高电压快充钴酸锂正极——关键挑战、改性策略与未来展望

王功瑞, 毕志宏, 张安萍, Pratteek Das, 林虎, 吴忠帅

工程(英文) ›› 2024, Vol. 37 ›› Issue (6) : 115-139.

PDF(8227 KB)
PDF(8227 KB)
工程(英文) ›› 2024, Vol. 37 ›› Issue (6) : 115-139. DOI: 10.1016/j.eng.2023.08.021
研究论文
Review

高电压快充钴酸锂正极——关键挑战、改性策略与未来展望

作者信息 +

High-Voltage and Fast-Charging Lithium Cobalt Oxide Cathodes: From Key Challenges and Strategies to Future Perspectives

Author information +
History +

摘要

为了促进高端便携式电子产品进一步发展,迫切需要发展具有高能量密度和高功率密度特性(简称“双高”)的锂离子电池(LIBs)。钴酸锂(LiCoO2)是目前商业化最为成功的正极材料,却仍然面临着工作电压较低和快充能力不足的挑战,远未达到双高储能目标的要求。在此,我们系统地总结和讨论了高电压和快充钴酸锂正极的研究现状,深入探讨了该领域的关键基础挑战、多种改性策略的最新研究进展和未来展望。本文首先全面详细地讨论了钴酸锂关键失效机制,包括体相结构退化、界面结构失稳、非均质反应过程和缓慢的界面反应动力学。随后,我们对已发展的改性策略和改性机制进行了归纳总结,分为通过元素掺杂(包括锂位点、钴位点、氧位点和多位点掺杂)提升锂离子扩散速率和体相结构稳定性,通过表面包覆(包括电介质、离子导体、电子导体材料及其组合)提升表界面结构稳定性和离子/电子导电性,纳米化,多策略组合,及其他策略(包括电解质、粘合剂、电极的曲折度、充电协议和预锂化方法的优化)。最后,我们对前瞻性观点和具有前景的研究方向进行了深入阐述,为设计和实现用于下一代双高锂离子电池的高电压快充钴酸锂正极提供了独到的建议和理论指导。

Abstract

Lithium-ion batteries (LIBs) with the “double-high” characteristics of high energy density and high power density are in urgent demand for facilitating the development of advanced portable electronics. However, the lithium ion (Li+)-storage performance of the most commercialized lithium cobalt oxide (LiCoO2, LCO) cathodes is still far from satisfactory in terms of high-voltage and fast-charging capabilities for reaching the double-high target. Herein, we systematically summarize and discuss high-voltage and fast-charging LCO cathodes, covering in depth the key fundamental challenges, latest advancements in modification strategies, and future perspectives in this field. Comprehensive and elaborated discussions are first presented on key fundamental challenges related to structural degradation, interfacial instability, the inhomogeneity reactions, and sluggish interfacial kinetics. We provide an instructive summary of deep insights into promising modification strategies and underlying mechanisms, categorized into element doping (Li-site, cobalt-/oxygen-site, and multi-site doping) for improved Li+ diffusivity and bulk-structure stability; surface coating (dielectrics, ionic/electronic conductors, and their combination) for surface stability and conductivity; nanosizing; combinations of these strategies; and other strategies (i.e., optimization of the electrolyte, binder, tortuosity of electrodes, charging protocols, and pre-lithiation methods). Finally, forward-looking perspectives and promising directions are sketched out and insightfully elucidated, providing constructive suggestions and instructions for designing and realizing high-voltage and fast-charging LCO cathodes for next-generation double-high LIBs.

关键词

钴酸锂 / 高能量/功率密度 / 快充 / 高电压 / 锂离子电池

Keywords

Lithium cobalt oxide / High energy/power density / Fast-charging / High-voltage / Lithium-ion battery

引用本文

导出引用
王功瑞, 毕志宏, 张安萍. 高电压快充钴酸锂正极——关键挑战、改性策略与未来展望. Engineering. 2024, 37(6): 115-139 https://doi.org/10.1016/j.eng.2023.08.021

