中国武汉COVID-19第一波流行期间及之后合并症与心理冲击对地表水中微量有机污染物的影响(2019—2021年)

赵健, 康瑾, 曹晓峰, 边睿, 刘刚, 胡胜超, 吴兴华, 李翀, 王殿常, 齐维晓, 黄存瑞, 刘会娟, 曲久辉

工程(英文) ›› 2024, Vol. 37 ›› Issue (6) : 44-54.

PDF(1580 KB)
PDF(1580 KB)
工程(英文) ›› 2024, Vol. 37 ›› Issue (6) : 44-54. DOI: 10.1016/j.eng.2023.08.020
研究论文
Article

中国武汉COVID-19第一波流行期间及之后合并症与心理冲击对地表水中微量有机污染物的影响(2019—2021年)

作者信息 +

Impacts of Comorbidity and Mental Shock on Organic Micropollutants in Surface Water During and After the First Wave of COVID-19 Pandemic in Wuhan (2019-2021), China

Author information +
History +

Highlight

• The pandemic-related organic micropollutants (OMPs) in surface water were confirmed.

• Significant increases in four antihypertensives and one diabetic drug were observed.

• The increase in cotinine (155-fold) may be related to increased smoking.

• Comorbidity and mental shock of the COVID-19 pandemic could induce OMP pollution.

• High ecological risks were associated with lopinavir, ritonavir and telmisartan.

摘要

新型冠状病毒肺炎(COVID-19)的首波大流行导致地表水中几种抗病毒药物和抗生素的浓度明显增加。COVID-19常见症状涉及病毒和细菌感染,而合并症(如高血压和糖尿病)以及心理冲击(如失眠和焦虑)也十分引人关注。然而,人们对合并症和心理冲击对地表水中微量有机污染物(OMPs)的长期影响知之甚少。因此,我们在2019年至2021年期间对中国武汉地表水和污水处理厂(WWTPs)进行了检测,分析了114种OMPs。结果显示26种OMPs的浓度明显升高,进一步确认了COVID-19大流行会导致地表水OMPs污染。4种降压药和1种糖尿病药物的浓度显著增加,表明合并症的治疗可能会诱发OMPs污染。特别值得注意的是,可替宁(尼古丁的代谢物)的浓度增加了155倍,达到187 ng·L−1,可能与吸烟增加有关。此外,唑吡坦和舒必利的增加可能与失眠和抑郁等症状的增加有关。因此,保护心理健康的药物/行为也是造成OMPs污染的原因之一。在观察到的OMPs中,替米沙坦、洛匹那韦和利托那韦因其较低的WWTPs去除率和较高的生态毒性而具有显著较高的生态风险。这项研究为了解COVID-19大流行期间合并症和心理冲击对地表水中OMPs的影响提供了新视角,并强调了监测相关药物在水生环境中的归宿以及提高WWTPs去除率的必要性。

Abstract

The first pandemic wave of coronavirus disease 2019 (COVID-19) induced a considerable increase in several antivirals and antibiotics in surface water. The common symptoms of COVID-19 are viral and bacterial infections, while comorbidities (e.g., hypertension and diabetes) and mental shock (e.g., insomnia and anxiety) are nonnegligible. Nevertheless, little is known about the long-term impacts of comorbidities and mental shock on organic micropollutants (OMPs) in surface waters. Herein, we monitored 114 OMPs in surface water and wastewater treatment plants (WWTPs) in Wuhan, China, between 2019 and 2021. The pandemic-induced OMP pollution in surface water was confirmed by significant increases in 26 OMP concentrations. Significant increases in four antihypertensives and one diabetic drug suggest that the treatment of comorbidities may induce OMP pollution. Notably, cotinine (a metabolite of nicotine) increased 155 times to 187 ng·L−1, which might be associated with increased smoking. Additionally, the increases in zolpidem and sulpiride might be the result of worsened insomnia and depression. Hence, it is reasonable to note that mental-health protecting drugs/behavior also contributed to OMP pollution. Among the observed OMPs, telmisartan, lopinavir, and ritonavir were associated with significantly higher ecological risks because of their limited WWTP-removal rate and high ecotoxicity. This study provides new insights into the effects of comorbidities and mental shock on OMPs in surface water during a pandemic and highlights the need to monitor the fate of related pharmaceuticals in the aquatic environment and to improve their removal efficiencies in WWTPs.

