基于5 μm厚向列相液晶的高效圆极化相控阵设计、校准和实验验证

Xin Yu Wu, Fengshuo Wan, Hongyuan Feng, Shichao Jin, Chong Guo, Yu Wei, Dunge Liu, Yuqian Yang, Longzhu Cai, Zhi Hao Jiang, Wei Hong

工程(英文) ›› 2024, Vol. 32 ›› Issue (1) : 69-81.

PDF(3562 KB)
PDF(3562 KB)
工程(英文) ›› 2024, Vol. 32 ›› Issue (1) : 69-81. DOI: 10.1016/j.eng.2023.08.013
研究论文
Article

基于5 μm厚向列相液晶的高效圆极化相控阵设计、校准和实验验证

作者信息 +

High-Efficiency Circularly Polarized Phased Array Based on 5 μm-Thick Nematic Liquid Crystals: Design, Over-The-Air Calibration, and Experimental Validation

Author information +
History +

Abstract

This paper presents a systematic investigation and demonstration of a K-band circularly polarized liquid-crystal-based phased array (LCPA), including the design, over-the-air (OTA) in-array calibration, and experimental validation. The LCPA contains 16 phase-shifting radiating channels, each consisting of a circularly polarized stacked patch antenna and a liquid-crystal-based phase shifter (LCPS) based on a loaded differential line structure. Thanks to its slow-wave properties, the LCPS exhibits a maximum phase-shifting range of more than 360° with a figure of merit of 78.3(° )·dB−1 based on a liquid crystal layer with a thickness of only 5 μm. Furthermore, an automatic OTA calibration based on a state ergodic method is proposed, which enables the extraction of the phase–voltage curve of every individual LCPA channel. The proposed LCPA is manufactured and characterized with a total profile of only 1.76 mm, experimentally demonstrating a scanned circularly polarized beam from −40° to +40° with a measured peak gain of 12.5 dBic and a scanning loss of less than 2.5 dB. The bandwidth of the LCPA, which satisfies the requirements of port reflection (|S11|) < −15 dB, an axial ratio (AR) < 3 dB, beam squinting < 3°, and a gain variation < 2.2 dB, spans from 25.5 to 26.0 GHz. The total efficiency is about 34%, which represents a new state of the art. The use of the demonstrated low-profile LCPA to support circularly polarized scanning beams, along with the systematic design and calibration methodology, holds potential promise for a variety of millimeter-wave applications.

Keywords

Circularly polarized / Liquid crystal / Liquid-crystal based phased array (LCPA) / Phase shifter / Over-the-air (OTA) calibration

引用本文

导出引用
Xin Yu Wu, Fengshuo Wan, Hongyuan Feng. 基于5 μm厚向列相液晶的高效圆极化相控阵系统的设计、校准和实验验证. Engineering. 2024, 32(1): 69-81 https://doi.org/10.1016/j.eng.2023.08.013

