从H1N1血凝素序列中提取的沙门氏菌递送的COBRA-HA1抗原对甲型流感亚型产生广谱保护作用

Ram Prasad Aganja, Amal Senevirathne, Chandran Sivasankar, John Hwa Lee

工程(英文) ›› 2024, Vol. 32 ›› Issue (1) : 41-56.

PDF(4247 KB)
PDF(4247 KB)
工程(英文) ›› 2024, Vol. 32 ›› Issue (1) : 41-56. DOI: 10.1016/j.eng.2023.08.001
研究论文
Article

从H1N1血凝素序列中提取的沙门氏菌递送的COBRA-HA1抗原对甲型流感亚型产生广谱保护作用

作者信息 +

Salmonella-Delivered COBRA-HA1 Antigen Derived from H1N1 Hemagglutinin Sequences Elicits Broad-Spectrum Protection Against Influenza A Subtypes

Author information +
History +

Abstract

A universal vaccine is in high demand to address the uncertainties of antigenic drift and the reduced effectiveness of current influenza vaccines. In this study, a strategy called computationally optimized broadly reactive antigen (COBRA) was used to generate a consensus sequence of the hemagglutinin globular head portion (HA1) of influenza virus samples collected from 1918 to 2021 to trace evolutionary changes and incorporate them into the designed constructs. Constructs carrying different HA1 regions were delivered into eukaryotic cells by Salmonella -mediated bactofection using a Semliki Forest virus RNA-dependent RNA polymerase (RdRp)-based eukaryotic expression system, pJHL204. Recombinant protein expression was confirmed by Western blot and immunofluorescence assays. Mice immunized with the designed constructs produced a humoral response, with a significant increase in immunoglobulin G (IgG) levels, and a cell-mediated immune response, including a 1.5-fold increase in CD4 + and CD8 + T cells. Specifically, constructs #1 and #5 increased the production of interferon-γ (IFN-γ) producing CD4 + and CD8+ T cells, skewing the response toward the T helper type 1 cell (Th1) pathway. Additionally, interleukin-4 (IL-4)-producing T cells were upregulated 4-fold. Protective efficacy was demonstrated, with up to 4-fold higher production of neutralizing antibodies and a hemagglutination inhibition titer > 40 against the selected viral strains. The designed constructs conferred a broadly protective immune response, resulting in a notable reduction in viral titer and minimal inflammation in the lungs of mice challenged with the influenza A/PR8/34, A/Brisbane/59/2007, A/California/07/2009, KBPV VR-92, and NCCP 43021 strains. This discovery revolutionizes influenza vaccine design and delivery; Salmonella-mediated COBRA-HA1 is a highly effective in vivo antigen presentation strategy. This approach can effectively combat seasonal H1N1 influenza strains and potential pandemic outbreaks.

Keywords

COBRA / Influenza A / Salmonella / Vaccine / Broad spectral protection

引用本文

导出引用
Ram Prasad Aganja, Amal Senevirathne, Chandran Sivasankar. 从H1N1血凝素序列提取的沙门氏菌传递的COBRA-HA1抗原对甲型流感亚型产生广谱保护作用. Engineering. 2024, 32(1): 41-56 https://doi.org/10.1016/j.eng.2023.08.001

