基于创新性内侧壁成型工艺的多光学通道微型碱金属原子气室

Mingzhi Yu, Yao Chen, Yongliang Wang, Xiangguang Han, Guoxi Luo, Libo Zhao, Yanbin Wang, Yintao Ma, Shun Lu, Ping Yang, Qijing Lin, Kaifei Wang, Zhuangde Jiang

工程(英文) ›› 2024, Vol. 35 ›› Issue (4) : 46-55.

PDF(3007 KB)
PDF(3007 KB)
工程(英文) ›› 2024, Vol. 35 ›› Issue (4) : 46-55. DOI: 10.1016/j.eng.2023.08.016
研究论文
Article

基于创新性内侧壁成型工艺的多光学通道微型碱金属原子气室

作者信息 +

Microfabricated Atomic Vapor Cells with Multi-Optical Channels Based on an Innovative Inner-Sidewall Molding Process

Author information +
History +

Highlight

・Microfabricated atomic vapor cells with multi-optical channels.

・Innovative precision inner-sidewalls molding process.

・Testing results of the vapor cell prove the effectiveness of the process.

Abstract

Existing microfabricated atomic vapor cells have only one optical channel, which is insufficient for supporting the multiple orthogonal beams required by atomic devices. In this study, we present a novel wafer-level manufacturing process for fabricating multi-optical-channel atomic vapor cells and an innovative method for batch processing the inner sidewalls of millimeter glass holes to meet optical channel requirements. Surface characterization and transmittance tests demonstrate that the processed inner sidewalls satisfy the criteria for an optical channel. In addition, the construction of an integrated processing platform enables multilayer non-isothermal anode bonding, the filling of inert gases, and the recovery and recycling of noble gases. Measurements of the absorption spectra and free-induction decay signals of xenon-129 (129Xe) and xenon-131 (131Xe) under different pump-probe schemes demonstrate the suitability of our vapor cell for use in atomic devices including atomic gyroscopes, dual-beam atomic magnetometers, and other optical/atomic devices. The proposed micromolding technology has broad application prospects in the field of optical-device processing.

Keywords

Microfabricated atomic vapor cells / Inner-sidewall molding / Multiple optical channels / Quantum sensing

引用本文

导出引用
Mingzhi Yu, Yao Chen, Yongliang Wang. . Engineering. 2024, 35(4): 46-55 https://doi.org/10.1016/j.eng.2023.08.016

