[1] |
W. Hong, Z.H. Jiang, C. Yu, D. Hou, H. Wang, C. Guo, et al.. The role of millimeter-wave technologies in 5G/6G wireless communications. IEEE J Microwaves, 1 (1) ( 2021), pp. 101-122
|
[2] |
J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, W. Zhao. A survey on internet of things: architecture, enabling technologies, security and privacy, and applications. IEEE Internet Things J, 4 (5) ( 2017), pp. 1125-1142
|
[3] |
R.J. Mailloux.Phased array antenna handbook. ( 3rd ed.), Artech House Publishers, Boston ( 2018)
|
[4] |
Y. Yin, B. Ustundag, K. Kibaroglu, M. Sayginer, G.M. Rebeiz.Wideband 23. 5-29.5-GHz phased arrays for multistandard 5G applications and carrier aggregation. IEEE Trans Microwave Theory Tech, 69 (1) ( 2021), pp. 235-247
|
[5] |
J.W. Kim, S.C. Chae, H.W. Jo, T.D. Yeo, J.W. Yu. Wideband circularly polarized phased array antenna system for wide axial ratio scanning. IEEE Trans Antennas Propag, 70 (2) ( 2022), pp. 1523-1528
|
[6] |
S. Xiao, C. Zheng, M. Li, J. Xiong, B.Z. Wang. Varactor-loaded pattern reconfigurable array for wide-angle scanning with low gain fluctuation. IEEE Trans Antennas Propag, 63 (5) ( 2015), pp. 2364-2369
|
[7] |
Y. Ji, L. Ge, J. Wang, Q. Chen, W. Wu, Y. Li. Reconfigurable phased-array antenna using continuously tunable substrate integrated waveguide phase shifter. IEEE Trans Antennas Propag, 67 (11) ( 2019), pp. 6894-6908
|
[8] |
Y.F. Cao, X.Y. Zhang. A wideband beam-steerable slot antenna using artificial magnetic conductors with simple structure. IEEE Trans Antennas Propag, 66 (4) ( 2018), pp. 1685-1694
|
[9] |
K. Topalli, O.A. Civi, S. Demir, S. Koc, T. Akin. A monolithic phased array using 3-bit distributed RF MEMS phase shifters. IEEE Trans Microwave Theory Tech, 56 (2) ( 2008), pp. 270-327
|
[10] |
C. Jung, M. Lee, G.P. Li, F. de Flaviis. Reconfigurable scan-beam single-arm spiral antenna integrated with RF-MEMS switches. IEEE Trans Antennas Propag, 54 (2) ( 2006), pp. 455-463
|
[11] |
A. Nafe, F.A. Ghaffar, M.F. Farooqui, A. Shamim. A ferrite LTCC-based monolithic SIW phased antenna array. IEEE Trans Antennas Propag, 65 (1) ( 2017), pp. 196-205
|
[12] |
K.K. Karnati, Y. Shen, M.E. Trampler, S. Ebadi, P.F. Wahid, X. Gong. A BST-integrated capacitively loaded patch for Ka- and X-band beamsteerable reflectarray antennas in satellite communications. IEEE Trans Antennas Propag, 63 (4) ( 2015), pp. 1324-1333
|
[13] |
O.H. Karabey, A. Gaebler, S. Strunck, R. Jakoby. A 2-D electronically steered phased-array antenna with 2 × 2 elements in LC display technology. IEEE Trans Microwave Theory Tech, 60 (5) ( 2012), pp. 1297-1306
|
[14] |
H. Maune, M. Jost, R. Reese, E. Polat, M. Nickel, R. Jakoby. Microwave liquid crystal technology. Crystals, 8 (9) ( 2018), p. 355
|
[15] |
R. Jakoby, A. Gaebler, C. Weickhmann. Microwave liquid crystal enabling technology for electronically steerable antennas in SATCOM and 5G millimeter-wave systems. Crystals, 10 (6) ( 2020), p. 514
|
[16] |
Stevenson R, Sazegar M, Bily A, Johnson M, Kundtz N. Metamaterial surface antenna technology:commercialization through diffractive metamaterials and liquid crystal display manufacturing. In:Proceedings of 2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS); 2016 Sep 19-22; Chania, Greece. Piscataway: IEEE; 2016. p. 349-51.