关键词

新型冠状病毒肺炎 / 合并症 / 心理冲击 / 微量污染物 / 地表水

Keywords

Coronavirus disease 2019 / Comorbidities / Mental shock / Micropollutant / Surface water

引用本文

导出引用
赵健, 康瑾, 曹晓峰. 新冠病毒肺炎第一波疫情大流行期间和之后(2019—2021年)合并症和心理冲击对武汉地表水中微量有机污染物的影响. Engineering. 2024, 37(6): 44-54 https://doi.org/10.1016/j.eng.2023.08.020

参考文献

[1]
L. Wang, G. Cheng. Sequence analysis of the emerging SARS-CoV-2 variant Omicron in South Africa. J Med Virol, 94 (4) (2022), pp. 1728-1733.
[2]
C. Lai, T. Shih, W. Ko, H. Tang, P. Hsueh. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents, 55 (3) (2020), Article 105924.
[3]
E. Cameroni, J.E. Bowen, L.E. Rosen, C. Saliba, S.K. Zepeda, K. Culap, et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature, 602 (7898) (2022), pp. 664-670.
[4]
D.K. Chu, E.A. Akl, S. Duda, K. Solo, S. Yaacoub, H.J. Schünemann, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet, 395 (10242) (2020), pp. 1973-1987.
[5]
A.A. Elfiky. Ribavirin, remdesivir, sofosbuvir, galidesivir, and tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): a molecular docking study. Life Sci, 253 (2020), Article 117592.
[6]
X. Chen, L. Lei, S. Liu, J. Han, R. Li, J. Men, et al. Occurrence and risk assessment of pharmaceuticals and personal care products (PPCPs) against COVID-19 in lakes and WWTP-river-estuary system in Wuhan. China Sci Total Environ, 792 (2021), Article 148352.
[7]
X. Lian, J. Huang, R. Huang, C. Liu, L. Wang, T. Zhang. Impact of city lockdown on the air quality of COVID-19-hit of Wuhan City. Sci Total Environ, 742 (2020), Article 140556.
[8]
D. Liu, H. Yang, J.R. Thompson, J. Li, S. Loiselle, H. Duan. COVID-19 lockdown improved river water quality in China. Sci Total Environ, 802 (2022), Article 149585.
[9]
Z. Zhang, Y. Zhou, L. Han, X. Guo, Z. Wu, J. Fang, et al. Impacts of COVID-19 pandemic on the aquatic environment associated with disinfection byproducts and pharmaceuticals. Sci Total Environ, 811 (2022), Article 151409.
[10]
J. Echarte-Morales, C. Minguito-Carazo, S. Del Castillo-García, J. Borrego-Rodríguez, M. Rodríguez-Santamarta, E. Sánchez-Muñoz, et al. Effect of hydroxychloroquine, azithromycin and lopinavir/ritonavir on the QT corrected interval in patients with COVID-19. J Electrocardiol, 64 (2021), pp. 30-35.
[11]
M. Erami, O. Raiesi, M. Momen-Heravi, M.I. Getso, M. Fakhrehi, N. Mehri, et al. Clinical impact of Candida respiratory tract colonization and acute lung infections in critically ill patients with COVID-19 pneumonia. Microb Pathog, 166 (2022), Article 105520.
[12]
B.J. Langford, M. So, S. Raybardhan, V. Leung, D. Westwood, D.R. MacFadden, et al. Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis. Clin Microbiol Infect, 26 (12) (2020), pp. 1622-1629.
[13]
K. Kuroda, C. Li, K. Dhangar,M. Kumar. Predicted occurrence, ecotoxicological risk and environmentally acquired resistance of antiviral drugs associated with COVID-19 in environmental waters. Sci Total Environ, 776 (2021), Article 145740.
[14]
N.M. Vieno, T. Tuhkanen, L. Kronberg. Seasonal variation in the occurrence of pharmaceuticals in effluents from a sewage treatment plant and in the recipient water. Environ Sci Technol, 39 (21) (2005), pp. 8220-8226.
[15]
A.J. Ebele, T. Oluseyi, D.S. Drage, S. Harrad, A.M. Abou-Elwafa. Occurrence, seasonal variation and human exposure to pharmaceuticals and personal care products in surface water, groundwater and drinking water in Lagos State. Nigeria Emerg Contam, 6 (2020), pp. 124-132.
[16]
T. Chandola, M. Kumari, C.L. Booker, M. Benzeval. The mental health impact of COVID-19 and lockdown-related stressors among adults in the UK. Psychol Med, 52 (14) (2022), pp. 2997-3006.
[17]
