[1] |
C. Fraser, C.A. Donnelly, S. Cauchemez, W.P. Hanage, M.D. van Kerkhove, T.D. Hollingsworth, et al.. WHO Rapid Pandemic Assessment Collaboration. Pandemic potential of a strain of influenza A (H1N1): early findings. Science, 324 (5934) ( 2009), pp. 1557-1561
|
[2] |
T. Horimoto, Y. Kawaoka. Influenza: lessons from past pandemics, warnings from current incidents. Nat Rev Microbiol, 3 (8) ( 2005), pp. 591-600
|
[3] |
L. Xing, Y. Chen, B. Chen, L. Bu, Y. Liu, Z. Zeng, et al.. Antigenic drift of the hemagglutinin from an influenza A ( H1N1) pdm 09 clinical isolate increases its pathogenicity in vitro. Virol Sin, 36 (5) ( 2021), pp. 1220-1227
|
[4] |
H.Q. McLean, E.A. Belongia. Influenza vaccine effectiveness: new insights and challenges. Cold Spring Harb Perspect Med, 11 (6) ( 2021), Article a038315
|
[5] |
B.S. Shim, Y.K. Choi, C.H. Yun, E.G. Lee, Y.S. Jeon, S.M. Park, et al.. Sublingual immunization with M2-based vaccine induces broad protective immunity against influenza. PLoS One, 6 (11) ( 2011), Article e27953
|
[6] |
A.M. Andersson, K.O. Håkansson, B.A. Jensen, D. Christensen, P. Andersen, A.R. Thomsen, et al.. Increased immunogenicity and protective efficacy of influenza M2e fused to a tetramerizing protein. PLoS One, 7 (10) ( 2012), Article e46395
|
[7] |
M.Y. Sangster, P.Q.T. Nguyen, D.J. Topham. Role of memory B cells in hemagglutinin-specific antibody production following human influenza A virus infection. Pathogens, 8 (4) ( 2019), Article 167
|
[8] |
C.S. Copeland, R.W. Doms, E.M. Bolzau, R.G. Webster, A. Helenius. Assembly of influenza hemagglutinin trimers and its role in intracellular transport. J Cell Biol, 103 (4) ( 1986), pp. 1179-1191
|
[9] |
W. Weis, J.H. Brown, S. Cusack, J.C. Paulson, J.J. Skehel, D.C. Wiley. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature, 333 (6172) ( 1988), pp. 426-431
|
[10] |
I.A. Wilson, J.J. Skehel, D.C. Wiley. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature, 289 (5796) ( 1981), pp. 366-373
|
[11] |
S.R. Das, P. Puigbò, S.E. Hensley, D.E. Hurt, J.R. Bennink, J.W. Yewdell. Glycosylation focuses sequence variation in the influenza A virus H1 hemagglutinin globular domain. PLoS Pathog, 6 (11) ( 2010), Article e1001211
|
[12] |
B.M. Giles, T.M. Ross. A computationally optimized broadly reactive antigen (COBRA) based H5N1 VLP vaccine elicits broadly reactive antibodies in mice and ferrets. Vaccine, 29 (16) ( 2011), pp. 3043-3054
|
[13] |
D.M. Carter, C.A. Darby, B.C. Lefoley, C.J. Crevar, T. Alefantis, R. Oomen, et al.. Design and characterization of a computationally optimized broadly reactive hemagglutinin vaccine for H1N1 influenza viruses. J Virol, 90 (9) ( 2016), pp. 4720-4734
|
[14] |
T.M. Wong, J.D. Allen, A.G. Bebin-Blackwell, D.M. Carter, T. Alefantis, J. DiNapoli, et al.. Computationally optimized broadly reactive hemagglutinin elicits hemagglutination inhibition antibodies against a panel of H3N2 influenza virus cocirculating variants. J Virol, 91 (24) ( 2017), pp. e01581-e10617
|
[15] |
J. Chen, J. Wang, J. Zhang, H. Ly. Advances in development and application of influenza vaccines. Front Immunol, 12 ( 2021), Article 711997
|
[16] |
D.M. Skowronski, N.Z. Janjua, G. De Serres, S. Sabaiduc, A. Eshaghi, J.A. Dickinson, et al.. Low 2012-13 influenza vaccine effectiveness associated with mutation in the egg-adapted H3N2 vaccine strain not antigenic drift in circulating viruses. PLoS One, 9 (3) (2014), Article e92153
|
[17] |
