[1] |
M. De Wit, V.C. Galvao, C. Fankhauser. Light-mediated hormonal regulation of plant growth and development. Annu Rev Plant Biol, 67 (2016), pp. 513-537.
|
[2] |
Z. Yu, R. Fischer. Light sensing and responses in fungi. Nat Rev Microbiol, 17 (1) (2019), pp. 25-36.
|
[3] |
K.K. Fuller, J.J. Loros, J.C. Dunlap. Fungal photobiology: visible light as a signal for stress, space and time. Curr Genet, 61 (3) (2015), pp. 275-288.
|
[4] |
L.M. Corrochano. Light in the fungal world: from photoreception to gene transcription and beyond. Annu Rev Genet, 53 (2019), pp. 149-170.
|
[5] |
J. Rodriguez-Romero, M. Hedtke, C. Kastner, S. Müller. R. Fischer. Fungi, hidden in soil or up in the air: light makes a difference. Annu Rev Microbiol, 64 (2010), pp. 585-610.
|
[6] |
M.A. Hevia, P. Canessa, H. Muller-Esparza, L.F. Larrondo. A circadian oscillator in the fungus Botrytis cinerea regulates virulence when infecting Arabidopsis thaliana. Proc Natl Acad Sci USA, 112 (28) (2015), pp. 8744-8749.
|
[7] |
A. Idnurm, S. Crosson. The photobiology of microbial pathogenesis. PLoS Pathog, 5 (11) (2009), e1000470.
|
[8] |
N.M.R. Ashwin, L. Barnabas, A.R. Sundar, P. Malathi, R. Viswanathan, A. Masi, et al. Comparative secretome analysis of Colletotrichum falcatum identifies a cerato-platanin protein (EPL1) as a potential pathogen-associated molecular pattern (PAMP) inducing systemic resistance in sugarcane. J Proteomics, 169 (2017), pp. 2-20.
|
[9] |
M. Kojima, N. Kimura, R. Miura. Regulation of primary metabolic pathways in oyster mushroom mycelia induced by blue light stimulation: accumulation of shikimic acid. Sci Rep, 5 (2015), p. 8630.
|
[10] |
R. Gmoser, J.A. Ferreira, P.R. Lennartsson, M.J. Taherzadeh. Filamentous ascomycetes fungi as a source of natural pigments. Fungal Biol Biotechnol, 4 (2017), p. 4.
|
[11] |
T. Chen, D. Ji, Z. Zhang, B. Li, G. Qin, S. Tian. Advances and strategies for controlling the quality and safety of postharvest fruit. Engineering, 7 (8) (2021), pp. 1177-1184.
|
[12] |
S. Fillinger, Y. Elad. Botrytis-the fungus, the pathogen and its management in agricultural systems. Springer, New York City (2016).
|
[13] |
R. Dean, J.A.L. Van Kan, Z.A. Pretorius, K.E. Hammond-Kosack, A. Di Pietro, P.D. Spanu, et al. The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol, 13 (4) (2012), pp. 414-430.
|
[14] |
E. Herrero-Garcia, A. Garzia, S. Cordobes, E.A. Espeso, U. Ugalde. Eight-carbon oxylipins inhibit germination and growth, and stimulate aerial conidiation in Aspergillus nidulans. Fungal Biol, 115 (4-5) (2011), pp. 393-400.
|
[15] |
B. An, B. Li, H. Li, Z. Zhang, G. Qin, S. Tian. Aquaporin 8 regulates cellular development and reactive oxygen species production, a critical component of virulence in Botrytis cinerea. New Phytol, 209 (4) (2016), pp. 1668-1680.
|
[16] |
H. Li, Z. Zhang, C. He, G. Qin, S. Tian. Comparative proteomics reveals the potential targets of bcnoxr, a putative regulatory subunit of nadph oxidase of Botrytis cinerea. Mol Plant Microbe Interact, 29 (12) (2016), pp. 990-1003.
|
[17] |
D. Ji, T. Chen, D. Ma, J. Liu, Y. Xu, S. Tian. Inhibitory effects of methyl thujate on mycelial growth of Botrytis cinerea and possible mechanisms. Postharvest Biol Technol, 142 (2018), pp. 46-54.