参考文献

[1]
J. Kitching, S. Knappe, E.A. Donley. Atomic sensors—a review. IEEE Sens J, 11 (9) (2011), pp. 1749-1758.
[2]
C.L. Degen, F. Reinhard, P. Cappellaro. Quantum sensing. Rev Mod Phys, 89 (3) (2017), 035002.
[3]
M.W. Doherty, N.B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, L.C.L. Hollenberg. The nitrogen-vacancy colour centre in diamond. Phys Rep, 528 (1) (2013), pp. 1-45.
[4]
R.C. Jaklevic, J. Lambe, A.H. Silver, J.E. Mercereau. Quantum interference effects in Josephson tunneling. Phys Rev Lett, 12 (7) (1964), pp. 159-160.
[5]
R.C. Jaklevic, J. Lambe, J.E. Mercereau, A.H. Silver. Macroscopic quantum interference in superconductors. Phys Rev, 140 (5A) (1965), p. A1628.
[6]
W.E. Bell, A.L. Bloom. Optical detection of magnetic resonance in alkali metal vapor. Phys Rev, 107 (6) (1957), pp. 1559-1565.
[7]
E.B. Alexandrov, V.A. Bonch-Bruevich. Optically pumped atomic magnetometers after three decades. Opt Eng, 31 (4) (1992), pp. 711-717.
[8]
K.W. Martin, G. Phelps, N.D. Lemke, M.S. Bigelow, B. Stuhl, M. Wojcik, et al. Compact optical atomic clock based on a two-photon transition in rubidium. Phys Rev Appl, 9 (1) (2018), 014019.
[9]
Z.L. Newman, V. Maurice, T. Drake, J.R. Stone, T.C. Briles, D.T. Spencer, et al. Architecture for the photonic integration of an optical atomic clock. Optica, 6 (5) (2019), pp. 680-685.
[10]
A. Godone, F. Levi, C.E. Calosso, S. Micalizio. High-performing vapor-cell frequency standards. Riv Nuovo Cimento, 38 (3) (2015), pp. 133-171.
[11]
I.K. Kominis, T.W. Kornack, J.C. Allred, M.V. Romalis. A subfemtotesla multichannel atomic magnetometer. Nature, 422 (6932) (2003), pp. 596-599.
[12]
D. Budker, M. Romalis. Optical magnetometry. Nat Phys, 3 (4) (2007), pp. 227-234.
[13]
V. Shah, S. Knappe, P.D.D. Schwindt, J. Kitching. Subpicotesla atomic magnetometry with a microfabricated vapour cell. Nat Photonics, 1 (2007), pp. 649-652.
[14]
T.W. Kornack, R.K. Ghosh, M.V. Romalis. Nuclear spin gyroscope based on an atomic comagnetometer. Phys Rev Lett, 95 (23) (2005), 230801.
[15]
S.S. Sorensen, D.A. Thrasher, T.G. Walker. A synchronous spin-exchange optically pumped NMR-gyroscope. Appl Sci, 10 (20) (2020), p. 7099.
[16]
W.E. Bell, A.L. Bloom, J. Lynch. Alkali metal vapor spectral lamps. Rev Sci Instrum, 32 (6) (1961), pp. 688-692.
[17]
M.V. Balabas, D. Budker, J. Kitching, P.D.D. Schwindt, J.E. Stalnaker. Magnetometry with millimeter-scale antirelaxation-coated alkali-metal vapor cells. J Opt Soc Am B, 23 (6) (2006), pp. 1001-1006.
[18]
N. Castagna, G. Bison, G. di Domenico, A. Hofer, P. Knowles, C. Macchione, et al. A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells. Appl Phys B, 96 (4) (2009), pp. 763-772.
[19]
Z. Wu. Wall interactions of spin-polarized atoms. Rev Mod Phys, 93 (3) (2021), 035006.
[20]
Y.K. Feng, S.B. Zhang, Z.T. Lu, D. Sheng. Electric quadrupole shifts of the precession frequencies of 131Xe atoms in rectangular cells. Phys Rev A, 102 (4) (2020), 043109.
[21]
T.G. Walker, M.S. Larsen. Spin-exchange-pumped NMR gyros. E. Arimondo, C.C. Lin, S.F. Yelin (Eds.), Advances in atomic, molecular, and optical physics, 65, Elsevier, Cambridge (2016), pp. 373-401.
[22]
J. Kitching. Chip-scale atomic devices. Appl Phys Rev, 5 (3) (2018), 031302.
[23]
Z. Wu, W. Happer, M. Kitano, J. Daniels. Experimental studies of wall interactions of adsorbed spin-polarized 131Xe nuclei. Phys Rev A, 42 (5) (1990), pp. 2774-2784.
[24]
E.A. Donley, J.L. Long, T.C. Liebisch, E.R. Hodby, T.A. Fisher, J. Kitching. Nuclear quadrupole resonances in compact vapor cells: the crossover between the NMR and the nuclear quadrupole resonance interaction regimes. Phys Rev A, 79 (1) (2009), 013420.
[25]
J. Kitching, S. Knappe, L. Hollberg. Miniature vapor-cell atomic-frequency references. Appl Phys Lett, 81 (3) (2002), pp. 553-555.
[26]
L.A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, J. Kitching. Microfabricated alkali atom vapor cells. Appl Phys Lett, 84 (14) (2004), pp. 2694-2696.
[27]
S. Knappe, V. Gerginov, P.D.D. Schwindt, V. Shah, H.G. Robinson, L. Hollberg, et al. Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability. Opt Lett, 30 (18) (2005), pp. 2351-2353.
[28]
L.A. Liew, J. Moreland, V. Gerginov. Wafer-level filling of microfabricated atomic vapor cells based on thin-film deposition and photolysis of cesium azide. Appl Phys Lett, 90 (11) (2007), 114106.
[29]
