |
R. García-Muelas, N. López. Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals. Nat Commun, 10 (1) (2019), p. 4687.
|
[76] |
T. Bligaard, J.K. Nørskov, S. Dahl, J. Matthiesen, C.H. Christensen, J. Sehested. The Bronsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis. J Catal, 224 (1) (2004), pp. 206-217.
|
[77] |
L. Yu, F. Abild-Pedersen. Bond order conservation strategies in catalysis applied to the NH3 decomposition reaction. ACS Catal, 7 (1) (2017), pp. 864-871.
|
[78] |
H.J. Peng, M.T. Tang, X.Y. Liu, P. Schlexer Lamoureux, M. Bajdich, F. Abild-Pedersen. The role of atomic carbon in directing electrochemical CO2 reduction to multicarbon products. Energy Environ Sci, 14 (1) (2021), pp. 473-482.
|
[79] |
Y.L. Cheng, C.T. Hsieh, Y.S. Ho, M.H. Shen, T.H. Chao, M.J. Cheng. Examination of the Brønsted-Evans-Polanyi relationship for the hydrogen evolution reaction on transition metals based on constant electrode potential density functional theory. Phys Chem Chem Phys, 24 (4) (2022), pp. 2476-2481.
|
[80] |
J.S. Hummelshøj, F. Abild-Pedersen, F. Studt, T. Bligaard, J.K. Nørskov. CatApp: a web application for surface chemistry and heterogeneous catalysis. Angew Chem Int Ed Engl, 51 (1) (2012), pp. 272-274.
|
[81] |
K. Takahashi, I. Miyazato. Rapid estimation of activation energy in heterogeneous catalytic reactions via machine learning. J Comput Chem, 39 (28) (2018), pp. 2405-2408.
|
[82] |
N. Artrith, Z.X. Lin, J.G. Chen. Predicting the activity and selectivity of bimetallic metal catalysts for ethanol reforming using machine learning. ACS Catal, 10 (16) (2020), pp. 9438-9444.
|
[83] |
X. Ma, Z. Li, L.E.K. Achenie, H. Xin. Machine-learning-augmented chemisorption model for CO2 electroreduction catalyst screening. J Phys Chem Lett, 6 (18) (2015), pp. 3528-3533.
|
[84] |
Z. Li, S.W. Wang, W.S. Chin, L.E. Achenie, H.L. Xin. High-throughput screening of bimetallic catalysts enabled by machine learning. J Mater Chem A, 5 (46) (2017), pp. 24131-24138.
|
[85] |
C.S. Praveen, A. Comas-Vives. Design of an accurate machine learning algorithm to predict the binding energies of several adsorbates on multiple sites of metal surfaces. ChemCatChem, 12 (18) (2020), pp. 4611-4617.
|
[86] |
S. Wang, H.S. Pillai, H. Xin. Bayesian learning of chemisorption for bridging the complexity of electronic descriptors. Nat Commun, 11 (1) (2020), p. 6132.
|
[87] |
F. Göltl, P. Muller, P. Uchupalanun, P. Sautet, I. Hermans. Developing a descriptor-based approach for CO and NO adsorption strength to transition metal sites in zeolites. Chem Mater, 29 (15) (2017), pp. 6434-6444.
|
[88] |
C. Liu, Y.X. Li, M. Takao, T. Toyao, Z. Maeno, T. Kamachi, et al. Frontier molecular orbital based analysis of solid-adsorbate interactions over group 13 metal oxide surfaces. J Phys Chem C, 124 (28) (2020), pp. 15355-15365.
|
[89] |
M.V. Jyothirmai, D. Roshini, B.M. Abraham, J.K. Singh. Accelerating the discovery of g-C3N4-supported single atom catalysts for hydrogen evolution reaction: a combined DFT and machine learning strategy. ACS Appl Energy Mater, 6 (10) (2023), pp. 5598-5606.