|
[18] |
J. Schumacher. How light affects the life of Botrytis. Fungal Genet Biol, 106 (2017), pp. 26-41.
|
[19] |
S.O. Oyola, K.J. Evans, T.K. Smith, B.A. Smith, J.D. Hilley, J.C. Mottram, et al. Functional analysis of Leishmania cyclopropane fatty acid synthetase. PLoS One, 7 (12) (2012), e51300.
|
[20] |
X. Yu, R. Rawat, J. Shanklin. Characterization and analysis of the cotton cyclopropane fatty acid synthase family and their contribution to cyclopropane fatty acid synthesis. BMC Plant Biol, 11 (2011), p. 97.
|
[21] |
J.E. Cronan, T. Luk. Advances in the structural biology, mechanism, and physiology of cyclopropane fatty acid modifications of bacterial membranes. Microbiol Mol Biol Rev, 86 (2) (2022), e0001322.
|
[22] |
D.W. Grogan, J.E. Cronan. Cyclopropane ring formation in membrane lipids of bacteria. Microbiol Mol Biol Rev, 61 (4) (1997), pp. 429-441.
|
[23] |
L. Shabala, T. Ross. Cyclopropane fatty acids improve Escherichia coli survival in acidified minimal media by reducing membrane permeability to H+ and enhanced ability to extrude H+. Res Microbiol, 159 (6) (2008), pp. 458-461.
|
[24] |
Y. Chen, M.G. Ganzle. Influence of cyclopropane fatty acids on heat, high pressure, acid and oxidative resistance in Escherichia coli. Int J Food Microbiol, 222 (2016), pp. 16-22.
|
[25] |
X. Jiang, Y. Duan, B. Zhou, Q. Guo, H. Wang, X. Hang, et al. The cyclopropane fatty acid synthase mediates antibiotic resistance and gastric colonization of Helicobacter pylori. J Bacteriol, 201 (20) (2019), pp. e00374-419.
|
[26] |
M.S. Glickman, J.S. Cox, W.R. Jacobs. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell, 5 (4) (2000), pp. 717-727.
|
[27] |
E.M. Walton, M.R. Cronan, C.J. Cambier, A. Rossi, M. Marass, M.D. Foglia, et al. Cyclopropane modification of trehalose dimycolate drives granuloma angiogenesis and mycobacterial growth through Vegf signaling. Cell Host Microbe, 24 (4) (2018), pp. 514-525.
|
[28] |
Y. Liu, P. Srivilai, S. Loos, M. Aebi, U. Kues. An essential gene for fruiting body initiation in the basidiomycete Coprinopsis cinerea is homologous to bacterial cyclopropane fatty acid synthase genes. Genetics, 172 (2) (2006), pp. 873-884.
|
[29] |
H. Li, Z. Zhang, G. Qin, C. He, B. Li, S. Tian. Actin is required for cellular development and virulence of Botrytis cinerea via the mediation of secretory proteins. mSystems, 5 (1) (2020), pp. e00732-819.
|
[30] |
Y. Chen, B. Li, X. Xu, Z. Zhang, S. Tian. The pH-responsive PacC transcription factor plays pivotal roles in virulence and patulin biosynthesis in Penicillium expansum. Environ Microbiol, 20 (11) (2018), pp. 4063-4078.
|
[31] |
Z. Zhang, G. Qin, B. Li, S. Tian. Knocking out Bcsas1 in Botrytis cinerea impacts growth, development, and secretion of extracellular proteins, which decreases virulence. Mol Plant Microbe Interact, 27 (6) (2014), pp. 590-600.
|
[32] |
J. Schumacher. Tools for Botrytis cinerea: new expression vectors make the gray mold fungus more accessible to cell biology approaches. Fungal Genet Biol, 49 (6) (2012), pp. 483-497.
|
[33] |
H. Feng, G. Li, S. Du, S. Yang, X. Li, P. de Figueiredo, et al. The septin protein Sep 4 facilitates host infection by plant fungal pathogens via mediating initiation of infection structure formation. Environ Microbiol, 19 (5) (2017), pp. 1730-1749.
|
[34] |
V. Matyash, G. Liebisch, T.V. Kurzchalia, A. Shevchenko, D. Schwudke. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res, 49 (5) (2008), pp. 1137-1146.
|
[35] |
F. Xiong, L. Cao, X. Wu, M. Chang. The function of zebrafish gpbar1 in antiviral response and lipid metabolism. Dev Comp Immunol, 116 (2021), 103955.