参考文献

[1]
C. Fraser, C.A. Donnelly, S. Cauchemez, W.P. Hanage, M.D. van Kerkhove, T.D. Hollingsworth, et al.. WHO Rapid Pandemic Assessment Collaboration. Pandemic potential of a strain of influenza A (H1N1): early findings. Science, 324 (5934) ( 2009), pp. 1557-1561
[2]
T. Horimoto, Y. Kawaoka. Influenza: lessons from past pandemics, warnings from current incidents. Nat Rev Microbiol, 3 (8) ( 2005), pp. 591-600
[3]
L. Xing, Y. Chen, B. Chen, L. Bu, Y. Liu, Z. Zeng, et al.. Antigenic drift of the hemagglutinin from an influenza A ( H1N1) pdm 09 clinical isolate increases its pathogenicity in vitro. Virol Sin, 36 (5) ( 2021), pp. 1220-1227
[4]
H.Q. McLean, E.A. Belongia. Influenza vaccine effectiveness: new insights and challenges. Cold Spring Harb Perspect Med, 11 (6) ( 2021), Article a038315
[5]
B.S. Shim, Y.K. Choi, C.H. Yun, E.G. Lee, Y.S. Jeon, S.M. Park, et al.. Sublingual immunization with M2-based vaccine induces broad protective immunity against influenza. PLoS One, 6 (11) ( 2011), Article e27953
[6]
A.M. Andersson, K.O. Håkansson, B.A. Jensen, D. Christensen, P. Andersen, A.R. Thomsen, et al.. Increased immunogenicity and protective efficacy of influenza M2e fused to a tetramerizing protein. PLoS One, 7 (10) ( 2012), Article e46395
[7]
M.Y. Sangster, P.Q.T. Nguyen, D.J. Topham. Role of memory B cells in hemagglutinin-specific antibody production following human influenza A virus infection. Pathogens, 8 (4) ( 2019), Article 167
[8]
C.S. Copeland, R.W. Doms, E.M. Bolzau, R.G. Webster, A. Helenius. Assembly of influenza hemagglutinin trimers and its role in intracellular transport. J Cell Biol, 103 (4) ( 1986), pp. 1179-1191
[9]
W. Weis, J.H. Brown, S. Cusack, J.C. Paulson, J.J. Skehel, D.C. Wiley. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature, 333 (6172) ( 1988), pp. 426-431
[10]
I.A. Wilson, J.J. Skehel, D.C. Wiley. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature, 289 (5796) ( 1981), pp. 366-373
[11]
S.R. Das, P. Puigbò, S.E. Hensley, D.E. Hurt, J.R. Bennink, J.W. Yewdell. Glycosylation focuses sequence variation in the influenza A virus H1 hemagglutinin globular domain. PLoS Pathog, 6 (11) ( 2010), Article e1001211
[12]
B.M. Giles, T.M. Ross. A computationally optimized broadly reactive antigen (COBRA) based H5N1 VLP vaccine elicits broadly reactive antibodies in mice and ferrets. Vaccine, 29 (16) ( 2011), pp. 3043-3054
[13]
D.M. Carter, C.A. Darby, B.C. Lefoley, C.J. Crevar, T. Alefantis, R. Oomen, et al.. Design and characterization of a computationally optimized broadly reactive hemagglutinin vaccine for H1N1 influenza viruses. J Virol, 90 (9) ( 2016), pp. 4720-4734
[14]
T.M. Wong, J.D. Allen, A.G. Bebin-Blackwell, D.M. Carter, T. Alefantis, J. DiNapoli, et al.. Computationally optimized broadly reactive hemagglutinin elicits hemagglutination inhibition antibodies against a panel of H3N2 influenza virus cocirculating variants. J Virol, 91 (24) ( 2017), pp. e01581-e10617
[15]
J. Chen, J. Wang, J. Zhang, H. Ly. Advances in development and application of influenza vaccines. Front Immunol, 12 ( 2021), Article 711997
[16]