参考文献

[1]
A. Manthiram, J.B. Goodenough. Layered lithium cobalt oxide cathodes. Nat Energy, 6 (3) (2021), p. 323.
[2]
S. Chu, A. Majumdar. Opportunities and challenges for a sustainable energy future. Nature, 488 (7411) (2012), pp. 294-303.
[3]
B. Dunn, H. Kamath, J.M. Tarascon. Electrical energy storage for the grid: a battery of choices. Science, 334 (6058) (2011), pp. 928-935.
[4]
Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy, 1 (4) (2016), p. 16030.
[5]
M.S. Dresselhaus, I.L. Thomas. Alternative energy technologies. Nature, 414 (6861) (2001), pp. 332-337.
[6]
J.B. Goodenough, K.S. Park. The Li-ion rechargeable battery: a perspective. J Am Chem Soc, 135 (4) (2013), pp. 1167-1176.
[7]
L. Wang, B. Chen, J. Ma, G. Cui, L. Chen. Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chem Soc Rev, 47 (17) (2018), pp. 6505-6602.
[8]
A. Adam, J. Wandt, E. Knobbe, G. Bauer, A. Kwade. Fast-charging of automotive lithium-ion cells: in-situ lithium-plating detection and comparison of different cell designs. J Electrochem Soc, 167 (13) (2020), Article 130503.
[9]
B. Scrosati, J. Garche. Lithium batteries: status, prospects and future. J Power Sources, 195 (9) (2010), pp. 2419-2430.
[10]
A. Meintz, J. Zhang, R. Vijayagopal, C. Kreutzer, S. Ahmed, I. Bloom, et al. Enabling fast charging—vehicle considerations. J Power Sources, 367 (2017), pp. 216-227.
[11]
P. Morrissey, P. Weldon, M. O’Mahony. Future standard and fast charging infrastructure planning: an analysis of electric vehicle charging behaviour. Energy Policy, 89 (2016), pp. 257-270.
[12]
A. Tomaszewska, Z. Chu, X. Feng, S. O’Kane, X. Liu, J. Chen, et al. Lithium-ion battery fast charging: a review. eTransportation, 1 (2019), p. 100011.
[13]
N. Li, Z. Chen, W. Ren, F. Li, H.M. Cheng. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc Natl Acad Sci USA, 109 (43) (2012), pp. 17360-17365.
[14]
B. Kang, G. Ceder. Battery materials for ultrafast charging and discharging. Nature, 458 (7235) (2009), pp. 190-193.
[15]
S.S. Zhang. The effect of the charging protocol on the cycle life of a Li-ion battery. J Power Sources, 161 (2) (2006), pp. 1385-1391.
[16]
J.B. Goodenough, Y. Kim. Challenges for rechargeable Li batteries. Chem Mater, 22 (3) (2010), pp. 587-603.
[17]
A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc, 144 (4) (1997), pp. 1188-1194.
[18]
J. Zheng, S. Myeong, W. Cho, P. Yan, J. Xiao, C. Wang, et al. Li- and Mn-rich cathode materials: challenges to commercialization. Adv Energy Mater, 7 (6) (2017), p. 1601284.
[19]
Y. Shen, X. Yao, S. Wang, D. Zhang, D. Yin, L. Wang, et al. Gospel for improving the lithium storage performance of high-voltage high-nickel low-cobalt layered oxide cathode materials. ACS Appl Mater Interfaces, 13 (49) (2021), pp. 58871-58884.
[20]
J.Y. Park, M. Jo, S. Hong, S. Park, J.H. Park, Y.I. Kim, et al. Mechanism of degradation of capacity and charge/discharge voltages of high-Ni cathode during fast long-term cycling without voltage margin. Adv Energy Mater, 12 (29) (2022), p. 2201151.
[21]
R. Wang, X. Chen, Z. Huang, J. Yang, F. Liu, M. Chu, et al. Twin boundary defect engineering improves lithium-ion diffusion for fast-charging spinel cathode materials. Nat Commun, 12 (1) (2021), p. 3085.
[22]
A. Manthiram, J.C. Knight, S.T. Myung, S.M. Oh, Y.K. Sun. Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv Energy Mater, 6 (1) (2016), p. 1501010.
[23]
Q. Yang, J. Huang, Y. Li, Y. Wang, J. Qiu, J. Zhang, et al. Surface-protected LiCoO2 with ultrathin solid oxide electrolyte film for high-voltage lithium ion batteries and lithium polymer batteries. J Power Sources, 388 (2018), pp. 65-70.
[24]
A.M. Tripathi, W.N. Su, B.J. Hwang. In situ analytical techniques for battery interface analysis. Chem Soc Rev, 47 (3) (2018), pp. 736-851.
[25]
J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough, P. Khalifah, et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat Energy, 4 (3) (2019), pp. 180-186.
[26]
Y. Liu, Y. Zhu, Y. Cui. Challenges and opportunities towards fast-charging battery materials. Nat Energy, 4 (7) (2019), pp. 540-550.
[27]
J.N. Zhang, Q. Li, C. Ouyang, X. Yu, M. Ge, X. Huang, et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat Energy, 4 (7) (2019), pp. 594-603.
[28]
B.L. Ellis, K.T. Lee, L.F. Nazar. Positive electrode materials for Li-ion and Li-batteries. Chem Mater, 22 (3) (2010), pp. 691-714.
[29]
S.B. Chikkannanavar, D.M. Bernardi, L. Liu. a review of blended cathode materials for use in Li-ion batteries. J Power Sources, 248 (2014), pp. 91-100.
[30]
A. Kraytsberg, Y. Ein-Eli. Higher, stronger, better… a review of 5 volt cathode materials for advanced lithium-ion batteries. Adv Energy Mater, 2 (8) (2012), pp. 922-939.
[31]
M. Winter, J.O. Besenhard, M.E. Spahr, P. Novák. Insertion electrode materials for rechargeable lithium batteries. Adv Mater, 10 (10) (1998), pp. 725-763.
[32]