P. Kirthika, A. Senevirathne, V. Jawalagatti, S. Park, J.H. Lee. Deletion of the lon gene augments expression of Salmonella pathogenicity island (SPI)-1 and metal ion uptake genes leading to the accumulation of bactericidal hydroxyl radicals and host pro-inflammatory cytokine-mediated rapid intracellular clearance. Gut Microbes, 11 (6) ( 2020), pp. 1695-1712
|
[18] |
J.H. Brumell, D.L. Goosney, B.B. Finlay. SifA, a type III secreted effector of Salmonella typhimurium, directs Salmonella-induced filament (Sif) formation along microtubules. Traffic, 3 (6) ( 2002), pp. 407-415
|
[19] |
W. Kong, M. Brovold, B.A. Koeneman, J. Clark-Curtiss, R. Curtiss R 3rd.. Turning self-destructing Salmonella into a universal DNA vaccine delivery platform. Proc Natl Acad Sci USA, 109 (47) ( 2012), pp. 19414-19419
|
[20] |
K.K. Ng, J.J. Arnold, C.E. Cameron. Structure-function relationships among RNA-dependent RNA polymerases. Curr Top Microbiol Immunol, 320 ( 2008), pp. 137-156
|
[21] |
A. Senevirathne, J.Y. Park, C. Hewawaduge, K. Perumalraja, J.H. Lee. Eukaryotic expression system complemented with expressivity of Semliki Forest virus’s RdRp and invasiveness of engineered Salmonella demonstrate promising potential for bacteria mediated gene therapy. Biomaterials, 279 ( 2021), Article 121226
|
[22] |
P. Liljeström, H. Garoff. A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology, 9 (12) ( 1991), pp. 1356-1361
|
[23] |
Y. Bao, P. Bolotov, D. Dernovoy, B. Kiryutin, L. Zaslavsky, T. Tatusova, et al.. The influenza virus resource at the National Center for Biotechnology Information. J Virol, 82 (2) ( 2008), pp. 596-601
|
[24] |
K. Gopalakrishnan, G. Sowmiya, S.S. Sheik, K. Sekar. Ramachandran plot on the web (2.0). Protein Pept Lett, 14 (7) ( 2007), pp. 669-671
|
[25] |
J.E. Larsen, O. Lund, M. Nielsen. Improved method for predicting linear B-cell epitopes. Immunome Res, 2 (1) ( 2006), Article 2
|
[26] |
D. Kozakov, D.R. Hall, B. Xia, K.A. Porter, D. Padhorny, C. Yueh, et al.. The ClusPro web server for protein-protein docking. Nat Protoc, 12 (2) ( 2017), pp. 255-278
|
[27] |
E. Ramírez-Aportela, J.R. López-Blanco, P. Chacón. FRODOCK 2.0: fast protein-protein docking server. Bioinformatics, 32 (15) ( 2016), pp. 2386-2388
|
[28] |
R.P. Aganja, C. Sivasankar, C. Hewawaduge, J.H. Lee. Safety assessment of compliant, highly invasive, lipid A-altered, O-antigen-defected Salmonella strains as prospective vaccine delivery systems. Vet Res, 53 (1) ( 2022), Article 76
|
[29] |
Kruisbeek AM. Isolation of mouse mononuclear cells. Curr Protoc Immunol 2001; Chapter 3:Unit 3.1.
|
[30] |
F. Denizot, R. Lang. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods, 89 (2) ( 1986), pp. 271-277
|
[31] |
I.A. Hajam, J.H. Lee. Preexisting Salmonella-specific immunity interferes with the subsequent development of immune responses against the Salmonella strains delivering H9N2 hemagglutinin. Vet Microbiol, 205 ( 2017), pp. 117-123
|
[32] |
M.W. Pfaffl. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res, 29 (9) ( 2001), Article e45
|
[33] |
K.L. Laurie, O.G. Engelhardt, J. Wood, A. Heath, J.M. Katz, M. Peiris, et al.. CONSISE Laboratory Working Group participants. International laboratory comparison of influenza microneutralization assays for A( H1N1) pdm09, A(H3N2), and A(H5N1) influenza viruses by CONSISE. Clin Vaccine Immunol, 22 (8) ( 2015), pp. 957-964
|
[34] |
WHO. Manual for the laboratory diagnosis and virological surveillance of influenza. Geneva: WHO; 2011.
