[1] |
H.C.J. Godfray, J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, et al.. Food security: the challenge of feeding 9 billion people. Science, 327 (5967) ( 2010), pp. 812-818 DOI: 10.1126/science.1185383
|
[2] |
D. Laborde, W. Martin, J. Swinnen, R. Vos. COVID-19 risks to global food security. Science, 369 (6503) ( 2020), pp. 500-502 DOI: 10.1126/science.abc4765
|
[3] |
M. Pu, Y. Zhong. Rising concerns over agricultural production as COVID-19 spreads: lessons from China. Glob Food Secur, 26 ( 2020), p. 100409
|
[4] |
S. Bakalis, V.P. Valdramidis, D. Argyropoulos, L. Ahrne, J. Chen, P. Cullen, et al.. Perspectives from CO+ RE: how COVID-19 changed our food systems and food security paradigms. Curr Res Food Sci, 3 ( 2020), pp. 166-172
|
[5] |
K. Al-Kodmany. The vertical farm: a review of developments and implications for the vertical city. Buildings, 8 (2) ( 2018), p. 24 DOI: 10.3390/buildings8020024
|
[6] |
R. Shamshiri, F. Kalantari, K.C. Ting, K.R. Thorp, I.A. Hameed, C. Weltzien, et al.. Advances in greenhouse automation and controlled environment agriculture: a transition to plant factories and urban agriculture. Int J Agric Biol Eng, 11 (1) ( 2018), pp. 1-22
|
[7] |
S. Asseng, J.R. Guarin, M. Raman, O. Monje, G. Kiss, D.D. Despommier, et al.. Wheat yield potential in controlled-environment vertical farms. Proc Natl Acad Sci USA, 117 (32) ( 2020), pp. 19131-19135 DOI: 10.1073/pnas.2002655117
|
[8] |
Q. Yang. Plant factory. Tsinghua University Press, Beijing ( 2019)(Chinese).
|
[9] |
L. Zhang, X. Yang, T. Li, R. Gan, Z. Wang, J. Peng, et al.. Plant factory technology lights up urban horticulture in the post-coronavirus world. Hortic Res, 9 ( 2022), p. uhac018
|
[10] |
Y. Ji, Y. Yuan, G. Wu, C. Feng, R. Cheng, Q. Ma, et al.. A novel spectral-splitting solar indoor lighting system with reflective direct-absorption cavity: optical and thermal performance investigating. Energy Convers Manage, 266 ( 2022), p. 115788
|
[11] |
C. Ye, X. Wen, J. Lan, Z. Cai, P.h. Pi, S. Xu, et al.. Surface modification of light hollow polymer microspheres and its application in external wall thermal insulation coatings. Pigm Resin Technol, 45 (1) ( 2016), pp. 45-51
|
[12] |
N. Di, X. He. An energy saving effect evaluation of nano thermal insulation coating for building exterior wall. Int J Microstruct Mater Prop, 16 (2-3) ( 2022), pp. 169-181 DOI: 10.1504/ijmmp.2022.125565
|
[13] |
W. Fang. Total performance evaluation in plant factory with artificial lighting. M. Anpo, H. Fukuda, T. Wada (Eds.), Plant factory using artificial light, Elsevier, Amsterdam ( 2019), pp. 155-165 DOI: 10.1007/978-3-030-17513-9_11
|
[14] |
J. Wang, Y. Tong, Q. Yang, M. Xin. Performance of introducing outdoor cold air for cooling a plant production system with artificial light. Front Plant Sci, 7 ( 2016), p. 270
|
[15] |
T. Weidner, A. Yang, M. Hamm. Energy optimisation of plant factories and greenhouses for different climatic conditions. Energy Convers Manage, 243 ( 2021), p. 114336
|
[16] |
T. Kozai. Resource use efficiency of closed plant production system with artificial light: concept, estimation and application to plant factory. Proc Jpn Acad, Ser B, Phys Biol Sci, 89 (10) ( 2013), pp. 447-461 DOI: 10.2183/pjab.89.447
|
[17] |
T. Kozai. Towards sustainable plant factories with artificial lighting (PFALs) for achieving SDGs. Int J Agric Biol Eng, 12 (5) ( 2019), pp. 28-37 DOI: 10.25165/j.ijabe.20191205.5177
|
[18] |
L. Graamans, E. Baeza, A. Dobbelsteen, I. Tsafaras, C. Stanghellini. Plant factories versus greenhouses: comparison of resource use efficiency. Agric Syst, 160 ( 2017), pp. 31-43