M.D. Radin, S. Hy, M. Sina, C. Fang, H. Liu, J. Vinckeviciute, et al. Narrowing the gap between theoretical and practical capacities in Li-ion layered oxide cathode materials. Adv Energy Mater, 7 (20) (2017), p. 1602888.
[33]
Y. Lyu, X. Wu, K. Wang, Z. Feng, T. Cheng, Y. Liu, et al. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv Energy Mater, 11 (2) (2021), p. 2000982.
[34]
Y. Xu, E. Hu, K. Zhang, X. Wang, V. Borzenets, Z. Sun, et al. In situ visualization of state-of-charge heterogeneity within a LiCoO2 particle that evolves upon cycling at different rates. ACS Energy Lett, 2 (5) (2017), pp. 1240-1245.
[35]
W. Cho, S. Myeong, N. Kim, S. Lee, Y. Kim, M. Kim, et al. Critical role of cations in lithium sites on extended electrochemical reversibility of Co-rich layered oxide. Adv Mater, 29 (21) (2017), p. 1605578.
[36]
M. Okubo, E. Hosono, J. Kim, M. Enomoto, N. Kojima, T. Kudo, et al. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J Am Chem Soc, 129 (23) (2007), pp. 7444-7452.
[37]
S. Zhou, T. Mei, J. Liu, X. Wang, Y. Qian. Hierarchical fusiform microrods constructed by parallelly arranged nanoplatelets of LiCoO2 material with ultrahigh rate performance. ACS Appl Mater Interfaces, 12 (15) (2020), pp. 17376-17384.
[38]
W.D. Johnston, R.R. Heikes, D. Sestrich. The preparation, crystallography, and magnetic properties of the LixCo(1-x)O system. J Phys Chem Solids, 7 (1) (1958), pp. 1-13.
[39]
C. Delmas, C. Fouassier, P. Hagenmuller. Structural classification and properties of the layered oxides. Physica B+C, 99 (1-4) (1980), pp. 81-85.
[40]
M.M. Thackeray, W.I.F. David, P.G. Bruce, J.B. Goodenough. Lithium insertion into manganese spinels. Mater Res Bull, 18 (4) (1983), pp. 461-472.
[41]
J. Wang, X. Sun. Olivine LiFePO4: the remaining challenges for future energy storage. Energy Environ Sci, 8 (4) (2015), pp. 1110-1138.
[42]
Z. Chen, J.R. Dahn. Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V. Electrochim Acta, 49 (7) (2004), pp. 1079-1090.
[43]
G.G. Amatucci, J.M. Tarascon, L.C. Klein. Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries. Solid State Ion, 83 (1-2) (1996), pp. 167-173.
[44]
D. Ensling, G. Cherkashinin, S. Schmid, S. Bhuvaneswari, A. Thissen, W. Jaegermann. Nonrigid band behavior of the electronic structure of LiCoO2 thin film during electrochemical Li deintercalation. Chem Mater, 26 (13) (2014), pp. 3948-3956.
[45]
J. Molenda, A. Stokłosa, T. Bąk. Modification in the electronic structure of cobalt bronze LixCoO2 and the resulting electrochemical properties. Solid State Ion, 36 (1-2) (1989), pp. 53-58.
[46]
C. Delmas. Alkali metal intercalation in layered oxides. Mater Sci Eng B, 3 (1-2) (1989), pp. 97-101.
[47]
A. Honders, J.M. Der Kinderen, A.H. Van Heeren, J.H.W. De Wit, G.H.J. Broers. Bounded diffusion in solid solution electrode powder compacts. Part II. The simultaneous measurement of the chemical diffusion coefficient and the thermodynamic factor in LixTiS2 and LixCoO2. Solid State Ion, 15 (4) (1985), pp. 265-276.
[48]
A. Van der Ven, M.K. Aydinol, G. Ceder, G. Kresse, J. Hafner. First-principles investigation of phase stability in LixCoO2. Phys Rev B, 58 (6) (1998), pp. 2975-2987.
[49]
L. Ni, S. Zhang, A. Di, W. Deng, G. Zou, H. Hou, et al. Challenges and strategies towards single-crystalline Ni-rich layered cathodes. Adv Energy Mater (2022), p. 2201510.
[50]
R.V. Chebiam, A.M. Kannan, F. Prado, A. Manthiram. Comparison of the chemical stability of the high energy density cathodes of lithium-ion batteries. Electrochem Commun, 3 (11) (2001), pp. 624-627.
[51]
P. Zhang, C. Xie, G. Han, Q. Zhu, L. Chen, M. Jin, et al. Stable cycling of LiCoO2 at 4.55 V enabled by combined Mg doping and surface coating of NASICON-type electrolyte. Mater Today Nano, 15 (2021), p. 100122.
[52]
T. Fan, W. Kai, V.K. Harika, C. Liu, A. Nimkar, N. Leifer, et al. Operating highly stable LiCoO2 cathodes up to 4.6 V by using an effective integration of surface engineering and electrolyte solutions selection. Adv Funct Mater, 32 (33) (2022), p. 2204972.
[53]
X. Yang, M. Lin, G. Zheng, J. Wu, X. Wang, F. Ren, et al. Enabling stable high-voltage LiCoO2 operation by using synergetic interfacial modification strategy. Adv Funct Mater, 30 (43) (2020), p. 2004664.
[54]
Z. Wang, L. Liu, L. Chen, X. Huang. Structural and electrochemical characterizations of surface-modified LiCoO2 cathode materials for Li-ion batteries. Solid State Ion, 148 (3-4) (2002), pp. 335-342.
[55]
Y. Lyu, Y. Liu, L. Gu. Surface structure evolution of cathode materials for Li-ion batteries. Chin Phys B, 25 (1) (2016), p. 018209.
[56]
S. Gong, S. Wang, J. Liu, Y. Guo, Q. Wang. Graphdiyne as an ideal monolayer coating material for lithium-ion battery cathodes with ultralow areal density and ultrafast Li penetration. J Mater Chem A, 6 (26) (2018), pp. 12630-12636.
[57]
Z. Bi, N. Zhao, L. Ma, Z. Fu, F. Xu, C. Wang, et al. Interface engineering on cathode side for solid garnet batteries. Chem Eng J, 387 (2020), Article 124089.
[58]