|
[35] |
H.O. Song, J.H. Kim, H.S. Ryu, D.H. Lee, S.J. Kim, D.J. Kim, et al.. Polymeric LabChip real-time PCR as a point-of-care-potential diagnostic tool for rapid detection of influenza A/H1N1 virus in human clinical specimens. PLoS One, 7 (12) ( 2012), Article e53325
|
[36] |
G.J. Kleywegt, T.A. Jones. Phi/psi-chology: Ramachandran revisited. Structure, 4 (12) ( 1996), pp. 1395-1400
|
[37] |
B.M. Giles, C.J. Crevar, D.M. Carter, S.J. Bissel, S. Schultz-Cherry, C.A. Wiley, et al.. A computationally optimized hemagglutinin virus-like particle vaccine elicits broadly reactive antibodies that protect nonhuman primates from H5N1 infection. J Infect Dis, 205 (10) ( 2012), pp. 1562-1570
|
[38] |
D.M. Carter, C.A. Darby, S.K. Johnson, M.A. Carlock, G.A. Kirchenbaum, J.D. Allen, et al.. Elicitation of protective antibodies against a broad panel of H1N1 viruses in ferrets preimmune to historical H1N1 influenza viruses. J Virol, 91 (24) ( 2017), pp. e01283-e10317
|
[39] |
N. Sriwilaijaroen, Y. Suzuki. Molecular basis of the structure and function of H1 hemagglutinin of influenza virus. Proc Jpn Acad Ser B Phys Biol Sci, 88 (6) ( 2012), pp. 226-249
|
[40] |
I.T. Schulze. Effects of glycosylation on the properties and functions of influenza virus hemagglutinin. J Infect Dis, 176 (Suppl 1) ( 1997), pp. S24-S28
|
[41] |
Y. Abe, E. Takashita, K. Sugawara, Y. Matsuzaki, Y. Muraki, S. Hongo. Effect of the addition of oligosaccharides on the biological activities and antigenicity of influenza A/H3N2 virus hemagglutinin. J Virol, 78 (18) ( 2004), pp. 9605-9611
|
[42] |
Y. Kubo, M. Yokoyama, H. Yoshii, C. Mitani, C. Tominaga, Y. Tanaka, et al.. Inhibitory role of CXCR4 glycan in CD4-independent X4-tropic human immunodeficiency virus type 1 infection and its abrogation in CD4-dependent infection. J Gen Virol, 88 (Pt 11) ( 2007), pp. 3139-3144
|
[43] |
C. Xuan, Y. Shi, J. Qi, W. Zhang, H. Xiao, G.F. Gao. Structural vaccinology: structure-based design of influenza A virus hemagglutinin subtype-specific subunit vaccines. Protein Cell, 2 (12) ( 2011), pp. 997-1005
|
[44] |
R.M. DuBois, J.M. Aguilar-Yañez, G.I. Mendoza-Ochoa, Y. Oropeza-Almazán, S. Schultz-Cherry, M.M. Alvarez, et al.. The receptor-binding domain of influenza virus hemagglutinin produced in Escherichia coli folds into its native, immunogenic structure. J Virol, 85 (2) ( 2011), pp. 865-872
|
[45] |
J.M. Aguilar-Yáñez, R. Portillo-Lara, G.I. Mendoza-Ochoa, S.A. García-Echauri, F. López-Pacheco, D. Bulnes-Abundis, et al.. An influenza A/H1N1/2009 hemagglutinin vaccine produced in Escherichia coli. PLoS One, 5 (7) ( 2010), Article e11694
|
[46] |
N.C. Wu, I.A. Wilson. Structural insights into the design of novel anti-influenza therapies. Nat Struct Mol Biol, 25 (2) ( 2018), pp. 115-121
|
[47] |
C. Qiu, D. Tian, Y. Wan, W. Zhang, C. Qiu, Z. Zhu, et al.. Early adaptive humoral immune responses and virus clearance in humans recently infected with pandemic 2009 H1N1 influenza virus. PLoS One, 6 (8) ( 2011), Article e22603
|
[48] |