参考文献

[1]
W. Hong, Z.H. Jiang, C. Yu, D. Hou, H. Wang, C. Guo, et al.. The role of millimeter-wave technologies in 5G/6G wireless communications. IEEE J Microwaves, 1 (1) ( 2021), pp. 101-122
[2]
J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, W. Zhao. A survey on internet of things: architecture, enabling technologies, security and privacy, and applications. IEEE Internet Things J, 4 (5) ( 2017), pp. 1125-1142
[3]
R.J. Mailloux.Phased array antenna handbook. ( 3rd ed.), Artech House Publishers, Boston ( 2018)
[4]
Y. Yin, B. Ustundag, K. Kibaroglu, M. Sayginer, G.M. Rebeiz.Wideband 23. 5-29.5-GHz phased arrays for multistandard 5G applications and carrier aggregation. IEEE Trans Microwave Theory Tech, 69 (1) ( 2021), pp. 235-247
[5]
J.W. Kim, S.C. Chae, H.W. Jo, T.D. Yeo, J.W. Yu. Wideband circularly polarized phased array antenna system for wide axial ratio scanning. IEEE Trans Antennas Propag, 70 (2) ( 2022), pp. 1523-1528
[6]
S. Xiao, C. Zheng, M. Li, J. Xiong, B.Z. Wang. Varactor-loaded pattern reconfigurable array for wide-angle scanning with low gain fluctuation. IEEE Trans Antennas Propag, 63 (5) ( 2015), pp. 2364-2369
[7]
Y. Ji, L. Ge, J. Wang, Q. Chen, W. Wu, Y. Li. Reconfigurable phased-array antenna using continuously tunable substrate integrated waveguide phase shifter. IEEE Trans Antennas Propag, 67 (11) ( 2019), pp. 6894-6908
[8]
Y.F. Cao, X.Y. Zhang. A wideband beam-steerable slot antenna using artificial magnetic conductors with simple structure. IEEE Trans Antennas Propag, 66 (4) ( 2018), pp. 1685-1694
[9]
K. Topalli, O.A. Civi, S. Demir, S. Koc, T. Akin. A monolithic phased array using 3-bit distributed RF MEMS phase shifters. IEEE Trans Microwave Theory Tech, 56 (2) ( 2008), pp. 270-327
[10]
C. Jung, M. Lee, G.P. Li, F. de Flaviis. Reconfigurable scan-beam single-arm spiral antenna integrated with RF-MEMS switches. IEEE Trans Antennas Propag, 54 (2) ( 2006), pp. 455-463
[11]
A. Nafe, F.A. Ghaffar, M.F. Farooqui, A. Shamim. A ferrite LTCC-based monolithic SIW phased antenna array. IEEE Trans Antennas Propag, 65 (1) ( 2017), pp. 196-205
[12]
K.K. Karnati, Y. Shen, M.E. Trampler, S. Ebadi, P.F. Wahid, X. Gong. A BST-integrated capacitively loaded patch for Ka- and X-band beamsteerable reflectarray antennas in satellite communications. IEEE Trans Antennas Propag, 63 (4) ( 2015), pp. 1324-1333
[13]
O.H. Karabey, A. Gaebler, S. Strunck, R. Jakoby. A 2-D electronically steered phased-array antenna with 2 × 2 elements in LC display technology. IEEE Trans Microwave Theory Tech, 60 (5) ( 2012), pp. 1297-1306
[14]
H. Maune, M. Jost, R. Reese, E. Polat, M. Nickel, R. Jakoby. Microwave liquid crystal technology. Crystals, 8 (9) ( 2018), p. 355
[15]
R. Jakoby, A. Gaebler, C. Weickhmann. Microwave liquid crystal enabling technology for electronically steerable antennas in SATCOM and 5G millimeter-wave systems. Crystals, 10 (6) ( 2020), p. 514
[16]
Stevenson R, Sazegar M, Bily A, Johnson M, Kundtz N. Metamaterial surface antenna technology:commercialization through diffractive metamaterials and liquid crystal display manufacturing. In:Proceedings of 2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS); 2016 Sep 19-22; Chania, Greece. Piscataway: IEEE; 2016. p. 349-51.
[17]