P. Bai, X. Ji, J. Zhang, W. Zhang, S. Hou, H. Su, et al. Formation of LiF-rich cathode-electrolyte interphase by electrolyte reduction. Angew Chem, 61 (26) (2022), p. e202202731.
[59]
Z. Zhu, D. Yu, Z. Shi, R. Gao, X. Xiao, I. Waluyo, et al. Gradient-morph LiCoO2 single crystals with stabilized energy density above 3400 W ·h·L-1. Energy Environ Sci, 13 (6) (2020), pp. 1865-1878.
[60]
Z. Zhu, H. Wang, Y. Li, R. Gao, X. Xiao, Q. Yu, et al. A surface Se-substituted LiCo[O2-δSeδ] cathode with ultrastable high-voltage cycling in pouch full-cells. Adv Mater, 32 (50) (2020), p. 2005182.
[61]
D. Takamatsu, Y. Koyama, Y. Orikasa, S. Mori, T. Nakatsutsumi, T. Hirano, et al. First in situ observation of the LiCoO2 electrode/electrolyte interface by total-reflection X-ray absorption spectroscopy. Angew Chem, 51 (46) (2012), pp. 11597-11601.
[62]
D. Takamatsu, T. Nakatsutsumi, S. Mori, Y. Orikasa, M. Mogi, H. Yamashige, et al. Nanoscale observation of the electronic and local structures of LiCoO2 thin film electrode by depth-resolved X-ray absorption spectroscopy. J Phys Chem Lett, 2 (20) (2011), pp. 2511-2514.
[63]
Y. Jiang, C. Qin, P. Yan, M. Sui. Origins of capacity and voltage fading of LiCoO2 upon high voltage cycling. J Mater Chem A, 7 (36) (2019), pp. 20824-20831.
[64]
H. Xia, L. Lu, Y.S. Meng, G. Ceder. Phase transitions and high-voltage electrochemical behavior of LiCoO2 thin films grown by pulsed laser deposition. J Electrochem Soc, 154 (4) (2007), p. A337.
[65]
W.M. Seong, K. Yoon, M.H. Lee, S.K. Jung, K. Kang. Unveiling the intrinsic cycle reversibility of a LiCoO2 electrode at 4.8-V cutoff voltage through subtractive surface modification for lithium-ion batteries. Nano Lett, 19 (1) (2019), pp. 29-37.
[66]
S. Sharifi-Asl, J. Lu, K. Amine, R. Shahbazian-Yassar. Oxygen release degradation in Li-ion battery cathode materials: mechanisms and mitigating approaches. Adv Energy Mater, 9 (22) (2019), p. 1900551.
[67]
Z. Yu, Q. Tong, G. Zhao, G. Zhu, B. Tian, Y. Cheng. Combining surface holistic Ge coating and subsurface Mg doping to enhance the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathodes. ACS Appl Mater Interfaces, 14 (22) (2022), pp. 25490-25500.
[68]
G. Ceder, Y.M. Chiang, D.R. Sadoway, M.K. Aydinol, Y.I. Jang, B. Huang. Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature, 392 (6677) (1998), pp. 694-696.
[69]
J.M. Tarascon, G. Vaughan, Y. Chabre, L. Seguin, M. Anne, P. Strobel, et al. In situ structural and electrochemical study of Ni1-xCoxO2 metastable oxides prepared by soft chemistry. J Solid State Chem, 147 (1) (1999), pp. 410-420.
[70]
H. Wang, E. Rus, T. Sakuraba, J. Kikuchi, Y. Kiya, H.D. Abruña. CO2 and O2 evolution at high voltage cathode materials of Li-ion batteries: a differential electrochemical mass spectrometry study. Anal Chem, 86 (13) (2014), pp. 6197-6201.
[71]
A. Sakuda, H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago. Improvement of high-rate performance of all-solid-state lithium secondary batteries using LiCoO2 coated with Li2O-SiO2 glasses. Electrochem Solid-State Lett, 11 (1) (2008), p. A1.
[72]
L.A. Montoro, M. Abbate, E.C. Almeida, J.M. Rosolen. Electronic structure of the transition metal ions in LiCoO2, LiNiO2 and LiCo0.5Ni0.5O2. Chem Phys Lett, 309 (1-2) (1999), pp. 14-18.
[73]
W.S. Yoon, K.B. Kim, M.G. Kim, M.K. Lee, H.J. Shin, J.M. Lee. Oxygen contribution on Li-ion intercalation-deintercalation in LiAlyCo1-yO2 investigated by O K-edge and Co L-edge X-ray absorption spectroscopy. J Electrochem Soc, 149 (10) (2002), p. A1305.
[74]
X.H. Long, Y.R. Wu, N. Zhang, P.F. Yu, X.F. Feng, S. Zheng, et al. Charge compensation and capacity fading in LiCoO2 at high voltage investigated by soft X-ray absorption spectroscopy. Chin Phys B, 27 (10) (2018), p. 107802.
[75]
B. Li, D. Xia. Anionic redox in rechargeable lithium batteries. Adv Mater, 29 (48) (2017), p. 1701054.
[76]
Y. Sun, J. Huang, H. Xiang, X. Liang, Y. Feng, Y. Yu. 2-(Trifluoroacetyl) thiophene as an electrolyte additive for high-voltage lithium-ion batteries using LiCoO2 cathode. J Mater Sci Technol, 55 (2020), pp. 198-202.
[77]
X. Liu, G. Xu, V.S.C. Kolluru, C. Zhao, Q. Li, X. Zhou, et al. Origin and regulation of oxygen redox instability in high-voltage battery cathodes. Nat Energy, 7 (9) (2022), pp. 808-817.
[78]
Y. Jiang, P. Yan, M. Yu, J. Li, H. Jiao, B. Zhou, et al. Atomistic mechanism of cracking degradation at twin boundary of LiCoO2. Nano Energy, 78 (2020), p. 105364.
[79]
M.M. Thackeray, P.J. Johnson, L.A. De Picciotto, P.G. Bruce, J.B. Goodenough. Electrochemical extraction of lithium from LiMn2O4. Mater Res Bull, 19 (2) (1984), pp. 179-187.
[80]
X. Ren, X. Zhang, Z. Shadike, L. Zou, H. Jia, X. Cao, et al. Designing advanced in situ electrode/electrolyte interphases for wide temperature operation of 4.5 V Li||LiCoO2 batteries. Adv Mater, 32 (49) (2020), p. 2004898.
[81]