|
[90] |
T.Y. Liu, X. Zhao, X.F. Liu, W.J. Xiao, Z.J. Luo, W.T. Wang, et al. Understanding the hydrogen evolution reaction activity of doped single-atom catalysts on two-dimensional GaPS4 by DFT and machine learning. J Energy Chem, 81 (2023), pp. 93-100.
|
[91] |
H. Sun, Y.Z. Li, L.Y. Gao, M.Y. Chang, X.R. Jin, B.Y. Li, et al. High throughput screening of single atomic catalysts with optimized local structures for the electrochemical oxygen reduction by machine learning. J Energy Chem, 81 (2023), pp. 349-357.
|
[92] |
A. Chen, X. Zhang, L.T. Chen, S. Yao, Z. Zhou. A machine learning model on simple features for CO2 reduction electrocatalysts. J Phys Chem C, 124 (41) (2020), pp. 22471-22478.
|
[93] |
M. Andersen, S.V. Levchenko, M. Scheffler, K. Reuter. Beyond scaling relations for the description of catalytic materials. ACS Catal, 9 (4) (2019), pp. 2752-2759.
|
[94] |
V. Fung, G. Hu, P. Ganesh, B.G. Sumpter. Machine learned features from density of states for accurate adsorption energy prediction. Nat Commun, 12 (1) (2021), p. 88.
|
[95] |
J.A. Esterhuizen, B.R. Goldsmith, S. Linic. Uncovering electronic and geometric descriptors of chemical activity for metal alloys and oxides using unsupervised machine learning. Chem Catal, 1 (4) (2021), pp. 923-940.
|
[96] |
T. Toyao, K. Suzuki, S. Kikuchi, S. Takakusagi, K. Shimizu, I. Takigawa. Toward effective utilization of methane: machine learning prediction of adsorption energies on metal alloys. J Phys Chem C, 122 (15) (2018), pp. 8315-8326.
|
[97] |
J. Noh, S. Back, J. Kim, Y. Jung. Active learning with non-ab initio input features toward efficient CO2 reduction catalysts. Chem Sci, 9 (23) (2018), pp. 5152-5159. View article.
|
[98] |
J.A. Esterhuizen, B.R. Goldsmith, S. Linic. Theory-guided machine learning finds geometric structure-property relationships for chemisorption on subsurface alloys. Chem, 6 (11) (2020), pp. 3100-3117.
|
[99] |
T.R. Wang, J.C. Li, W. Shu, S.L. Hu, R.H. Ouyang, W.X. Li. Machine-learning adsorption on binary alloy surfaces for catalyst screening. Chin J Chem Phys, 33 (6) (2020), pp. 703-711.
|
[100] |
X. Zhang, Z. Wang, A.M. Lawan, J.H. Wang, C.Y. Hsieh, C.R. Duan, et al. Data-driven structural descriptor for predicting platinum-based alloys as oxygen reduction electrocatalysts. InfoMat, 5 (6) (2023), p. e12406.
|
[101] |
M.M. Montemore, J.W. Medlin. A unified picture of adsorption on transition metals through different atoms. J Am Chem Soc, 136 (26) (2014), pp. 9272-9275.
|
[102] |
M.M. Montemore, C.F. Nwaokorie, G.O. Kayode. General screening of surface alloys for catalysis. Catal Sci Technol, 10 (13) (2020), pp. 4467-4476.
|
[103] |
G.A. Somorjai, J.Y. Park. Molecular surface chemistry by metal single crystals and nanoparticles from vacuum to high pressure. Chem Soc Rev, 37 (10) (2008), pp. 2155-2162.
|
[104] |
J.K. Nørskov, T. Bligaard, B. Hvolbaek, F. Abild-Pedersen, I. Chorkendorff, C.H. Christensen. The nature of the active site in heterogeneous metal catalysis. Chem Soc Rev, 37 (10) (2008), pp. 2163-2171.