|
[17] |
D.K. Yang, S.T. Wu.Fundamentals of liquid crystal devices. ( 2nd ed.), John Wiley & Sons, Inc., Hoboken ( 2014)
|
[18] |
F. Goelden, A. Gaebler, M. Goebel, A. Manabe, S. Mueller, R. Jakoby. Tunable liquid crystal phase shifter for microwave frequencies. Electron Lett, 45 (13) ( 2009), pp. 686-687
|
[19] |
S. Bulja, D. Mirshekar-Syahkal. Meander line millimetre-wave liquid crystal based phase shifter. Electron Lett, 46 (11) ( 2010), pp. 769-771
|
[20] |
D. Wang, E. Polat, C. Schuster, H. Tesmer, G.P. Rehder, A.L.C. Serrano, et al.. Fast and miniaturized phase shifter with excellent figure of merit based on liquid crystal and nanowire-filled membrane technologies. IEEE J Microwaves, 2 (1) ( 2022), pp. 174-184
|
[21] |
F. Kamrath, E. Polat, S. Matic, C. Schuster, D. Miek, H. Tesmer, et al.. Bandwidth and center frequency reconfigurable waveguide filter based on liquid crystal technology. IEEE J Microwave, 2 (1) ( 2022), pp. 134-144
|
[22] |
E. Polat, F. Kamrath, S. Matic, H. Tesmer, A. Jiménez-Sáez, D. Wang, et al.. Novel hybrid electric/magnetic bias concept for tunable liquid crystal based filter. IEEE J Microwaves, 2 (3) ( 2022), pp. 490-495
|
[23] |
O.H. Karabey, S. Bildik, S. Bausch, S. Strunck, A. Gaebler, R. Jakoby. Continuously polarization agile antenna by using liquid crystal-based tunable variable delay lines. IEEE Trans Antennas Propag, 61 (1) ( 2013), pp. 70-76
|
[24] |
J. Shu, Y. Zhang. Design of a liquid crystal beam-steerable antenna with characteristic mode analysis. IET Microwaves Antennas Propag, 16 (1) ( 2022), pp. 29-36
|
[25] |
H. Tesmer, R. Reese, E. Polat, M. Nickel, R. Jakoby, H. Maune. Liquid-crystal-based fully dielectric lateral wave beam-steering antenna. IEEE Antennas Wireless Propag Lett, 18 (12) ( 2019), pp. 2577-2581
|
[26] |
R. Reese, M. Jost, E. Polat, H. Tesmer, J. Strobl, C. Schuster, et al.. A millimeter-wave beam-steering lens antenna with reconfigurable aperture using liquid crystal. IEEE Trans Antennas Propa, 67 (8) ( 2019), pp. 5313-5324
|
[27] |
Stevenson RA, Fotheringham D, Freeman T, Noel T, Mason T, Shafie S.High-throughput satellite connectivity for the constant contact vehicle. In:Proceedings of 2018 48th European Microwave Conference (EuMC); 2018 Sep 23-27; Madrid, Spain. Piscataway: IEEE; 2018. p. 316-9.
|
[28] |
W. Zhang, Y. Li, Z. Zhang. A reconfigurable reflectarray antenna with an 8 μm-thick layer of liquid crystal. IEEE Trans Antennas Propag, 70 (4) ( 2022), pp. 2770-2778
|
[29] |
X. Li, Y. Wan, J. Liu, D. Jiang, T. Bai, K. Zhu, et al.. Broadband electronically scanned reflectarray antenna with liquid crystals. IEEE Antennas Wireless Propag Lett, 20 (3) ( 2021), pp. 396-400
|
[30] |
G. Perez-Palomino, P. Baine, R. Dickie, M. Bain, J.A. Encinar, R. Cahill, et al.. Design and experimental validation of liquid crystal-based reconfigurable reflectarray elements with improved bandwidth in F-band. IEEE Trans Antennas Propag, 61 (4) ( 2013), pp. 1704-1713
|
[31] |
X.Y. Li, D. Jiang, J. Liu, M.S. Tong. A Ka-band multilayer beaming-scanning antenna using liquid crystals. IEEE Antennas Wireless Propag Lett, 21 (1) ( 2022), pp. 44-48
|
[32] |
J. Shu, G. Xu, H. Peng, J. Mao. An electrically steerable parasitic array radiator in package based on liquid crystal. IEEE Antennas Wireless Propag Lett, 18 (11) ( 2019), pp. 2365-2369
|
[33] |