M. Zou, M. Yoshio, S. Gopukumar, J.I. Yamaki. Performance of LiM0.05Co0.95O2 cathode materials in lithium rechargeable cells when cycled up to 4.5 V. Chem Mater, 17 (6) (2005), pp. 1284-1286.
[82]
D. Luo, G. Li, C. Yu, L. Yang, J. Zheng, X. Guan, et al. Low-concentration donor-doped LiCoO2 as a high performance cathode material for Li-ion batteries to operate between -10.4 and 45.4 °C. J Mater Chem, 22 (41) (2012), pp. 22233-22241.
[83]
J. Wang, R. Chen, L. Yang, M. Zan, P. Chen, Y. Li, et al. Raising the intrinsic safety of layered oxide cathodes by surface re-lithiation with LLZTO garnet-type solid electrolytes. Adv Mater, 34 (19) (2022), p. 2200655.
[84]
J.N. Zhang, Q. Li, Y. Wang, J. Zheng, X. Yu, H. Li. Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode. Energy Storage Mater, 14 (2018), pp. 1-7.
[85]
M. Hong, S. Lee, V.C. Ho, D. Lee, S.H. Yu, J. Mun. Unraveling the dynamic interfacial behavior of LiCoO2 at various voltages with lithium bis(oxalato)borate for lithium-ion batteries. ACS Appl Mater Interfaces, 14 (8) (2022), pp. 10267-10276.
[86]
J. Zhang, P.F. Wang, P. Bai, H. Wan, S. Liu, S. Hou, et al. Interfacial design for a 4.6 V high-voltage single-crystalline LiCoO2 cathode. Adv Mater, 34 (8) (2022), p. 2108353.
[87]
L. Xue, Q. Zhang, Y. Huang, H. Zhu, L. Xu, S. Guo, et al. Stabilizing layered structure in aqueous electrolyte via dynamic water intercalation/deintercalation. Adv Mater, 34 (13) (2022), p. 2108541.
[88]
X.G. Yang, G. Zhang, S. Ge, C.Y. Wang. Fast charging of lithium-ion batteries at all temperatures. Proc Natl Acad Sci USA, 115 (28) (2018), pp. 7266-7271.
[89]
H. Xia, W. Zhang, S. Cao, X. Chen. A figure of merit for fast-charging Li-ion battery materials. ACS Nano, 16 (6) (2022), pp. 8525-8530.
[90]
A.S. Mussa, A. Liivat, F. Marzano, M. Klett, B. Philippe, C. Tengstedt, et al. Fast-charging effects on ageing for energy-optimized automotive LiNi1/3Mn1/3Co1/3O2/graphite prismatic lithium-ion cells. J Power Sources, 422 (2019), pp. 175-184.
[91]
Y. Zeng, D. Chalise, S.D. Lubner, S. Kaur, R.S. Prasher. A review of thermal physics and management inside lithium-ion batteries for high energy density and fast charging. Energy Storage Mater, 41 (2021), pp. 264-288.
[92]
E. Hu, X. Wang, X. Yu, X.Q. Yang. Probing the complexities of structural changes in layered oxide cathode materials for Li-ion batteries during fast charge-discharge cycling and heating. Acc Chem Res, 51 (2) (2018), pp. 290-298.
[93]
Y.N. Zhou, J.L. Yue, E. Hu, H. Li, L. Gu, K.W. Nam, et al. High-rate charging induced intermediate phases and structural changes of layer-structured cathode for lithium-ion batteries. Adv Energy Mater, 6 (21) (2016), p. 1600597.
[94]
D.R. Diercks, M. Musselman, A. Morgenstern, T. Wilson, M. Kumar, K. Smith, et al. Evidence for anisotropic mechanical behavior and nanoscale chemical heterogeneity in cycled LiCoO2. J Electrochem Soc, 161 (11) (2014), pp. F3039-F3045.
[95]
Y. Gong, J. Zhang, L. Jiang, J.A. Shi, Q. Zhang, Z. Yang, et al. In situ atomic-scale observation of electrochemical delithiation induced structure evolution of LiCoO2 cathode in a working all-solid-state battery. J Am Chem Soc, 139 (12) (2017), pp. 4274-4277.
[96]
M. Xu, Z. Zhang, X. Wang, L. Jia, L. Yang. A pseudo three-dimensional electrochemical-thermal model of a prismatic LiFePO4 battery during discharge process. Energy, 80 (2015), pp. 303-317.
[97]
S. Goutam, A. Nikolian, J. Jaguemont, J. Smekens, N. Omar, B.P. Van Dan, et al. Three- dimensional electro-thermal model of Li-ion pouch cell: analysis and comparison of cell design factors and model assumptions. Appl Therm Eng, 126 (2017), pp. 796-808.
[98]
W. Song, M. Chen, F. Bai, S. Lin, Y. Chen, Z. Feng. Non-uniform effect on the thermal/aging performance of lithium-ion pouch battery. Appl Therm Eng, 128 (2018), pp. 1165-1174.
[99]
S.S. Zhang, K. Xu, T.R. Jow. Optimization of the forming conditions of the solid-state interface in the Li-ion batteries. J Power Sources, 130 (1-2) (2004), pp. 281-285.
[100]
J. Vetter, P. Novák, M.R. Wagner, C. Veit, K.C. Möller, J.O. Besenhard, et al. Ageing mechanisms in lithium-ion batteries. J Power Sources, 147 (1-2) (2005), pp. 269-281.
[101]
M. Wohlfahrt-Mehrens, C. Vogler, J. Garche. Aging mechanisms of lithium cathode materials. J Power Sources, 127 (1-2) (2004), pp. 58-64.
[102]
M. Keyser, A. Pesaran, Q. Li, S. Santhanagopalan, K. Smith, E. Wood, et al. Enabling fast charging—battery thermal considerations. J Power Sources, 367 (2017), pp. 228-236.
[103]
P.E. Stallworth, J.J. Fontanella, M.C. Wintersgill, C.D. Scheidler, J.J. Immel, S.G. Greenbaum, et al. NMR, DSC and high pressure electrical conductivity studies of liquid and hybrid electrolytes. J Power Sources, 81-82 (1999), pp. 739-747.
[104]
P. Verma, P. Maire, P. Novák. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta, 55 (22) (2010), pp. 6332-6341.
[105]
K. Xu, Y. Lam, S.S. Zhang, T.R. Jow, T.B. Curtis. Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry. J Phys Chem C, 111 (20) (2007), pp. 7411-7421.