|
[19] |
D. Leung, G. Caramanna, M. Maroto-Valer. An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev, 39 ( 2014), pp. 426-443
|
[20] |
Z. Wang, R. Yang, Y. Liang, S. Zhang, Z. Zhang, C. Sun, et al.. Comparing efficacy of different biostimulants for hydroponically grown lettuce (Lactuca sativa L.). Agronomy, 12 (4) ( 2022), p. 786
|
[21] |
E. Navarro-León, F.J. López-Moreno, E. Borda, C. Marín, N. Sierras, B. Blasco, et al.. Effect of L-amino acid-based biostimulants on nitrogen use efficiency (NUE) in lettuce plants. J Sci Food Agric, 102 (15) ( 2022), pp. 7098-7106
CrossRef
ADS
Google scholar
|
[22] |
P. Gosling, A. Hodge, G. Goodlass, G. Bending. Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ, 113 (1-4) ( 2006), pp. 17-35
|
[23] |
J. Liu, Q. Wang, Z. Song, F. Fang. Bottlenecks and countermeasures of high-penetration renewable energy development in China. Engineering, 7 (11) ( 2021), pp. 1611-1622
|
[24] |
S.K. Bhatia, A.K. Palai, A. Kumar, R.K. Bhatia, A.K. Patel, V.K. Thakur, et al.. Trends in renewable energy production employing biomass-based biochar. Bioresour Technol, 340 ( 2021), p. 125644
|
[25] |
V. Sethi, S. Sharma. Survey and evaluation of heating technologies for worldwide agricultural greenhouse applications. Sol Energy, 82 (9) ( 2008), pp. 832-859
|
[26] |
S. Van Delden, M. SharathKumar, M. Butturini, L.J.A. Graamans, E. Heuvelink, M. Kacira, et al.. Current status and future challenges in implementing and upscaling vertical farming systems. Nat Food, 2 (12) ( 2021), pp. 944-956 DOI: 10.1038/s43016-021-00402-w
|
[27] |
M. SharathKumar, E. Heuvelink, L.F.M. Marcelis. Vertical farming: moving from genetic to environmental modification. Trends Plant Sci, 25 (8) ( 2020), pp. 724-727
|
[28] |
J. Peng, D.E. Richards, N.M. Hartley, G.P. Murphy, K.M. Devos, J.E. Flintham, et al.. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 400 (6741) ( 1999), pp. 256-261
|
[29] |
A. Sasaki, M. Ashikari, M. Ueguchi-Tanaka, H. Itoh, A. Nishimura, D. Swapan, et al.. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature, 416 (6882) ( 2002), pp. 701-702
|
[30] |
S. Hu, X. Hu, J. Hu, S. Lianguang, G. Dong, D. Zeng, et al.. Xiaowei, A new rice germplasm for large-scale indoor research. Mol Plant, 11 (11) ( 2018), pp. 1418-1420
|
[31] |
S. Duan, Z. Zhao, Y. Qiao, C. Chunge, A. Morgunov, A. Condon, et al.. GAR dwarf gene Rht14 reduced plant height and affected agronomic traits in durum wheat (Lactuca sativa). Field Crops Res, 248 ( 2020), p. 107721
|
[32] |
X. Kong, M. Zhang, I. De Smet, Z. Ding. Designer crops: optimal root system architecture for nutrient acquisition. Trends Biotechnol, 32 (12) ( 2014), pp. 597-598
|
[33] |
J. Guo, W. Li, L. Shang, Y. Wang, P. Yan, Y. Bai, et al.. OsbHLH98 regulates leaf angle in rice through transcriptional repression of OsBUL1. New Phytol, 230 (5) ( 2021), pp. 1953-1966 DOI: 10.1111/nph.17303
|
[34] |
J. Ning, B. Zhang, N. Wang, Y. Zhou, L. Xiong. Increased leaf angle1, a Raf-like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the Lamina joint of rice. Plant Cell, 23 (12) ( 2011), pp. 4334-4347 DOI: 10.1105/tpc.111.093419
|
[35] |
M. Newell-McGloughlin. Nutritionally improved agricultural crops. Plant Physiol, 147 (3) ( 2008), pp. 939-953 DOI: 10.1104/pp.108.121947
|
[36] |
Z. Li, J. Gao, J. Xu, F. Xiaoyan, H. Han, L. Wang, et al.. Rice carotenoid biofortification and yield improvement conferred by endosperm-specific overexpression of OsGLK1. Front Plant Sci, 13 ( 2022), p. 951605
|
[37] |
E. Cahoon, S. Hall, K. Ripp, T. Ganzke, W. Hitz, S. Coughlan. Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol, 21 (9) ( 2003), pp. 1082-1087