D.K. Yang, S.T. Wu.Fundamentals of liquid crystal devices. ( 2nd ed.), John Wiley & Sons, Inc., Hoboken ( 2014)
[18]
F. Goelden, A. Gaebler, M. Goebel, A. Manabe, S. Mueller, R. Jakoby. Tunable liquid crystal phase shifter for microwave frequencies. Electron Lett, 45 (13) ( 2009), pp. 686-687
[19]
S. Bulja, D. Mirshekar-Syahkal. Meander line millimetre-wave liquid crystal based phase shifter. Electron Lett, 46 (11) ( 2010), pp. 769-771
[20]
D. Wang, E. Polat, C. Schuster, H. Tesmer, G.P. Rehder, A.L.C. Serrano, et al.. Fast and miniaturized phase shifter with excellent figure of merit based on liquid crystal and nanowire-filled membrane technologies. IEEE J Microwaves, 2 (1) ( 2022), pp. 174-184
[21]
F. Kamrath, E. Polat, S. Matic, C. Schuster, D. Miek, H. Tesmer, et al.. Bandwidth and center frequency reconfigurable waveguide filter based on liquid crystal technology. IEEE J Microwave, 2 (1) ( 2022), pp. 134-144
[22]
E. Polat, F. Kamrath, S. Matic, H. Tesmer, A. Jiménez-Sáez, D. Wang, et al.. Novel hybrid electric/magnetic bias concept for tunable liquid crystal based filter. IEEE J Microwaves, 2 (3) ( 2022), pp. 490-495
[23]
O.H. Karabey, S. Bildik, S. Bausch, S. Strunck, A. Gaebler, R. Jakoby. Continuously polarization agile antenna by using liquid crystal-based tunable variable delay lines. IEEE Trans Antennas Propag, 61 (1) ( 2013), pp. 70-76
[24]
J. Shu, Y. Zhang. Design of a liquid crystal beam-steerable antenna with characteristic mode analysis. IET Microwaves Antennas Propag, 16 (1) ( 2022), pp. 29-36
[25]
H. Tesmer, R. Reese, E. Polat, M. Nickel, R. Jakoby, H. Maune. Liquid-crystal-based fully dielectric lateral wave beam-steering antenna. IEEE Antennas Wireless Propag Lett, 18 (12) ( 2019), pp. 2577-2581
[26]
R. Reese, M. Jost, E. Polat, H. Tesmer, J. Strobl, C. Schuster, et al.. A millimeter-wave beam-steering lens antenna with reconfigurable aperture using liquid crystal. IEEE Trans Antennas Propa, 67 (8) ( 2019), pp. 5313-5324
[27]
Stevenson RA, Fotheringham D, Freeman T, Noel T, Mason T, Shafie S.High-throughput satellite connectivity for the constant contact vehicle. In:Proceedings of 2018 48th European Microwave Conference (EuMC); 2018 Sep 23-27; Madrid, Spain. Piscataway: IEEE; 2018. p. 316-9.
[28]
W. Zhang, Y. Li, Z. Zhang. A reconfigurable reflectarray antenna with an 8 μm-thick layer of liquid crystal. IEEE Trans Antennas Propag, 70 (4) ( 2022), pp. 2770-2778
[29]
X. Li, Y. Wan, J. Liu, D. Jiang, T. Bai, K. Zhu, et al.. Broadband electronically scanned reflectarray antenna with liquid crystals. IEEE Antennas Wireless Propag Lett, 20 (3) ( 2021), pp. 396-400
[30]
G. Perez-Palomino, P. Baine, R. Dickie, M. Bain, J.A. Encinar, R. Cahill, et al.. Design and experimental validation of liquid crystal-based reconfigurable reflectarray elements with improved bandwidth in F-band. IEEE Trans Antennas Propag, 61 (4) ( 2013), pp. 1704-1713
[31]
X.Y. Li, D. Jiang, J. Liu, M.S. Tong. A Ka-band multilayer beaming-scanning antenna using liquid crystals. IEEE Antennas Wireless Propag Lett, 21 (1) ( 2022), pp. 44-48
[32]
J. Shu, G. Xu, H. Peng, J. Mao. An electrically steerable parasitic array radiator in package based on liquid crystal. IEEE Antennas Wireless Propag Lett, 18 (11) ( 2019), pp. 2365-2369
[33]