[106]
X. Li, C. Chen, Z. Fu, J. Wang, C. Hu. Compression promotes the formation of 110 textures during homoepitaxial deposition of lithium. Energy Storage Mater, 58 (2023), pp. 155-164.
[107]
Z. Zhu, A. Kushima, Z. Yin, L. Qi, K. Amine, J. Lu, et al. Anion-redox nanolithia cathodes for Li-ion batteries. Nat Energy, 1 (8) (2016), p. 16111.
[108]
Z. Tai, C.M. Subramaniyam, S.L. Chou, L. Chen, H.K. Liu, S.X. Dou. Few atomic layered lithium cathode materials to achieve ultrahigh rate capability in lithium-ion batteries. Adv Mater, 29 (34) (2017), p. 1700605.
[109]
P. Yan, J. Zheng, Z.K. Tang, A. Devaraj, G. Chen, K. Amine, et al. Injection of oxygen vacancies in the bulk lattice of layered cathodes. Nat Nanotechnol, 14 (6) (2019), pp. 602-608.
[110]
H. Qian, H. Ren, Y. Zhang, X. He, W. Li, J. Wang, et al. Surface doping vs bulk doping of cathode materials for lithium-ion batteries: a review. Electrochem Energy Rev, 5 (4) (2022), p. 2.
[111]
R. Zahn, M.F. Lagadec, M. Hess, V. Wood. Improving ionic conductivity and lithium-ion transference number in lithium-ion battery separators. ACS Appl Mater Interfaces, 8 (48) (2016), pp. 32637-32642.
[112]
M.F. Lagadec, R. Zahn, V. Wood. Characterization and performance evaluation of lithium-ion battery separators. Nat Energy, 4 (1) (2019), pp. 16-25.
[113]
Y. Shen, L. Wang, J. Jiang, D. Wang, D. Zhang, D. Yin, et al. Stabilization of high-voltage layered oxide cathode by multi-electron rare earth oxide. Chem Eng J, 454 (2023), Article 140249.
[114]
X. Wang, X. Wang, Y. Lu. Realizing high voltage lithium cobalt oxide in lithium-ion batteries. Ind Eng Chem Res, 58 (24) (2019), pp. 10119-10139.
[115]
Y. Huang, Y. Zhu, H. Fu, M. Ou, C. Hu, S. Yu, et al. Mg-pillared LiCoO2: towards stable cycling at 4.6 V. Angew Chem, 60 (9) (2021), pp. 4682-4688.
[116]
Y.H. Luo, Q.L. Pan, H.X. Wei, Y.D. Huang, L.B. Tang, Z.Y. Wang, et al. Towards Ni-rich layered oxides cathodes with low Li/Ni intermixing by mild molten-salt ion exchange for lithium-ion batteries. Nano Energy, 102 (2022), p. 107626.
[117]
Y. Shen, X. Yao, J. Zhang, S. Wang, D. Zhang, D. Yin, et al. Sodium doping derived electromagnetic center of lithium layered oxide cathode materials with enhanced lithium storage. Nano Energy, 94 (2022), p. 106900.
[118]
S.X. Chen, C.W. Wang, Y. Zhou, J.K. Liu, C.G. Shi, G.Z. Wei, et al. Co/Li-dual-site doping towards LiCoO2 as a high-voltage, fast-charging, and long-cycling cathode material. J Mater Chem A, 10 (10) (2022), pp. 5295-5304.
[119]
H.J. Kim, Y. Park, Y. Kwon, J. Shin, Y.H. Kim, H.S. Ahn, et al. Entropymetry for non-destructive structural analysis of LiCoO2 cathodes. Energy Environ Sci, 13 (1) (2020), pp. 286-296.
[120]
J. Kim, H. Kang, N. Go, S. Jeong, T. Yim, Y.N. Jo, et al. Egg-shell structured LiCoO2 by Cu2+ substitution to Li+ sites via facile stirring in an aqueous copper(II) nitrate solution. J Mater Chem A, 5 (47) (2017), pp. 24892-24900.
[121]
C. Heubner, B. Matthey, T. Lein, F. Wolke, T. Liebmann, C. Lämmel, et al. Insights into the electrochemical Li/Na-exchange in layered LiCoO2 cathode material. Energy Storage Mater, 27 (2020), pp. 377-386.
[122]
M.J. Wang, F.D. Yu, G. Sun, J. Wang, J.G. Zhou, D.M. Gu, et al. Co- regulating the surface and bulk structure of Li-rich layered oxides by a phosphor doping strategy for high-energy Li-ion batteries. J Mater Chem A, 7 (14) (2019), pp. 8302-8314.
[123]
X. Tan, T. Zhao, L. Song, D. Mao, Y. Zhang, Z. Fan, et al. Simultaneous near-surface trace doping and surface modifications by gas-solid reactions during one-pot synthesis enable stable high-voltage performance of LiCoO2. Adv Energy Mater, 12 (30) (2022), p. 2200008.
[124]
Q. Wu, B. Zhang, Y. Lu. Progress and perspective of high-voltage lithium cobalt oxide in lithium-ion batteries. J Energy Chem, 74 (2022), pp. 283-308.
[125]
H.G. Jung, N.V. Gopal, J. Prakash, D.W. Kim, Y.K. Sun. Improved electrochemical performances of LiM0.05Co0.95O1.95F0.05 (M = Mg, Al, Zr) at high voltage. Electrochim Acta, 68 (2012), pp. 153-157.
[126]
B. Hu, X. Lou, C. Li, F. Geng, C. Zhao, J. Wang, et al. Reversible phase transition enabled by binary Ba and Ti-based surface modification for high voltage LiCoO2 cathode. J Power Sources, 438 (2019), Article 226954.
[127]
J.H. Cheng, C.J. Pan, C. Nithya, R. Thirunakaran, S. Gopukumar, C.H. Chen, et al. Effect of Mg doping on the local structure of LiMgyCo1-yO2 cathode material investigated by X-ray absorption spectroscopy. J Power Sources, 252 (2014), pp. 292-297.
[128]
W. Kong, D. Wong, K. An, J. Zhang, Z. Chen, C. Schulz, et al. Stabilizing the anionic redox in 4.6 V LiCoO2 cathode through adjusting oxygen magnetic moment. Adv Funct Mater, 32 (31) (2022), p. 2202679.
[129]
F.E. Er-Rami, M. Duffiet, S. Hinkle, J. Auvergniot, M. Blangero, P.E. Cabelguen, et al. Understanding the role of Al doping of LiCoO2 on the mechanisms upon cycling up to high voltages (≥ 4.6 V vs Li+/Li). Chem Mater, 34 (10) (2022), pp. 4384-4393.