|
[105] |
F. Calle-Vallejo, D. Loffreda, M.T.M. Koper, P. Sautet. Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers. Nat Chem, 7 (5) (2015), pp. 403-410.
|
[106] |
F. Calle-Vallejo, J. Tymoczko, V. Colic, Q.H. Vu, M.D. Pohl, K. Morgenstern, et al. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science, 350 (6257) (2015), pp. 185-189.
|
[107] |
X. Liu, J. Xiao, H. Peng, X. Hong, K. Chan, J.K. Nørskov. Understanding trends in electrochemical carbon dioxide reduction rates. Nat Commun, 8 (1) (2017), p. 15438.
|
[108] |
T.S. Choksi, L.T. Roling, V. Streibel, F. Abild-Pedersen. Predicting adsorption properties of catalytic descriptors on bimetallic nanoalloys with site-specific precision. J Phys Chem Lett, 10 (8) (2019), pp. 1852-1859.
|
[109] |
R.A. Sheldon. Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem, 16 (3) (2014), pp. 950-963.
|
[110] |
C. Mondelli, G. Gözaydın, N. Yan, J. Pérez-Ramírez. Biomass valorisation over metal-based solid catalysts from nanoparticles to single atoms. Chem Soc Rev, 49 (12) (2020), pp. 3764-3782.
|
[111] |
I. Vollmer, M.J.F. Jenks, M.C.P. Roelands, R.J. White, T. Van Harmelen, P. de Wild, et al. Beyond mechanical recycling: giving new life to plastic waste. Angew Chem Int Ed Engl, 59 (36) (2020), pp. 15402-15423.
|
[112] |
H. Zhou, Y. Wang, Y. Ren, Z.H. Li, X.G. Kong, M.F. Shao, et al. Plastic waste valorization by leveraging multidisciplinary catalytic technologies. ACS Catal, 12 (15) (2022), pp. 9307-9324.
|
[113] |
R.A. Hoyt, M.M. Montemore, I. Fampiou, W. Chen, G. Tritsaris, E. Kaxiras. Machine learning prediction of H adsorption energies on Ag alloys. J Chem Inf Model, 59 (4) (2019), pp. 1357-1365.
|
[114] |
S. Saxena, T.S. Khan, F. Jalid, M. Ramteke, M.A. Haider. In silico high throughput screening of bimetallic and single atom alloys using machine learning and ab initio microkinetic modelling. J Mater Chem A, 8 (1) (2020), pp. 107-123.
|
[115] |
X.Y. Liu, C. Cai, W.H. Zhao, H.J. Peng, T. Wang. Machine learning-assisted screening of stepped alloy surfaces for C1 catalysis. ACS Catal, 12 (8) (2022), pp. 4252-4260.
|
[116] |
Z. Yang, W. Gao, Q. Jiang. A machine learning scheme for the catalytic activity of alloys with intrinsic descriptors. J Mater Chem A, 8 (34) (2020), pp. 17507-17515.
|
[117] |
X. Zong, D.G. Vlachos. Exploring structure-sensitive relations for small species adsorption using machine learning. J Chem Inf Model, 62 (18) (2022), pp. 4361-4368.
|
[118] |
J. Yang, Z. Wang, Z. Liu, Q. Wang, Y. Wen, A. Zhang, et al. Rational ensemble design of alloy catalysts for selective ammonia oxidation based on machine learning. J Mater Chem A, 10 (47) (2022), pp. 25238-25248.
|
[119] |
T.A.A. Batchelor, J.K. Pedersen, S.H. Winther, I.E. Castelli, K.W. Jacobsen, J. Rossmeisl. High-entropy alloys as a discovery platform for electrocatalysis. Joule, 3 (3) (2019), pp. 834-845.
|
[120] |
D. Roy, S.C. Mandal, B. Pathak. Machine learning-driven high-throughput screening of alloy-based catalysts for selective CO2 hydrogenation to methanol. ACS Appl Mater Interfaces, 13 (47) (2021), pp. 56151-56163.