M. Hasegawa, R.K. Chutani, C. Gorecki, R. Boudot, P. Dziuban, V. Giordano, et al. Microfabrication of cesium vapor cells with buffer gas for MEMS atomic clocks. Sens Actuators A, 167 (2) (2011), pp. 594-601.
[30]
V. Maurice, J. Rutkowski, E. Kroemer, S. Bargiel, N. Passilly, R. Boudot, et al. Microfabricated vapor cells filled with a cesium dispensing paste for miniature atomic clocks. Appl Phys Lett, 110 (16) (2017), 164103.
[31]
R. Vicarini, V. Maurice, M. Abdel Hafiz, J. Rutkowski, C. Gorecki, N. Passilly, et al. Demonstration of the mass-producible feature of a Cs vapor microcell technology for miniature atomic clocks. Sens Actuators A, 280 (2018), pp. 99-106.
[32]
M. Bulatowicz, R. Griffith, M. Larsen, J. Mirijanian, C.B. Fu, E. Smith, et al. Laboratory search for a long-range T-odd, P-odd interaction from axionlike particles using dual-species nuclear magnetic resonance with polarized 129Xe and 131Xe gas. Phys Rev Lett, 111 (10) (2013), 102001.
[33]
M.E. Limes, D. Sheng, M.V. Romalis. 3He-129Xe comagnetometery using 87Rb detection and decoupling. Phys Rev Lett, 120 (3) (2018), 033401.
[34]
E.J. Eklund, A.M. Shkel. Glass blowing on a wafer level. J Microelectromech Syst, 16 (2) (2007), pp. 232-239.
[35]
E.J. Eklund, A.M. Shkel, S. Knappe, E. Donley, J. Kitching. Glass-blown spherical microcells for chip-scale atomic devices. Sens Actuators A, 143 (1) (2008), pp. 175-180.
[36]
M.A. Perez, U. Nguyen, S. Knappe, E.A. Donley, J. Kitching, A.M. Shkel. Rubidium vapor cell with integrated Bragg reflectors for compact atomic MEMS. Sens Actuators A, 154 (2) (2009), pp. 295-303.
[37]
M.A. Perez, J. Kitching, A.M. Shkel. Design and demonstration of PECVD multilayer dielectric mirrors optimized for micromachined cavity angled sidewalls. Sens Actuators A, 155 (1) (2009), pp. 23-32.
[38]
R. Han, Z. You, F. Zhang, H. Xue, Y. Ruan. Microfabricated vapor cells with reflective sidewalls for chip scale atomic sensors. Micromachines, 9 (4) (2018), p. E175.
[39]
W. Ming, Z. Chen, J. Du, Z. Zhang, G. Zhang, W. He, et al. A comprehensive review of theory and technology of glass molding process. Int J Adv Manuf Technol, 107 (5,6) (2020), pp. 2671-2706.
[40]
Y. Zhang, G. Yan, K. You, F. Fang. Study on α-Al2O3 anti-adhesion coating for molds in precision glass molding. Surf Coat Technol, 391 (2020), 125720.
[41]
schott.com [Internet]. Shanghai: SCHOTT AG; c2023[cited 2020 Aug 20]. Available from: https://www.schott.com/zh-cn/products/borofloat
[42]
keyence.com.cn [Internet]. Shanghai: KEYENCE CORPORATION; c2023 [cited 2020 Aug 20]. Available from: https://www.keyence.com.cn/ss/products/microscope/roughness/surface/tab01_e.jsp
[43]
A.T. Dellis, V. Shah, E.A. Donley, S. Knappe, J. Kitching. Low helium permeation cells for atomic microsystems technology. Opt Lett, 41 (12) (2016), pp. 2775-2778.
[44]
S. Karlen, J. Gobet, T. Overstolz, J. Haesler, S. Lecomte. Lifetime assessment of RbN3-filled MEMS atomic vapor cells with Al2O3 coating. Opt Express, 25 (3) (2017), pp. 2187-2194.
[45]
N. Dural, M.V. Romalis. Gallium phosphide as a new material for anodically bonded atomic sensors. APL Mater, 2 (8) (2014), 086101.
[46]
M.D. Rotondaro, G.P. Perram. Collisional broadening and shift of the rubidium D1 and D2 lines (52S12→52P12, 52P32) by rare gases, H2, D2, N2, CH4 and CF4. J Quant Spectrosc Radiat Transfer, 57 (4) (1997), pp. 497-507.
[47]
R.M. Noor, M.H. Asadian, A.M. Shkel. Design considerations for micro-glassblown atomic vapor cells. J Microelectromech Syst, 29 (1) (2020), pp. 25-35.
[48]
M.V. Romalis, E. Miron, G.D. Cates. Pressure broadening of Rb D1 and D2 lines by 3He, 4He, N2, and Xe: line cores and near wings. Phys Rev A, 56 (6) (1997), pp. 4569-4578.
[49]
H. Zheng, W. Quan, X. Liu, Y. Chen, J. Lu. Measurement of atomic number of alkali vapor and pressure of buffer gas based on atomic absorption. Spectrosc Spectral Anal, 35 (2) (2015), pp. 507-511.
[50]
T.M. Kwon, J.G. Mark, C.H. Volk. Quadrupole nuclear spin relaxation of 131Xe in the presence of rubidium vapor. Phys Rev A, 24 (4) (1981), pp. 1894-1903.
[51]
P.A. Heimann, I.A. Greenwood, J.H. Simpson. Quadrupole perturbation effects upon the 201Hg magnetic resonance. Ⅱ.relaxation due to an anisotropic perturbation. Phys Rev A, 23 (3) (1981), pp. 1209-1214.
[52]
R. Butscher, G. Wackerle, M. Mehring. Nuclear quadrupole interaction of highly polarized gas-phase 131Xe with a glass surface. J Chem Phys, 100 (9) (1994), pp. 6923-6933.
PDF(3007 KB)

Accesses

Citation

Detail

段落导航
相关文章

/