D.M. Skowronski, N.Z. Janjua, G. De Serres, S. Sabaiduc, A. Eshaghi, J.A. Dickinson, et al.. Low 2012-13 influenza vaccine effectiveness associated with mutation in the egg-adapted H3N2 vaccine strain not antigenic drift in circulating viruses. PLoS One, 9 (3) (2014), Article e92153
[17]
P. Kirthika, A. Senevirathne, V. Jawalagatti, S. Park, J.H. Lee. Deletion of the lon gene augments expression of Salmonella pathogenicity island (SPI)-1 and metal ion uptake genes leading to the accumulation of bactericidal hydroxyl radicals and host pro-inflammatory cytokine-mediated rapid intracellular clearance. Gut Microbes, 11 (6) ( 2020), pp. 1695-1712
[18]
J.H. Brumell, D.L. Goosney, B.B. Finlay. SifA, a type III secreted effector of Salmonella typhimurium, directs Salmonella-induced filament (Sif) formation along microtubules. Traffic, 3 (6) ( 2002), pp. 407-415
[19]
W. Kong, M. Brovold, B.A. Koeneman, J. Clark-Curtiss, R. Curtiss R 3rd.. Turning self-destructing Salmonella into a universal DNA vaccine delivery platform. Proc Natl Acad Sci USA, 109 (47) ( 2012), pp. 19414-19419
[20]
K.K. Ng, J.J. Arnold, C.E. Cameron. Structure-function relationships among RNA-dependent RNA polymerases. Curr Top Microbiol Immunol, 320 ( 2008), pp. 137-156
[21]
A. Senevirathne, J.Y. Park, C. Hewawaduge, K. Perumalraja, J.H. Lee. Eukaryotic expression system complemented with expressivity of Semliki Forest virus’s RdRp and invasiveness of engineered Salmonella demonstrate promising potential for bacteria mediated gene therapy. Biomaterials, 279 ( 2021), Article 121226
[22]
P. Liljeström, H. Garoff. A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology, 9 (12) ( 1991), pp. 1356-1361
[23]
Y. Bao, P. Bolotov, D. Dernovoy, B. Kiryutin, L. Zaslavsky, T. Tatusova, et al.. The influenza virus resource at the National Center for Biotechnology Information. J Virol, 82 (2) ( 2008), pp. 596-601
[24]
K. Gopalakrishnan, G. Sowmiya, S.S. Sheik, K. Sekar. Ramachandran plot on the web (2.0). Protein Pept Lett, 14 (7) ( 2007), pp. 669-671
[25]
J.E. Larsen, O. Lund, M. Nielsen. Improved method for predicting linear B-cell epitopes. Immunome Res, 2 (1) ( 2006), Article 2
[26]
D. Kozakov, D.R. Hall, B. Xia, K.A. Porter, D. Padhorny, C. Yueh, et al.. The ClusPro web server for protein-protein docking. Nat Protoc, 12 (2) ( 2017), pp. 255-278
[27]
E. Ramírez-Aportela, J.R. López-Blanco, P. Chacón. FRODOCK 2.0: fast protein-protein docking server. Bioinformatics, 32 (15) ( 2016), pp. 2386-2388
[28]
R.P. Aganja, C. Sivasankar, C. Hewawaduge, J.H. Lee. Safety assessment of compliant, highly invasive, lipid A-altered, O-antigen-defected Salmonella strains as prospective vaccine delivery systems. Vet Res, 53 (1) ( 2022), Article 76
[29]
Kruisbeek AM. Isolation of mouse mononuclear cells. Curr Protoc Immunol 2001; Chapter 3:Unit 3.1.
[30]
F. Denizot, R. Lang. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods, 89 (2) ( 1986), pp. 271-277
[31]
I.A. Hajam, J.H. Lee. Preexisting Salmonella-specific immunity interferes with the subsequent development of immune responses against the Salmonella strains delivering H9N2 hemagglutinin. Vet Microbiol, 205 ( 2017), pp. 117-123
[32]
M.W. Pfaffl. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res, 29 (9) ( 2001), Article e45
[33]