|
[121] |
N.K. Pandit, D. Roy, S.C. Mandal, B. Pathak. Rational designing of bimetallic/trimetallic hydrogen evolution reaction catalysts using supervised machine learning. J Phys Chem Lett, 13 (32) (2022), pp. 7583-7593.
|
[122] |
X. Zhang, K.P. Li, B. Wen, J. Ma, D.F. Diao. Machine learning accelerated DFT research on platinum-modified amorphous alloy surface catalysts. Chin Chem Lett, 34 (5) (2023), Article 107833.
|
[123] |
K. Tran, Z.W. Ulissi. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat Catal, 1 (9) (2018), pp. 696-703.
|
[124] |
T. Xie, J.C. Grossman. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys Rev Lett, 120 (14) (2018), Article 145301.
|
[125] |
S. Back, J. Yoon, N. Tian, W. Zhong, K. Tran, Z.W. Ulissi. Convolutional neural network of atomic surface structures to predict binding energies for high-throughput screening of catalysts. J Phys Chem Lett, 10 (15) (2019), pp. 4401-4408.
|
[126] |
G.H. Gu, J. Noh, S. Kim, S. Back, Z. Ulissi, Y. Jung. Practical deep-learning representation for fast heterogeneous catalyst screening. J Phys Chem Lett, 11 (9) (2020), pp. 3185-3191.
|
[127] |
A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater, 1 (1) (2013), Article 011002.
|
[128] |
S.H. Wang, H.S. Pillai, S. Wang, L.E.K. Achenie, H. Xin. Infusing theory into deep learning for interpretable reactivity prediction. Nat Commun, 12 (1) (2021), p. 5288.
|
[129] |
K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler, et al. Assessment and validation of machine learning methods for predicting molecular atomization energies. J Chem Theory Comput, 9 (8) (2013), pp. 3404-3419.
|
[130] |
D. Rogers, M. Hahn. Extended-connectivity fingerprints. J Chem Inf Model, 50 (5) (2010), pp. 742-754.
|
[131] |
B. Huang, O.A. Von Lilienfeld. Quantum machine learning using atom-in-molecule-based fragments selected on the fly. Nat Chem, 12 (10) (2020), pp. 945-951.
|
[132] |
K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O.A. Von Lilienfeld, K.R. Müller, et al. Machine learning predictions of molecular properties: accurate many-body potentials and nonlocality in chemical space. J Phys Chem Lett, 6 (12) (2015), pp. 2326-2331.
|
[133] |
A.S. Christensen, L.A. Bratholm, F.A. Faber,OA Von Lilienfeld. FCHL revisited: faster and more accurate quantum machine learning. J Chem Phys, 152 (4) (2020), p. 044107.
|
[134] |
X. Li, R. Chiong, Z. Hu, D. Cornforth, A.J. Page. Improved representations of heterogeneous carbon reforming catalysis using machine learning. J Chem Theory Comput, 15 (12) (2019), pp. 6882-6894.
|
[135] |
X. Li, R. Chiong, A.J. Page. Group and period-based representations for improved machine learning prediction of heterogeneous alloy catalysts. J Phys Chem Lett, 12 (21) (2021), pp. 5156-5162.
|
[136] |
D. SMILES Weininger. a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci, 28 (1) (1988), pp. 31-36.
|
[137] |
A.J. Chowdhury, W. Yang, K.E. Abdelfatah, M. Zare, A. Heyden, G.A. Terejanu. A multiple filter based neural network approach to the extrapolation of adsorption energies on metal surfaces for catalysis applications. J Chem Theory Comput, 16 (2) (2020), pp. 1105-1114.
|
[138] |
A.J. Chowdhury, W.Q. Yang, A. Heyden, G.A. Terejanu. Comparative study on the machine learning-based prediction of adsorption energies for ring and chain species on metal catalyst surfaces. J Phys Chem C, 125 (32) (2021), pp. 17742-17748.