|
[36] |
G. Glauser, J.L. Wolfender. A non-targeted approach for extended liquid chromatography-mass spectrometry profiling of free and esterified jasmonates after wounding. Methods Mol Biol, 1011 (2013), pp. 123-134.
|
[37] |
M. Goodrich-Tanrikulu, K. Howe, A. Stafford, M.A. Nelson. Changes in fatty acid composition of Neurospora crassa accompany sexual development and ascospore germination. Microbiology, 144 (7) (1998), pp. 1713-1720.
|
[38] |
A.M. Calvo, H.W. Gardner, N.P. Keller. Genetic connection between fatty acid metabolism and sporulation in Aspergillus nidulans. J Biol Chem, 276 (28) (2001), pp. 25766-25774.
|
[39] |
D.I. Tsitsigiannis, N.P. Keller. Oxylipins as developmental and host-fungal communication signals. Trends Microbiol, 15 (3) (2007), pp. 109-118.
|
[40] |
O.M. Aluko, J.D. Iroegbu, O.M. Ijomone, S. Umukoro. Methyl jasmonate: behavioral and molecular implications in neurological disorders. Clin Psychopharmacol Neurosci, 19 (2) (2021), pp. 220-232.
|
[41] |
I.M. Cesari, E. Carvalho, M. Figueiredo Rodrigues, B.D. Santos, N.D. Amoedo, F.D. Rumjanek. Methyl jasmonate: putative mechanisms of action on cancer cells cycle, metabolism, and apoptosis. Int J Cell Biol, 2014 (2014), 572097.
|
[42] |
A. Santino, M. Taurino, S. De Domenico, S. Bonsegna, P. Poltronieri, V. Pastor, et al. Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses. Plant Cell Rep, 32 (7) (2013), pp. 1085-1098.
|
[43] |
A. Dasgupta, K.K. Fuller, J.C. Dunlap, J.J. Loros. Seeing the world differently: variability in the photosensory mechanisms of two model fungi. Environ Microbiol, 18 (1) (2016), pp. 5-20.
|
[44] |
Z. Yu, C. Streng, R.F. Seibeld, O.A. Igbalajobi, K. Leister, J. Ingelfinger, et al. Genome-wide analyses of light-regulated genes in Aspergillus nidulans reveal a complex interplay between different photoreceptors and novel photoreceptor functions. PLoS Genet, 17 (10) (2021), e1009845.
|
[45] |
C. Wu, F. Yang, K.M. Smith, M. Peterson, R. Dekhang, Y. Zhang, et al. Genome-wide characterization of light-regulated genes in Neurospora crassa. G3 Genes Genom Genet, 4 (9) (2014), pp. 1731-1745.
|
[46] |
Y. Sakamoto, S. Sato, M. Ito, Y. Ando, K. Nakahori, H. Muraguchi. Blue light exposure and nutrient conditions influence the expression of genes involved in simultaneous hyphal knot formation in Coprinopsis cinerea. Microbiol Res, 217 (2018), pp. 81-90.
|
[47] |
G.L. Muller, M. Tuttobene, M. Altilio, M. Martinez Amezaga, M. Nguyen, P. Cribb, et al. Light modulates metabolic pathways and other novel physiological traits in the human pathogen Acinetobacter baumannii. J Bacteriol, 199 (10) (2017), pp. e00011-e00017.
|
[48] |
C. Liu, L. Kang, M. Lin, J. Bi, Z. Liu, S. Yuan. Molecular mechanism by which the GATA transcription factor CcNsdD2 regulates the developmental fate of Coprinopsis cinerea under dark or light conditions. MBio, 13 (1) (2022), pp. e03626-e10721.
|
[49] |
J. Veloso. J.A.L. van Kan. Many shades of grey in Botrytis-host plant interactions. Trends Plant Sci, 23 (7) (2018), pp. 613-622.
|
[50] |
J. Schumacher, A. Simon, K.C. Cohrs, M. Viaud, P. Tudzynski. The transcription factor BcLTF1 regulates virulence and light responses in the necrotrophic plant pathogen Botrytis cinerea. PLoS Genet, 10 (1) (2014), e1004040.
|
[51] |
B. Brandhoff, A. Simon, A. Dornieden, J. Schumacher. Regulation of conidiation in Botrytis cinerea involves the light-responsive transcriptional regulators BcLTF3 and BcREG1. Curr Genet, 63 (5) (2017), pp. 931-949.