S. Ma, S.Q. Zhang, L.Q. Ma, F.Y. Meng, D. Erni, L. Zhu, et al.. Compact planar array antenna with electrically beam steering from backfire to endfire based on liquid crystal. IET Microwaves Antennas Propag, 12 (7) ( 2018), pp. 1140-1146
[34]
O.H. Karabey, A. Mehmood, M. Ayluctarhan, H. Braun, M. Letz, R. Jakoby. Liquid crystal based phased array antenna with improved beam scanning capability. Electron Lett, 50 (6) ( 2014), pp. 426-428
[35]
D. Wang, E. Polat, H. Tesmer, R. Jakoby, H. Maune. A compact and fast 1 × 4 continuously steerable endfire phased-array antenna based on liquid crystal. IEEE Antennas Wireless Propag Lett, 20 (10) ( 2021), pp. 1859-1862
[36]
A. Panahi, L. Yeung, M. Hedayati, Y.E. Wang. Sub-6 GHz high FOM liquid crystal phase shifter for phased array antenna. IEEE J Microwaves, 2 (2) ( 2022), pp. 316-325
[37]
D. Wang, E. Polat, H. Tesmer, H. Maune, R. Jakoby. Switched and steered beam end-fire antenna array fed by wideband via-less butler matrix and tunable phase shifters based on liquid crystal technology. IEEE Trans Antennas Propag, 70 (7) ( 2022), pp. 5383-5392
[38]
S. Mano, T. Katagi. A method for measuring amplitude and phase of each radiating element of a phased array antenna. Electron Commun Jpn, 65 (5) ( 1982), pp. 58-64
[39]
T. Takahashi, Y. Konishi, S. Makino, H. Ohmine, H. Nakaguro. Fast measurement technique for phased array calibration. IEEE Trans Antennas Propag, 56 (7) ( 2008), pp. 1888-1899
[40]
K.M. Lee, R.S. Chu, S.C. Liu. A built-in performance-monitoring/fault isolation and correction (PM/FIC) system for active phased-array antennas. IEEE Trans Antennas Propag, 41 (11) ( 1993), pp. 1530-1540
[41]
W.P.M. N. Keizer. Fast and accurate array calibration using a synthetic array approach. IEEE Trans Antennas Propag, 59 (11) ( 2011), pp. 4115-4122
[42]
A. Kianinejad, Z.N. Chen, C.W. Qiu. Design and modeling of spoof surface plasmon modes-based microwave slow-wave transmission line. IEEE Trans Microwave Theory Tech, 63 (6) ( 2015), pp. 1817-1825
[43]
S. Gevorgian. Ferroelectrics in microwave devices, circuits and systems: physics, modeling, fabrication and measurements. Springer, Berlin ( 2009)
[44]
H. Gao, W. Wang, Y. Wu, Y. Liu, G.F. Pedersen, W. Fan.Experimental comparison of on-off and all-on calibration modes for beam-steering performance of mmWave phased array antenna-in-package. IEEE Trans Instrum Meas, 70 ( 2021), p. 8002509
[45]
A. Fitzgibbon, M. Pilu, R.B. Fisher. Direct least square fitting of ellipses. IEEE Trans Pattern Anal Mach Intell, 21 (5) ( 1999), pp. 476-480
[46]
T.W. Kim, J.S. Park, S.O. Park. A theoretical model for resonant frequency and radiation pattern on rectangular microstrip patch antenna on liquid crystal substrate. IEEE Trans Antennas Propag, 66 (9) ( 2018), pp. 4533-4540
[47]
S. Bulja, D. Mirshekar-Syahkal, R. James, E. Day, F.A. Fernández. Measurement of dielectric properties of nematic liquid crystals at millimeter wavelength. IEEE Trans Microwave Theory Tech, 58 (12) ( 2010), pp. 3493-3501
[48]
A.D. Brown. Electronically scanned arrays MATLAB® modeling and simulation. CRC Press, Boca Rato ( 2017)
[49]
R.J. Cameron, M.K. Chandra, R.M. Raafat. Microwave filters for communication systems: fundamentals, design, and applications. John Wiley & Sons, Inc., Hoboken ( 2018)
PDF(3562 KB)

Accesses

Citation

Detail

段落导航
相关文章

/