|
[38] |
S. Wang, A. Adekunle, V. Raghavan. Exploring the integration of bioelectrochemical systems and hydroponics: possibilities, challenges, and innovations. J Clean Prod, 366 ( 2022), p. 132855
|
[39] |
Y. Liu, R. Guo, S. Zhang, Y. Sun, F. Wang. Uptake and translocation of nano/microplastics by rice seedlings: evidence from a hydroponic experiment. J Hazard Mater, 421 ( 2022), p. 126700
|
[40] |
M.A. Urbina, F. Correa, F. Aburto, J.P. Ferrio. Adsorption of polyethylene microbeads and physiological effects on hydroponic maize. Sci Total Environ, 741 ( 2020), p. 140216
|
[41] |
Y. Li, Y.F. Huang, S.H. Huang, Y.H. Kuang, C.W. Tung, C.T. Liao, et al.. Genomic and phenotypic evaluation of rice susceptible check TN1 collected in Taiwan. Bot Stud, 60 (1) ( 2019), p. 19
|
[42] |
H. Hirai, Y. Kitaya. Evaluation of growth performance of super-dwarf rice in space agriculture. T Jpn Soc Aeronaut S, 16 (2) ( 2018), pp. 152-156 DOI: 10.2322/tastj.16.152
|
[43] |
O. Monje, B. Bugbee. Adaptation to high CO2 concentration in an optimal environment: radiation capture, canopy quantum yield and carbon use efficiency. Plant Cell Environ, 21 (3) ( 1998), pp. 315-324
|
[44] |
Y. Wang, D. Deng, H. Ding, X. Xu, R. Zhang, S. Wang, et al.. Gibberellin biosynthetic deficiency is responsible for maize dominant Dwarf11 (D11) mutant phenotype: physiological and transcriptomic evidence. PLoS One, 8 (6)( 2013), p. e66466 DOI: 10.1371/journal.pone.0066466
|
[45] |
W.Y. Liu, H.H. Lin, C.P. Yu, C.K. Chang, H.J. Chen, J.J. Lin, et al.. Maize ANT 1 modulates vascular development, chloroplast development, photosynthesis, and plant growth. Proc Natl Acad Sci USA, 117 (35) ( 2020), pp. 21747-21756 DOI: 10.1073/pnas.2012245117
|
[46] |
Z. Bian, Z. Li, S. Wang, Q. Yang. Exploration on rapid breeding technology of rice in plant factory. Agric Eng Technol, 19 ( 2022), pp. 60-62(Chinese).
|
[47] |
Z. Li, R. Guo, M. Li, Y. Chen, G. Li. A review of computer vision technologies for plant phenotyping. Comput Electron Agric, 176 ( 2020), p. 105672
|
[48] |
Z. Tian, W. Ma, Q. Yang, F. Duan. Application status and challenges of machine vision in plant factory—a review. Inf Process Agric, 9 (2) ( 2021), pp. 195-211 DOI: 10.32604/iasc.2021.016314
|
[49] |
J. Muangprathub, N. Boonnam, S. Kajornkasirat, N. Lekbangpong, A. Wanichsombat, P. Nillaor. IoT and agriculture data analysis for smart farm. Comput Electron Agric, 156 ( 2019), pp. 467-474
|
[50] |
D. Tilman, C. Balzer, J. Hill, B. Befort. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA, 108 (50) ( 2011), pp. 20260-20264 DOI: 10.1073/pnas.1116437108
|
[51] |
J.A. Foley, N. Ramankutty, K.A. Brauman, E.S. Cassidy, J.S. Gerber, M. Johnston, et al.. Solutions for a cultivated planet. Nature, 478 (7369) ( 2011), pp. 337-342 DOI: 10.1038/nature10452
|
[52] |
H.C.J. Godfray, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, N. Nisbett, et al.. The future of the global food system. Philos Trans R Soc Lond B Biol Sci, 365 (1554) ( 2010), pp. 2769-2777 DOI: 10.1098/rstb.2010.0180
|
[53] |
J. Poore, T. Nemecek. Reducing food’s environmental impacts through producers and consumers. Science, 360 (6392) ( 2018), pp. 987-992 DOI: 10.1126/science.aaq0216
|
[54] |
D. Despommier. The vertical farm: feeding the world in the 21st century. Macmillan, Cambridge ( 2010)
|
[55] |
G.J. Graff. Skyfarming. UWSpace, Waterloo ( 2012)
|
[56] |
H. Zhou, K. Specht, C.K. Kirby. Consumers’ and stakeholders’ acceptance of indoor agritecture in Shanghai (China). Sustainability, 14 (5) ( 2022), p. 2771 DOI: 10.3390/su14052771
|