S. Ma, S.Q. Zhang, L.Q. Ma, F.Y. Meng, D. Erni, L. Zhu, et al.. Compact planar array antenna with electrically beam steering from backfire to endfire based on liquid crystal. IET Microwaves Antennas Propag, 12 (7) ( 2018), pp. 1140-1146
|
[34] |
O.H. Karabey, A. Mehmood, M. Ayluctarhan, H. Braun, M. Letz, R. Jakoby. Liquid crystal based phased array antenna with improved beam scanning capability. Electron Lett, 50 (6) ( 2014), pp. 426-428
|
[35] |
D. Wang, E. Polat, H. Tesmer, R. Jakoby, H. Maune. A compact and fast 1 × 4 continuously steerable endfire phased-array antenna based on liquid crystal. IEEE Antennas Wireless Propag Lett, 20 (10) ( 2021), pp. 1859-1862
|
[36] |
A. Panahi, L. Yeung, M. Hedayati, Y.E. Wang. Sub-6 GHz high FOM liquid crystal phase shifter for phased array antenna. IEEE J Microwaves, 2 (2) ( 2022), pp. 316-325
|
[37] |
D. Wang, E. Polat, H. Tesmer, H. Maune, R. Jakoby. Switched and steered beam end-fire antenna array fed by wideband via-less butler matrix and tunable phase shifters based on liquid crystal technology. IEEE Trans Antennas Propag, 70 (7) ( 2022), pp. 5383-5392
|
[38] |
S. Mano, T. Katagi. A method for measuring amplitude and phase of each radiating element of a phased array antenna. Electron Commun Jpn, 65 (5) ( 1982), pp. 58-64
|
[39] |
T. Takahashi, Y. Konishi, S. Makino, H. Ohmine, H. Nakaguro. Fast measurement technique for phased array calibration. IEEE Trans Antennas Propag, 56 (7) ( 2008), pp. 1888-1899
|
[40] |
K.M. Lee, R.S. Chu, S.C. Liu. A built-in performance-monitoring/fault isolation and correction (PM/FIC) system for active phased-array antennas. IEEE Trans Antennas Propag, 41 (11) ( 1993), pp. 1530-1540
|
[41] |
W.P.M. N. Keizer. Fast and accurate array calibration using a synthetic array approach. IEEE Trans Antennas Propag, 59 (11) ( 2011), pp. 4115-4122
|
[42] |
A. Kianinejad, Z.N. Chen, C.W. Qiu. Design and modeling of spoof surface plasmon modes-based microwave slow-wave transmission line. IEEE Trans Microwave Theory Tech, 63 (6) ( 2015), pp. 1817-1825
|
[43] |
S. Gevorgian. Ferroelectrics in microwave devices, circuits and systems: physics, modeling, fabrication and measurements. Springer, Berlin ( 2009)
|
[44] |
H. Gao, W. Wang, Y. Wu, Y. Liu, G.F. Pedersen, W. Fan.Experimental comparison of on-off and all-on calibration modes for beam-steering performance of mmWave phased array antenna-in-package. IEEE Trans Instrum Meas, 70 ( 2021), p. 8002509
|
[45] |
A. Fitzgibbon, M. Pilu, R.B. Fisher. Direct least square fitting of ellipses. IEEE Trans Pattern Anal Mach Intell, 21 (5) ( 1999), pp. 476-480
|
[46] |
T.W. Kim, J.S. Park, S.O. Park. A theoretical model for resonant frequency and radiation pattern on rectangular microstrip patch antenna on liquid crystal substrate. IEEE Trans Antennas Propag, 66 (9) ( 2018), pp. 4533-4540
|
[47] |
S. Bulja, D. Mirshekar-Syahkal, R. James, E. Day, F.A. Fernández. Measurement of dielectric properties of nematic liquid crystals at millimeter wavelength. IEEE Trans Microwave Theory Tech, 58 (12) ( 2010), pp. 3493-3501
|
[48] |
A.D. Brown. Electronically scanned arrays MATLAB® modeling and simulation. CRC Press, Boca Rato ( 2017)
|
[49] |
R.J. Cameron, M.K. Chandra, R.M. Raafat. Microwave filters for communication systems: fundamentals, design, and applications. John Wiley & Sons, Inc., Hoboken ( 2018)
|