[130]
Y.I. Jang, B. Huang, H. Wang, D.R. Sadoway, G. Ceder, Y.M. Chiang, et al. LiAlyCo1-yO2 (RM) intercalation cathode for rechargeable lithium batteries. J Electrochem Soc, 146 (3) (1999), pp. 862-868.
[131]
T.R. Tanim, Z. Yang, A.M. Colclasure, P.R. Chinnam, P. Gasper, Y. Lin, et al. Extended cycle life implications of fast charging for lithium-ion battery cathode. Energy Storage Mater, 41 (2021), pp. 656-666.
[132]
Z. Cui, Z. Wang, Y. Zhai, R. Gao, Z. Hu, X. Liu. Improving cycling stability and rate capability of high-voltage LiCoO2 through an integration of lattice doping and nanoscale coating. J Nanosci Nanotechnol, 20 (4) (2020), pp. 2473-2481.
[133]
Y. Qiao, K. Jiang, H. Deng, H. Zhou. A high-energy-density and long-life lithium-ion battery via reversible oxide-peroxide conversion. Nat Catal, 2 (11) (2019), pp. 1035-1044.
[134]
W.S. Yoon, K.B. Kim, M.G. Kim, M.K. Lee, H.J. Shin, J.M. Lee, et al. Oxygen contribution on Li-ion intercalation-deintercalation in LiCoO2 investigated by O K-edge and Co L-edge X-ray absorption spectroscopy. J Phys Chem B, 106 (10) (2002), pp. 2526-2532.
[135]
A.M. Kannan, L. Rabenberg, A. Manthiram. High capacity surface-modified LiCoO2 cathodes for lithium-ion batteries. Electrochem Solid-State Lett, 6 (1) (2003), pp. A16-A18.
[136]
E. Lee, K.A. Persson. Structural and chemical evolution of the layered Li-excess LixMnO3 as a function of Li content from first-principles calculations. Adv Energy Mater, 4 (15) (2014), p. 1400498.
[137]
D. Zhang, J. Wang, Y. Lin, Y. Si, C. Huang, J. Yang, et al. Present situation and future prospect of renewable energy in China. Renew Sustain Energy Rev, 76 (2017), pp. 865-871.
[138]
P. Vanaphuti, J. Chen, J. Cao, K. Bigham, B. Chen, L. Yang, et al. Enhanced electrochemical performance of the lithium-manganese-rich cathode for Li-ion batteries with Na and F codoping. ACS Appl Mater Interfaces, 11 (41) (2019), pp. 37842-37849.
[139]
Z. Si, B. Shi, J. Huang, Y. Yu, Y. Han, J. Zhang, et al. Titanium and fluorine synergetic modification improves the electrochemical performance of Li(Ni0.8Co0.1Mn0.1)O2. J Mater Chem A, 9 (14) (2021), pp. 9354-9363.
[140]
P. Yue, Z. Wang, H. Guo, X. Xiong, X. Li. A low temperature fluorine substitution on the electrochemical performance of layered LiNi0.8Co0.1Mn0.1O2-zFz cathode materials. Electrochim Acta, 92 (2013), pp. 1-8.
[141]
S.Q. Yang, P.B. Wang, H.X. Wei, L.B. Tang, X.H. Zhang, Z.J. He, et al. Li4V2Mn(PO4)4-stablized Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium ion batteries. Nano Energy, 63 (2019), p. 103889.
[142]
Z. Sun, L. Xu, C. Dong, H. Zhang, M. Zhang, Y. Ma, et al. A facile gaseous sulfur treatment strategy for Li-rich and Ni-rich cathode materials with high cycling and rate performance. Nano Energy, 63 (2019), p. 103887.
[143]
Q. Liu, X. Su, D. Lei, Y. Qin, J. Wen, F. Guo, et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat Energy, 3 (11) (2018), pp. 936-943.
[144]
S. Song, Y. Li, K. Yang, Z. Chen, J. Liu, R. Qi, et al. Interplay between multiple doping elements in high-voltage LiCoO2. J Mater Chem A, 9 (9) (2021), pp. 5702-5710.
[145]
J. Wan, J. Zhu, Y. Xiang, G. Zhong, X. Liu, Y. Li, et al. Revealing the correlation between structure evolution and electrochemical performance of high-voltage lithium cobalt oxide. J Energy Chem, 54 (2021), pp. 786-794.
[146]
Y.S. Hong, X. Huang, C. Wei, J. Wang, J.N. Zhang, H. Yan, et al. Hierarchical defect engineering for LiCoO2 through low-solubility trace element doping. Chem, 6 (10) (2020), pp. 2759-2769.
[147]
L. Wang, J. Ma, C. Wang, X. Yu, R. Liu, F. Jiang, et al. A novel bifunctional self-stabilized strategy enabling 4.6 V LiCoO2 with excellent long-term cyclability and high-rate capability. Adv Sci, 6 (12) (2019), p. 1900355.
[148]
X. Li, L. Zhou, H. Wang, D. Meng, G. Qian, Y. Wang, et al. Dopants modulate crystal growth in molten salts enabled by surface energy tuning. J Mater Chem A, 9 (35) (2021), pp. 19675-19680.
[149]
W. Kong, J. Zhang, D. Wong, W. Yang, J. Yang, C. Schulz, et al. Tailoring Co 3d and O 2p band centers to inhibit oxygen escape for stable 4.6 V LiCoO2 cathodes. Angew Chem, 60 (52) (2021), pp. 27102-27112.
[150]
W. Huang, Q. Zhao, M. Zhang, S. Xu, H. Xue, C. Zhu, et al. Surface design with cation and anion dual gradient stabilizes high-voltage LiCoO2. Adv Energy Mater, 12 (20) (2022), p. 2200813.
[151]
M. Yoon, Y. Dong, Y. Yoo, S. Myeong, J. Hwang, J. Kim, et al. Unveiling nickel chemistry in stabilizing high-voltage cobalt-rich cathodes for lithium-ion batteries. Adv Funct Mater, 30 (6) (2020), p. 1907903.
[152]
J.N. Zhang, Q.H. Li, Q. Li, X.Q. Yu, H. Li. Improved electrochemical performances of high voltage LiCoO2 with tungsten doping. Chin Phys B, 27 (8) (2018), p. 088202.
[153]
S.H. Kim, C.S. Kim. Improving the rate performance of LiCoO2 by Zr doping. J Electroceram, 23 (2) (2009), pp. 254-257.