|
[139] |
B.C. Wang, T.J. Gu, Y.J. Lu, B. Yang. Prediction of energies for reaction intermediates and transition states on catalyst surfaces using graph-based machine learning models. Mol Catal, 498 (2020), Article 111266.
|
[140] |
S. Pablo-García, S. Morandi, R.A. Vargas-Hernández, K. Jorner, Z. Ivković, N. López, et al. Fast evaluation of the adsorption energy of organic molecules on metals via graph neural networks. Nat Comput Sci, 3 (5) (2023), pp. 433-442.
|
[141] |
R. Jinnouchi, R. Asahi. Predicting catalytic activity of nanoparticles by a DFT-aided machine-learning algorithm. J Phys Chem Lett, 8 (17) (2017), pp. 4279-4283.
|
[142] |
M.O.J. Jager, E.V. Morooka, F.F. Canova, L. Himanen, A.S. Foster. Machine learning hydrogen adsorption on nanoclusters through structural descriptors. npj Comput Mater, 4 (2018), p. 37.
|
[143] |
Y. Chen, Y. Huang, T. Cheng, W.A. Goddard III. Identifying active sites for CO2 reduction on dealloyed gold surfaces by combining machine learning with multiscale simulations. J Am Chem Soc, 141 (29) (2019), pp. 11651-11657.
|
[144] |
A.C.T. Van Duin, S. Dasgupta, F. Lorant, W.A. Goddard. ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A, 105 (41) (2001), pp. 9396-9409.
|
[145] |
S. Naserifar, Y.L. Chen, S. Kwon, H. Xiao, W.A. Goddard III. Artificial intelligence and QM/MM with a polarizable reactive force field for next-generation electrocatalysts. Matter, 4 (1) (2021), pp. 195-216.
|
[146] |
K. Jiang, Y.F. Huang, G.S. Zeng, F.M. Toma, W.A. Goddard III, A.T. Bell. Effects of surface roughness on the electrochemical reduction of CO2 over Cu. ACS Energy Lett, 5 (4) (2020), pp. 1206-1214.
|
[147] |
G.H. Gu, J. Lim, C. Wan, T. Cheng, H. Pu, S. Kim, et al. Autobifunctional mechanism of jagged Pt nanowires for hydrogen evolution kinetics via end-to-end simulation. J Am Chem Soc, 143 (14) (2021), pp. 5355-5363.
|
[148] |
J.W. Zhang, P.J. Hu, H.F. Wang. Amorphous catalysis: machine learning driven high-throughput screening of superior active site for hydrogen evolution reaction. J Phys Chem C, 124 (19) (2020), pp. 10483-10494.
|
[149] |
P.G. Ghanekar, S. Deshpande, J. Greeley. Adsorbate chemical environment-based machine learning framework for heterogeneous catalysis. Nat Commun, 13 (1) (2022), p. 5788.
|
[150] |
S. Deshpande, T. Maxson, J. Greeley. Graph theory approach to determine configurations of multidentate and high coverage adsorbates for heterogeneous catalysis. npj Comput Mater, 6 (1) (2020), p. 79.
|
[151] |
L. Cao, T. Mueller. Catalytic activity maps for alloy nanoparticles. J Am Chem Soc, 145 (13) (2023), pp. 7352-7360.
|
[152] |
M. Zhong, K. Tran, Y. Min, C. Wang, Z. Wang, C.T. Dinh, et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature, 581 (7807) (2020), pp. 178-183.
|
[153] |
L. Van der Maaten. Accelerating t-SNE using tree-based algorithms. J Mach Learn Res, 15 (1) (2014), pp. 3221-3245.
|
[154] |
H.S. Pillai, Y. Li, S.H. Wang, N. Omidvar, Q. Mu, L.E.K. Achenie, et al. Interpretable design of Ir-free trimetallic electrocatalysts for ammonia oxidation with graph neural networks. Nat Commun, 14 (1) (2023), p. 792.