J. Miao, D. Zeng, Z. Shi. Can neighborhoods protect residents from mental distress during the COVID-19 pandemic?. Evidence from Wuhan. Chinese Sociol Rev, 53 (1) (2021), pp. 1-26.
[18]
F. Zhou, T. Yu, R. Du, G. Fan, Y. Liu, Z. Liu, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 395 (10229) (2020), pp. 1054-1062.
[19]
I.F. Hung, K. Lung, E.Y. Tso, R. Liu, T.W. Chung, M. Chu, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet, 395 (10238) (2020), pp. 1695-1704.
[20]
Sanyaolu C. Okorie A. Marinkovic R. Patidar K. Younis P. Desai, et al. Comorbidity and its impact on patients with COVID-19. SN Compr Clin Med, 2 (8) (2020), pp. 1069-1076.
[21]
T. Wang, Z. Du, F. Zhu, Z. Cao, Y. An, Y. Gao, et al. Comorbidities and multi-organ injuries in the treatment of COVID-19. Lancet, 395 (10228) (2020), p. e52.
[22]
S.F. Maloney, M. Combs, R.L. Scholtes, M. Underwood, B. Kilgalen, E.K. Soule, et al. Impacts of COVID-19 on cigarette use, smoking behaviors, and tobacco purchasing behaviors. Drug Alcohol Depend, 229 (2021), Article 109144.
[23]
M.Y. Ni, L. Yang, C.M.C. Leung, N. Li, X.I. Yao, Y. Wang, et al. Mental health, risk factors, and social media use during the COVID-19 epidemic and cordon sanitaire among the community and health professionals in Wuhan, China: cross-sectional survey. JMIR Ment Health, 7 (5) (2020), p. e19009.
[24]
S. Li, B. Li, H. Liu, W. Qi, Y. Yang, G. Yu, et al. The biogeochemical responses of hyporheic groundwater to the long-run managed aquifer recharge: linking microbial communities to hydrochemistry and micropollutants. J Hazard Mater, 431 (2022), Article 128587.
[25]
M. Popp, M. Stegemann, M. Riemer, M. Metzendorf, C.S. Romero, A. Mikolajewska, et al. Antibiotics for the treatment of COVID-19. Cochrane Database Syst Rev, 10 (2021), Article CD015025.
[26]
R.P. Rothlin, H.M. Vetulli, M. Duarte, F.G. Pelorosso. Telmisartan as tentative angiotensin receptor blocker therapeutic for COVID-19. Drug Dev Res, 81 (7) (2020), pp. 768-770.
[27]
J. Zhao, S. Fang, W. Qi, H. Liu, J. Qu. Do NH4+-N and AOB affect atenolol removal during simulated riverbank filtration?. Chemosphere, 301 (2022), Article 134653.
[28]
J.O. Straub, D. Gysel, U. Kastl, J. Klemmer, M. Sonderegger, M. Studer. Environmental risk assessment for ancillary substances in biotechnological production of pharmaceuticals. Environ Toxicol Chem, 31 (3) (2012), pp. 681-687.
[29]
Z. Zhou, Y. Liang, Y. Shi, L. Xu, Y. Cai. Occurrence and transport of perfluoroalkyl acids (PFAAs), including short-chain PFAAs in Tangxun Lake. China Environ Sci Technol, 47 (16) (2013), pp. 9249-9257.
[30]
S. Park, K. Choi. Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. Ecotoxicology, 17 (6) (2008), pp. 526-538.
[31]
S. Zhou, C. Di Paolo, X. Wu, Y. Shao, T. Seiler, H. Hollert. Optimization of screening-level risk assessment and priority selection of emerging pollutants—the case of pharmaceuticals in European surface waters. Environ Int, 128 (2019), pp. 1-10.
[32]
W. Qi, B. Müller, B. Pernet-Coudrier, H. Singer, H. Liu, J. Qu, et al. Organic micropollutants in the Yangtze River: seasonal occurrence and annual loads. Sci Total Environ, 472 (2014), pp. 789-799.
[33]
Á. Tölgyesi, G. Korozs, E. Tóth, M. Bálint, X. Ma, V.K. Sharma. Automation in quantifying phenoxy herbicides and bentazon in surface water and groundwater using novel solid phase extraction and liquid chromatography tandem mass spectrometry. Chemosphere, 286 (2022), Article 131927.
[34]
Q. Bu, B. Wang, J. Huang, S. Deng, G. Yu. Pharmaceuticals and personal care products in the aquatic environment in China: a review. J Hazard Mater, 262 (2013), pp. 189-211.
[35]