K.L. Laurie, O.G. Engelhardt, J. Wood, A. Heath, J.M. Katz, M. Peiris, et al.. CONSISE Laboratory Working Group participants. International laboratory comparison of influenza microneutralization assays for A( H1N1) pdm09, A(H3N2), and A(H5N1) influenza viruses by CONSISE. Clin Vaccine Immunol, 22 (8) ( 2015), pp. 957-964
[34]
WHO. Manual for the laboratory diagnosis and virological surveillance of influenza. Geneva: WHO; 2011.
[35]
H.O. Song, J.H. Kim, H.S. Ryu, D.H. Lee, S.J. Kim, D.J. Kim, et al.. Polymeric LabChip real-time PCR as a point-of-care-potential diagnostic tool for rapid detection of influenza A/H1N1 virus in human clinical specimens. PLoS One, 7 (12) ( 2012), Article e53325
[36]
G.J. Kleywegt, T.A. Jones. Phi/psi-chology: Ramachandran revisited. Structure, 4 (12) ( 1996), pp. 1395-1400
[37]
B.M. Giles, C.J. Crevar, D.M. Carter, S.J. Bissel, S. Schultz-Cherry, C.A. Wiley, et al.. A computationally optimized hemagglutinin virus-like particle vaccine elicits broadly reactive antibodies that protect nonhuman primates from H5N1 infection. J Infect Dis, 205 (10) ( 2012), pp. 1562-1570
[38]
D.M. Carter, C.A. Darby, S.K. Johnson, M.A. Carlock, G.A. Kirchenbaum, J.D. Allen, et al.. Elicitation of protective antibodies against a broad panel of H1N1 viruses in ferrets preimmune to historical H1N1 influenza viruses. J Virol, 91 (24) ( 2017), pp. e01283-e10317
[39]
N. Sriwilaijaroen, Y. Suzuki. Molecular basis of the structure and function of H1 hemagglutinin of influenza virus. Proc Jpn Acad Ser B Phys Biol Sci, 88 (6) ( 2012), pp. 226-249
[40]
I.T. Schulze. Effects of glycosylation on the properties and functions of influenza virus hemagglutinin. J Infect Dis, 176 (Suppl 1) ( 1997), pp. S24-S28
[41]
Y. Abe, E. Takashita, K. Sugawara, Y. Matsuzaki, Y. Muraki, S. Hongo. Effect of the addition of oligosaccharides on the biological activities and antigenicity of influenza A/H3N2 virus hemagglutinin. J Virol, 78 (18) ( 2004), pp. 9605-9611
[42]
Y. Kubo, M. Yokoyama, H. Yoshii, C. Mitani, C. Tominaga, Y. Tanaka, et al.. Inhibitory role of CXCR4 glycan in CD4-independent X4-tropic human immunodeficiency virus type 1 infection and its abrogation in CD4-dependent infection. J Gen Virol, 88 (Pt 11) ( 2007), pp. 3139-3144
[43]
C. Xuan, Y. Shi, J. Qi, W. Zhang, H. Xiao, G.F. Gao. Structural vaccinology: structure-based design of influenza A virus hemagglutinin subtype-specific subunit vaccines. Protein Cell, 2 (12) ( 2011), pp. 997-1005
[44]
R.M. DuBois, J.M. Aguilar-Yañez, G.I. Mendoza-Ochoa, Y. Oropeza-Almazán, S. Schultz-Cherry, M.M. Alvarez, et al.. The receptor-binding domain of influenza virus hemagglutinin produced in Escherichia coli folds into its native, immunogenic structure. J Virol, 85 (2) ( 2011), pp. 865-872
[45]
J.M. Aguilar-Yáñez, R. Portillo-Lara, G.I. Mendoza-Ochoa, S.A. García-Echauri, F. López-Pacheco, D. Bulnes-Abundis, et al.. An influenza A/H1N1/2009 hemagglutinin vaccine produced in Escherichia coli. PLoS One, 5 (7) ( 2010), Article e11694
[46]
N.C. Wu, I.A. Wilson. Structural insights into the design of novel anti-influenza therapies. Nat Struct Mol Biol, 25 (2) ( 2018), pp. 115-121
[47]
C. Qiu, D. Tian, Y. Wan, W. Zhang, C. Qiu, Z. Zhu, et al.. Early adaptive humoral immune responses and virus clearance in humans recently infected with pandemic 2009 H1N1 influenza virus. PLoS One, 6 (8) ( 2011), Article e22603