|
[155] |
S. Zhai, H.P. Xie, P. Cui, D.Q. Guan, J. Wang, S.Y. Zhao, et al. A combined ionic Lewis acid descriptor and machine-learning approach to prediction of efficient oxygen reduction electrodes for ceramic fuel cells. Nat Energy, 7 (9) (2022), pp. 866-875.
|
[156] |
Q. Gao, H.S. Pillai, Y. Huang, S. Liu, Q. Mu, X. Han, et al. Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights. Nat Commun, 13 (1) (2022), p. 2338.
|
[157] |
K.T. Winther, M.J. Hoffmann, J.R. Boes, O. Mamun, M. Bajdich, T. Bligaard. Catalysis-Hub. org, an open electronic structure database for surface reactions. Sci Data, 6 (1) (2019), p. 75.
|
[158] |
L. Chanussot, A. Das, S. Goyal, T. Lavril, M. Shuaibi, M. Riviere, et al. Open catalyst 2020 (OC20) dataset and community challenges. ACS Catal, 11 (10) (2021), pp. 6059-6072.
|
[159] |
A. Kolluru, M. Shuaibi, A. Palizhati, N. Shoghi, A. Das, B. Wood, et al. Open challenges in developing generalizable large-scale machine-learning models for catalyst discovery. ACS Catal, 12 (14) (2022), pp. 8572-8581.
|
[160] |
C. Chen, W.K. Ye, Y.X. Zuo, C. Zheng, S.P. Ong. Graph networks as a universal machine learning framework for molecules and crystals. Chem Mater, 31 (9) (2019), pp. 3564-3572.
|
[161] |
N. Yang, A.J. Medford, X. Liu, F. Studt, T. Bligaard, S.F. Bent, et al. Intrinsic selectivity and structure sensitivity of rhodium catalysts for C2+ oxygenate production. J Am Chem Soc, 138 (11) (2016), pp. 3705-3714.
|
[162] |
R. Sundararaman, D. Vigil-Fowler, K. Schwarz. Improving the accuracy of atomistic simulations of the electrochemical interface. Chem Rev, 122 (12) (2022), pp. 10651-10674.
|
[163] |
X. Liu, P. Schlexer, J. Xiao, Y. Ji, L. Wang, R.B. Sandberg, et al. pH effects on the electrochemical reduction of CO2 towards C2 products on stepped copper. Nat Commun, 10 (1) (2019), p. 32.
|
[164] |
H.J. Peng, M.T. Tang, J. Halldin Stenlid, X. Liu, F. Abild-Pedersen. Trends in oxygenate/hydrocarbon selectivity for electrochemical CO2 reduction to C2 products. Nat Commun, 13 (1) (2022), p. 1399.
|
[165] |
F.A. Faber, L. Hutchison, B. Huang, J. Gilmer, S.S. Schoenholz, G.E. Dahl, et al. Prediction errors of molecular machine learning models lower than hybrid DFT error. J Chem Theory Comput, 13 (11) (2017), pp. 5255-5264.
|
[166] |
M. Bogojeski, L. Vogt-Maranto, M.E. Tuckerman, K.R. Müller, K. Burke. Quantum chemical accuracy from density functional approximations via machine learning. Nat Commun, 11 (1) (2020), p. 5223.
|
[167] |
M.K. Bisbo, B. Hammer. Efficient global structure optimization with a machine-learned surrogate model. Phys Rev Lett, 124 (8) (2020), Article 086102.
|
[168] |
J. Behler. First principles neural network potentials for reactive simulations of large molecular and condensed systems. Angew Chem Int Ed Engl, 56 (42) (2017), pp. 12828-12840.
|
[169] |
P. Friederich, F. Häse, J. Proppe, A. Aspuru-Guzik. Machine-learned potentials for next-generation matter simulations. Nat Mater, 20 (6) (2021), pp. 750-761.
|