D. Simazaki, R. Kubota, T. Suzuki, M. Akiba, T. Nishimura, S. Kunikane. Occurrence of selected pharmaceuticals at drinking water purification plants in Japan and implications for human health. Water Res, 76 (2015), pp. 187-200.
[36]
Y. Yang, Z. Chen, J. Zhang, S. Wu, L. Yang, L. Chen, et al. The challenge of micropollutants in surface water of the Yangtze River. Sci Total Environ, 780 (2021), Article 146537.
[37]
S.S. Lee, A.M. Paspalof, D.D. Snow, E.K. Richmond, E.J. Rosi-Marshall, J.J. Kelly. Occurrence and potential biological effects of amphetamine on stream communities. Environ Sci Technol, 50 (17) (2016), pp. 9727-9735.
[38]
S. Huntscha, D.M. Rodriguez Velosa, M.H. Schroth, J. Hollender. Degradation of polar organic micropollutants during riverbank filtration: complementary results from spatiotemporal sampling and push-pull tests. Environ Sci Technol, 47 (20) (2013), pp. 11512-11521.
[39]
Y. Yang, X. Zhang, J. Jiang, J. Han, W. Li, X. Li, et al. Which micropollutants in water environments deserve more attention globally?. Environ Sci Technol, 56 (1) (2022), pp. 13-29.
[40]
K. Zhang, Y. Zhao, K. Fent. Cardiovascular drugs and lipid regulating agents in surface waters at global scale: occurrence, ecotoxicity and risk assessment. Sci Total Environ, 729 (2020), Article 138770.
[41]
L. Mijangos, H. Ziarrusta, O. Ros, L. Kortazar, L.A. Fernández, M. Olivares, et al. Occurrence of emerging pollutants in estuaries of the Basque country: analysis of sources and distribution, and assessment of the environmental risk. Water Res, 147 (2018), pp. 152-163.
[42]
S. Zuo, H. Meng, J. Liang, H. Zhen, Y. Zhu, Y. Zhao, et al. Residues of cardiovascular and lipid-lowering drugs pose a risk to the aquatic ecosystem despite a high wastewater treatment ratio in the megacity Shanghai. China Environ Sci Technol, 56 (4) (2022), pp. 2312-2322.
[43]
C. Prasse, M.P. Schlüsener, R. Schulz, T.A. Ternes. Antiviral drugs in wastewater and surface waters: a new pharmaceutical class of environmental relevance?. Environ Sci Technol, 44 (5) (2010), pp. 1728-1735.
[44]
T.P. Wood, C.S.J. Duvenage, E. Rohwer. The occurrence of anti-retroviral compounds used for HIV treatment in South African surface water. Environ Pollut, 199 (2015), pp. 235-243.
[45]
S. Horn, T. Vogt, E. Gerber, B. Vogt, H. Bouwman, R. Pieters. HIV-antiretrovirals in river water from Gauteng, South Africa: mixed messages of wastewater inflows as source. Sci Total Environ, 806 (2022), Article 150346.
[46]
R.S. Cvetkovic, K.L. Goa. Lopinavir/ritonavir. Drugs, 63 (8) (2003), pp. 769-802.
[47]
Hsu G.R. Granneman R.J. Bertz. Ritonavir: clinical pharmacokinetics and interactions with other anti-HIV agents. Clin Pharmacokinet, 35 (4) (1998), pp. 275-291.
[48]
Q. Ruan, K. Yang, W. Wang, L. Jiang, J. Song. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan. China Intensive Care Med, 46 (5) (2020), pp. 846-848.
[49]
Vitiello R. La Porta F. Ferrara. Scientific hypothesis and rational pharmacological for the use of sacubitril/valsartan in cardiac damage caused by COVID-19. Med Hypotheses, 147 (2021), Article 110486.
[50]
M. Duarte, F. Pelorosso, L.N. Nicolosi, M. Victoria Salgado, H. Vetulli, A. Aquieri, et al. Telmisartan for treatment of Covid-19 patients: an open multicenter randomized clinical trial. EClinicalMedicine, 37 (2021), Article 100962.
[51]
Z. Wang, Z. Chen, L. Zhang, X. Wang, G. Hao, Z. Zhang, et al. Status of hypertension in China: results from the China hypertension survey, 2012-2015. Circulation, 137 (22) (2018), pp. 2344-2356.
[52]
R. Yin, L. Yin, L. Li, J. Silva-Nash, J. Tan, Z. Pan, et al. Hypertension in China: burdens, guidelines and policy responses: a state-of-the-art review. J Hum Hypertens, 36 (2) (2022), pp. 126-134.
[53]