[48]
S. Tamura, K. Miyata, K. Matsuo, H. Asanuma, H. Takahashi, K. Nakajima, et al.. Acceleration of influenza virus clearance by Th 1 cells in the nasal site of mice immunized intranasally with adjuvant-combined recombinant nucleoprotein. J Immunol, 156 (10) ( 1996), pp. 3892-3900
[49]
T.K. Tsang, K.T. Lam, Y. Liu, V.J. Fang, X. Mu, N.H.L. Leung, et al.. Investigation of CD4 and CD 8 T cell-mediated protection against influenza A virus in a cohort study. BMC Med, 20 (1) ( 2022), Article 230
[50]
A. Olvera, S. Cedeño, A. Llano, B. Mothe, J. Sanchez, G. Arsequell, et al.. Does antigen glycosylation impact the HIV-specific T cell immunity?. Front Immunol, 11 ( 2021), Article 573928
[51]
W.C. Liu, Y.L. Lin, M. Spearman, P.Y. Cheng, M. Butler, S.C. Wu. Influenza virus hemagglutinin glycoproteins with different N-glycan patterns activate dendritic cells in vitro. J Virol, 90 (13) ( 2016), pp. 6085-6096
[52]
J. Sun, R. Madan, C.L. Karp, T.J. Braciale.Effector T cells control lung inflammation during acute influenza virus infection by producing IL-10. Nat Med, 15 (3) ( 2009), pp. 277-284
[53]
L. Jiang, S. Yao, S. Huang, J. Wright, T.J. Braciale, J. Sun. Type I IFN signaling facilitates the development of IL-10-producing effector CD8+ T cells during murine influenza virus infection. Eur J Immunol, 46 (12) ( 2016), pp. 2778-2788
[54]
E. Antalis, A. Spathis, C. Kottaridi, A. Kossyvakis, K. Pastellas, K. Tsakalos, et al.. Th 17 serum cytokines in relation to laboratory-confirmed respiratory viral infection: a pilot study. J Med Virol, 91 (6) ( 2019), pp. 963-971
[55]
S.H. Seo, R.G. Webster. Tumor necrosis factor alpha exerts powerful anti-influenza virus effects in lung epithelial cells. J Virol, 76 (3) ( 2002), pp. 1071-1076
[56]
A. Bot, S. Bot, C.A. Bona. Protective role of gamma interferon during the recall response to influenza virus. J Virol, 72 (8) ( 1998), pp. 6637-6645
[57]
J.S. Rush, P.D. Hodgkin. B cells activated via CD40 and IL-4 undergo a division burst but require continued stimulation to maintain division, survival and differentiation. Eur J Immunol, 31 (4) ( 2001), pp. 1150-1159
[58]
T. Noma.Function, molecular structure and gene expression of IL-4. Nihon Rinsho, 50 (8) ( 1992), pp. 1787-1794 Japanese
[59]
T.K. Tsang, S. Cauchemez, R.A. Perera, G. Freeman, V.J. Fang, D.K. Ip, et al.. Association between antibody titers and protection against influenza virus infection within households. J Infect Dis, 210 (5) ( 2014), pp. 684-692
[60]
R.J. Cox. Correlates of protection to influenza virus, where do we go from here?. Hum Vaccin Immunother, 9 (2) ( 2013), pp. 405-408
[61]
S. Truelove, H. Zhu, J. Lessler, S. Riley, J.M. Read, S. Wang, et al.. A comparison of hemagglutination inhibition and neutralization assays for characterizing immunity to seasonal influenza A. Influenza Other Respi Viruses, 10 (6) ( 2016), pp. 518-524
[62]
M. Fukushi, T. Ito, T. Oka, T. Kitazawa, T. Miyoshi-Akiyama, T. Kirikae, et al.. Serial histopathological examination of the lungs of mice infected with influenza A virus PR8 strain. PLoS One, 6 (6) ( 2011), Article e21207
PDF(4247 KB)

Accesses

Citation

Detail

段落导航
相关文章

/