[1] |
W. Pei, Y. Chen, K. Sheng, W. Deng, Y. Du, Z. Qi, et al.. Temporal-spatial analysis and improvement measures of Chinese power system for wind power curtailment problem. Renew Sustain Energy Rev, 49 ( 2015), pp. 148-168
|
[2] |
A. Benato, A. Stoppato. Pumped thermal electricity storage: a technology overview. Therm Sci Eng Prog, 6 ( 2018), pp. 301-315
|
[3] |
H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding. Progress in electrical energy storage system: a critical review. Prog Nat Sci, 19 (3) ( 2009), pp. 291-312
|
[4] |
Y. Wang, J. Kowal, M. Leuthold, D.U. Sauer. Storage system of renewable energy generated hydrogen for chemical industry. Energy Procedia, 29 ( 2012), pp. 657-667
|
[5] |
C. Liu, F. Li, L.P. Ma, H.M. Cheng. Advanced materials for energy storage. Adv Mater, 22 (8) ( 2010), pp. E28-E62
|
[6] |
Z. Zhu, T. Jiang, M. Ali, Y. Meng, Y. Jin, Y. Cui, et al.. Rechargeable batteries for grid scale energy storage. Chem Rev, 122 (22) ( 2022), pp. 16610-16751. DOI: 10.1021/acs.chemrev.2c00289
|
[7] |
E. Kötter, L. Schneider, F. Sehnke, K. Ohnmeiss, R. Schröer. The future electric power system: impact of power-to-gas by interacting with other renewable energy components. J Energy Storage, 5 ( 2016), pp. 113-119
|
[8] |
P. Colbertaldo, S.B. Agustin, S. Campanari, J. Brouwer. Impact of hydrogen energy storage on California electric power system: towards 100% renewable electricity. Int J Hydrogen Energy, 44 (19) ( 2019), pp. 9558-9576
|
[9] |
T.B. Reed, R.M. Lerner. Methanol: a versatile fuel for immediate use: methanol can be made from gas, coal, or wood. it is stored and used in existing equipment. Science, 182 (4119) ( 1973), pp. 1299-1304. DOI: 10.1126/science.182.4119.1299
|
[10] |
Biedermann P, Grube T, Höhlein B. Methanol as an energy carrier. Report. Jülich: Forschungszentrum Jülich GmbH; 2006.
|
[11] |
W. Seifritz. Methanol as the energy vector of a new climate-neutral energy system. Int J Hydrogen Energy, 14 (10) ( 1989), pp. 717-726
|
[12] |
K. Räuchle, L. Plass, H.J. Wernicke, M. Bertau. Methanol for renewable energy storage and utilization. Energy Technol, 4 (1) ( 2016), pp. 193-200. DOI: 10.1002/ente.201500322
|
[13] |
Z. Sun, M. Aziz. Comparative thermodynamic and techno-economic assessment of green methanol production from biomass through direct chemical looping processes. J Clean Prod, 321 ( 2021), Article 129023
|
[14] |
C. Hakandai, H. Sidik Pramono, M. Aziz. Conversion of municipal solid waste to hydrogen and its storage to methanol. Sustain Energy Technol Assess, 51 ( 2022), Article 101968
|
[15] |
C.F. Shih, T. Zhang, J. Li, C. Bai. Powering the future with liquid sunshine. Joule, 2 (10) ( 2018), pp. 1925-1949
|
[16] |
Z. Wu, P. Zhu, J. Yao, S. Kurko, J. Ren, P. Tan, et al.. Methanol to power through high-efficiency hybrid fuel cell system: thermodynamic, thermo-economic, and techno-economic (3T) analyses in northwest China. Energ Conver Manage, 232 ( 2021), Article 113899
|
[17] |
Y. Wang, H. Chen, S. Qiao, P. Pan, G. Xu, Y. Dong, et al.. A novel methanol-electricity cogeneration system based on the integration of water electrolysis and plasma waste gasification. Energy, 267 ( 2023), Article 126490
|