S. Tamura, K. Miyata, K. Matsuo, H. Asanuma, H. Takahashi, K. Nakajima, et al.. Acceleration of influenza virus clearance by Th 1 cells in the nasal site of mice immunized intranasally with adjuvant-combined recombinant nucleoprotein. J Immunol, 156 (10) ( 1996), pp. 3892-3900
|
[49] |
T.K. Tsang, K.T. Lam, Y. Liu, V.J. Fang, X. Mu, N.H.L. Leung, et al.. Investigation of CD4 and CD 8 T cell-mediated protection against influenza A virus in a cohort study. BMC Med, 20 (1) ( 2022), Article 230
|
[50] |
A. Olvera, S. Cedeño, A. Llano, B. Mothe, J. Sanchez, G. Arsequell, et al.. Does antigen glycosylation impact the HIV-specific T cell immunity?. Front Immunol, 11 ( 2021), Article 573928
|
[51] |
W.C. Liu, Y.L. Lin, M. Spearman, P.Y. Cheng, M. Butler, S.C. Wu. Influenza virus hemagglutinin glycoproteins with different N-glycan patterns activate dendritic cells in vitro. J Virol, 90 (13) ( 2016), pp. 6085-6096
|
[52] |
J. Sun, R. Madan, C.L. Karp, T.J. Braciale.Effector T cells control lung inflammation during acute influenza virus infection by producing IL-10. Nat Med, 15 (3) ( 2009), pp. 277-284
|
[53] |
L. Jiang, S. Yao, S. Huang, J. Wright, T.J. Braciale, J. Sun. Type I IFN signaling facilitates the development of IL-10-producing effector CD8+ T cells during murine influenza virus infection. Eur J Immunol, 46 (12) ( 2016), pp. 2778-2788
|
[54] |
E. Antalis, A. Spathis, C. Kottaridi, A. Kossyvakis, K. Pastellas, K. Tsakalos, et al.. Th 17 serum cytokines in relation to laboratory-confirmed respiratory viral infection: a pilot study. J Med Virol, 91 (6) ( 2019), pp. 963-971
|
[55] |
S.H. Seo, R.G. Webster. Tumor necrosis factor alpha exerts powerful anti-influenza virus effects in lung epithelial cells. J Virol, 76 (3) ( 2002), pp. 1071-1076
|
[56] |
A. Bot, S. Bot, C.A. Bona. Protective role of gamma interferon during the recall response to influenza virus. J Virol, 72 (8) ( 1998), pp. 6637-6645
|
[57] |
J.S. Rush, P.D. Hodgkin. B cells activated via CD40 and IL-4 undergo a division burst but require continued stimulation to maintain division, survival and differentiation. Eur J Immunol, 31 (4) ( 2001), pp. 1150-1159
|
[58] |
T. Noma.Function, molecular structure and gene expression of IL-4. Nihon Rinsho, 50 (8) ( 1992), pp. 1787-1794 Japanese
|
[59] |
T.K. Tsang, S. Cauchemez, R.A. Perera, G. Freeman, V.J. Fang, D.K. Ip, et al.. Association between antibody titers and protection against influenza virus infection within households. J Infect Dis, 210 (5) ( 2014), pp. 684-692
|
[60] |
R.J. Cox. Correlates of protection to influenza virus, where do we go from here?. Hum Vaccin Immunother, 9 (2) ( 2013), pp. 405-408
|
[61] |
S. Truelove, H. Zhu, J. Lessler, S. Riley, J.M. Read, S. Wang, et al.. A comparison of hemagglutination inhibition and neutralization assays for characterizing immunity to seasonal influenza A. Influenza Other Respi Viruses, 10 (6) ( 2016), pp. 518-524
|
[62] |
M. Fukushi, T. Ito, T. Oka, T. Kitazawa, T. Miyoshi-Akiyama, T. Kirikae, et al.. Serial histopathological examination of the lungs of mice infected with influenza A virus PR8 strain. PLoS One, 6 (6) ( 2011), Article e21207
|