F. Monji, A. Al-Mahmood Siddiquee, F. Hashemian. Can pentoxifylline and similar xanthine derivatives find a niche in COVID-19 therapeutic strategies? A ray of hope in the midst of the pandemic. Eur J Pharmacol, 887 (2020), Article 173561.
[54]
A.J. Crighton, C.T. McCann, E.J. Todd, A.J. Brown. Safe use of paracetamol and high-dose NSAID analgesia in dentistry during the COVID-19 pandemic. Br Dent J, 229 (1) (2020), pp. 15-18.
[55]
R. Aminnejad, A. Salimi, M. Saeidi. Lidocaine during intubation and extubation in patients with coronavirus disease (COVID-19). Can J Anaesth, 67 (6) (2020), p. 759.
[56]
G. Anmella, N. Arbelo, G. Fico, A. Murru, C.D. Llach, S. Madero, et al. COVID-19 inpatients with psychiatric disorders: real-world clinical recommendations from an expert team in consultation-liaison psychiatry. J Affect Disord, 274 (2020), pp. 1062-1067.
[57]
M. Asadi, S. Sayar, E. Radmanesh, S. Naghshi, S. Mousaviasl, S. Jelvay, et al. Efficacy of naproxen in the management of patients hospitalized with COVID-19 infection: a randomized, double-blind, placebo-controlled, clinical trial. Diabetes Metab Syndr, 15 (6) (2021), Article 102319.
[58]
M. Sisakht, A. Solhjoo, A. Mahmoodzadeh, M. Fathalipour, M. Kabiri, A. Sakhteman. Potential inhibitors of the main protease of SARS-CoV-2 and modulators of arachidonic acid pathway: non-steroidal anti-inflammatory drugs against COVID-19. Comput Biol Med, 136 (2021), Article 104686.
[59]
S. Jain, H. Potschka, P.P. Chandra, M. Tripathi, D. Vohora. Management of COVID-19 in patients with seizures: Mechanisms of action of potential COVID-19 drug treatments and consideration for potential drug-drug interactions with anti-seizure medications. Epilepsy Res, 174 (2021), Article 106675.
[60]
S.E. Vordenberg, B.J. Zikmund-Fisher. Older adults’ strategies for obtaining medication refills in hypothetical scenarios in the face of COVID-19 risk. J Am Pharm Assoc, 60 (6) (2020), pp. 915-922.
[61]
C. Oddy, J. McCaul, P. Keeling, J. Allington, D. Senn, N. Soni, et al. Pharmacological predictors of morbidity and mortality in COVID-19. J Clin Pharmacol, 61 (10) (2021), pp. 1286-1300.
[62]
K.S. Rao, P. Singhai, N. Salins, S.R. Rao. The pathway to comfort: role of palliative care for serious COVID-19 illness. Indian J Med Sci, 72 (2020), pp. 95-100.
[63]
G. Righi, G. Del Popolo. COVID-19 tsunami: the first case of a spinal cord injury patient in Italy. Spinal Cord Ser Cases, 6 (1) (2020), p. 22.
[64]
Ö.F. Elmas, A. Demirbaş, Ü. Türsen, M. Atasoy, T. Lotti. Pemphigus and COVID-19: critical overview of management with a focus on treatment choice. Dermatol Ther, 33 (6) (2020), p. e14265.
[65]
E.M. Zingarelli, M. Ghiglione, M. Pesce, I. Orejuela, S. Scarrone, R. Panizza. Facial pressure ulcers in a COVID-19 50-year-old female intubated patient. Indian J Plast Surg, 53 (01) (2020), pp. 144-146.
[66]
J. Millán-Oñate, W. Millan, L.A. Mendoza, C.G. Sánchez, H. Fernandez-Suarez, D.K. Bonilla-Aldana, et al. Successful recovery of COVID-19 pneumonia in a patient from Colombia after receiving chloroquine and clarithromycin. Ann Clin Microbiol Antimicrob, 19 (1) (2020), p. 16.
[67]
J. Huygens, E. Daeseleire, J. Mahillon, D. Van Elst, J. Decrop, J. Meirlaen, et al. Presence of antibiotic residues and antibiotic resistant bacteria in cattle manure intended for fertilization of agricultural fields: a one health perspective. J Antibiot, 10 (4) (2021), p. 410.
[68]
M. Čelić, A. Jaén-Gil, S. Briceño-Guevara, S. Rodríguez-Mozaz, M. Gros, M. Petrović. Extended suspect screening to identify contaminants of emerging concern in riverine and coastal ecosystems and assessment of environmental risks. J Hazard Mater, 404 (2021), Article 124102.
PDF(1580 KB)

Accesses

Citation

Detail

段落导航
相关文章

/