|
[52] |
P. Canessa, J. Schumacher, M.A. Hevia, P. Tudzynski, L.F. Larrondo. Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: characterization of the white collar complex. PLoS One, 8 (12) (2013), e84223.
|
[53] |
Z. Zhang, H. Li, G. Qin, C. He, B. Li, S. Tian. The MADS-box transcription factor Bcmads1 is required for growth, sclerotia production and pathogenicity of Botrytis cinerea. Sci Rep, 6 (2016), 33901.
|
[54] |
L.P. Dias, R.K.F. Souza, B. Pupin, D.E.N. Rangel. Conidiation under illumination enhances conidial tolerance of insect-pathogenic fungi to environmental stresses. Fungal Biol, 125 (11) (2021), pp. 891-904.
|
[55] |
K.K. Fuller, C.S. Ringelberg, J.J. Loros, J.C. Dunlap. The fungal pathogen Aspergillus fumigatus regulates growth, metabolism, and stress resistance in response to light. MBio, 4 (2) (2013), pp. e00142-213.
|
[56] |
C. Grandvalet, J.S. Assad-Garcia, S. Chu-Ky, M. Tollot, J. Guzzo, J. Gresti, et al. Changes in membrane lipid composition in ethanol- and acid-adapted Oenococcus oeni cells: characterization of the CFA gene by heterologous complementation. Microbiology, 154 (9) (2008), pp. 2611-2619.
|
[57] |
Y.M. Zhang, C.O. Rock. Membrane lipid homeostasis in bacteria. Nat Rev Microbiol, 6 (3) (2008), pp. 222-233.
|
[58] |
A.J.P. Brown, L.E. Cowen, A. di Pietro, J. Quinn. Stress adaptation. Microbiol Spectr, 5 (4) (2017), p. 10.
|
[59] |
S. Tian, G. Qin, B. Li. Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity. Plant Mol Biol, 82 (6) (2013), pp. 593-602.
|
[60] |
R.N. Patkar, P.I. Benke, Z. Qu, Y.Y.C. Chen, F. Yang, S. Swarup, et al. A fungal monooxygenase-derived jasmonate attenuates host innate immunity. Nat Chem Biol, 11 (9) (2015), pp. 733-740.
|
[61] |
F. Eng, J.E. Marin, K. Zienkiewicz, M. Gutierrez-Rojas, E. Favela-Torres, I. Feussner. Jasmonic acid biosynthesis by fungi: derivatives, first evidence on biochemical pathways and culture conditions for production. PeerJ, 9 (2021), e10873.
|
[62] |
O. Miersch, H. Bohlmann, C. Wasternack. Jasmonates and related compounds from Fusarium oxysporum. Phytochemistry, 50 (4) (1999), pp. 517-523.
|
[63] |
E.H. Oliw, M. Hamberg. Biosynthesis of jasmonates from linoleic acid by the fungus Fusarium oxysporum. Evidence for a novel allene oxide cyclase. Lipids, 54 (9) (2019), pp. 543-556.
|
[64] |
X. Li, R.Y. Jing, Y. Jiang, Q. Yang, S. Luo, et al. The inhibitory mechanism of methyl jasmonate on Aspergillus flavus growth and aflatoxin biosynthesis and two novel transcription factors are involved in this action. Food Res Int, 140 (2021), 110051.
|
[65] |
N. Tzortzakis, A. Chrysargyris, D. Sivakumar, K. Loulakakis. Vapour or dipping applications of methyl jasmonate, vinegar and sage oil for pepper fruit sanitation towards grey mould. Postharvest Biol Technol, 118 (2016), pp. 120-127.
|
[66] |
K. Wang, P. Jin, H. Shang, Y. Zheng. Effect of methyl jasmonate in combination with ethanol treatment on postharvest decay and antioxidant capacity in Chinese bayberries. J Agric Food Chem, 58 (17) (2010), pp. 9597-9604.
|
[67] |
Y. Wang, G. Duan, C. Li, X. Ma, J. Yang. Application of jasmonic acid at the stage of visible brown necrotic spots in Magnaporthe oryzae infection as a novel and environment-friendly control strategy for rice blast disease. Protoplasma, 258 (4) (2021), pp. 743-752.
|
[68] |
Y. Liu, M. Pagac, F. Yang, R.N. Patkar, N.I. Naqvi. Fungal jasmonate as a novel morphogenetic signal for pathogenesis. J Fungi, 7 (9) (2021), p. 693.
|