[154]
A. Liu, J. Li, R. Shunmugasundaram, J.R. Dahn. Synthesis of Mg and Mn doped LiCoO2 and effects on high voltage cycling. J Electrochem Soc, 164 (7) (2017), pp. A1655-A1664.
[155]
J. Li, C. Lin, M. Weng, Y. Qiu, P. Chen, K. Yang, et al. Structural origin of the high-voltage instability of lithium cobalt oxide. Nat Nanotechnol, 16 (5) (2021), pp. 599-605.
[156]
T. Liu, L. Yu, J. Liu, J. Lu, X. Bi, A. Dai, et al. Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. Nat Energy, 6 (3) (2021), pp. 277-286.
[157]
J. Cho, J.G. Lee, B. Kim, B. Park. Effect of P2O5 and AlPO4 coating on LiCoO2 cathode material. Chem Mater, 15 (16) (2003), pp. 3190-3193.
[158]
Y.D. Huang, H.X. Wei, P.Y. Li, Y.H. Luo, Q. Wen, D.H. Le, et al. Enhancing structure and cycling stability of Ni-rich layered oxide cathodes at elevated temperatures via dual-function surface modification. J Energy Chem, 75 (2022), pp. 301-309.
[159]
Y. Shen, Y. Wu, D. Zhang, Y. Liang, D. Yin, L. Wang, et al. Stabilization of high-voltage layered oxide cathode by utilizing residual lithium to form NASICON-type nanoscale functional coating. Nano Res, 16 (4) (2023), pp. 5973-5982.
[160]
W. Li, E.M. Erickson, A. Manthiram. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat Energy, 5 (1) (2020), pp. 26-34.
[161]
B.G. Chae, S.Y. Park, J.H. Song, E. Lee, W.S. Jeon. Evolution and expansion of Li concentration gradient during charge-discharge cycling. Nat Commun, 12 (1) (2021), p. 3814.
[162]
Y. Bi, J. Tao, Y. Wu, L. Li, Y. Xu, E. Hu, et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science, 370 (6522) (2020), pp. 1313-1317.
[163]
K. Kang, G. Ceder. Factors that affect Li mobility in layered lithium transition metal oxides. Phys Rev B, 74 (9) (2006), Article 094105.
[164]
R. Wu, T. Cao, H. Liu, X. Cheng, X. Liu, Y. Zhang. Ultralong lifespan for high-voltage LiCoO2 enabled by in situ reconstruction of an atomic layer deposition coating layer. ACS Appl Mater Interfaces, 14 (22) (2022), pp. 25524-25533.
[165]
A. Zhou, Q. Liu, Y. Wang, W. Wang, X. Yao, W. Hu, et al. Al2O3 surface coating on LiCoO2 through a facile and scalable wet-chemical method towards high-energy cathode materials withstanding high cutoff voltages. J Mater Chem A, 5 (46) (2017), pp. 24361-24370.
[166]
S. Yasuhara, S. Yasui, T. Teranishi, K. Chajima, Y. Yoshikawa, Y. Majima, et al. Enhancement of ultrahigh rate chargeability by interfacial nanodot BaTiO3 treatment on LiCoO2 cathode thin film batteries. Nano Lett, 19 (3) (2019), pp. 1688-1694.
[167]
T. Cheng, Z. Ma, R. Qian, Y. Wang, Q. Cheng, Y. Lyu, et al. Achieving stable cycling of LiCoO2 at 4.6 V by multilayer surface modification. Adv Funct Mater, 31 (2) (2021), p. 2001974.
[168]
Y. Orikasa, D. Takamatsu, K. Yamamoto, Y. Koyama, S. Mori, T. Masese, et al. Origin of surface coating effect for MgO on LiCoO2 to improve the interfacial reaction between electrode and electrolyte. Adv Mater Interfaces, 1 (9) (2014), p. 1400195.
[169]
S. Oh, J.K. Lee, D. Byun, W.I. Cho, C.B. Won. Effect of Al2O3 coating on electrochemical performance of LiCoO2 as cathode materials for secondary lithium batteries. J Power Sources, 132 (1-2) (2004), pp. 249-255.
[170]
Z. Chen, J.R. Dahn. Effect of a ZrO2 coating on the structure and electrochemistry of LixCoO2 when cycled to 4.5 V. Electrochem Solid-State Lett, 5 (10) (2002), p. A213.
[171]
Q. Hao, H. Ma, Z. Ju, G. Li, X. Li, L. Xu, et al. Nano-CuO coated LiCoO2: synthesis, improved cycling stability and good performance at high rates. Electrochim Acta, 56 (25) (2011), pp. 9027-9031.
[172]
S. Kalluri, M. Yoon, M. Jo, S. Park, S. Myeong, J. Kim, et al. Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells. Adv Energy Mater, 7 (1) (2017), p. 1601507.
[173]
S. Qu, W. Wu, Y. Wu, Y. Zhuang, J. Lin, L. Wang, et al. Sputtering coating of lithium fluoride film on lithium cobalt oxide electrodes for reducing the polarization of lithium-ion batteries. Nanomaterials, 11 (12) (2021), p. 3393.
[174]
J. Qian, L. Liu, J. Yang, S. Li, X. Wang, H.L. Zhuang, et al. Electrochemical surface passivation of LiCoO2 particles at ultrahigh voltage and its applications in lithium-based batteries. Nat Commun, 9 (1) (2018), p. 4918.
[175]
P. Wang, Y. Meng, Y. Wang, L. Chen, Z. Zhang, W. Pu, et al. Oxygen framework reconstruction by LiAlH4 treatment enabling stable cycling of high-voltage LiCoO2. Energy Storage Mater, 44 (2022), pp. 487-496.
[176]
J. Xie, J. Zhao, Y. Liu, H. Wang, C. Liu, T. Wu, et al. Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries. Nano Res, 10 (11) (2017), pp. 3754-3764.
[177]
Y. Charles-Blin, K. Nemoto, N. Zettsu, K. Teshima. Effects of a solid electrolyte coating on the discharge kinetics of a LiCoO2 electrode: mechanism and potential applications. J Mater Chem A, 8 (40) (2020), pp. 20979-20986.
[178]
R. Gu, Z. Ma, T. Cheng, Y. Lyu, A. Nie, B. Guo. Improved electrochemical performances of LiCoO2 at elevated voltage and temperature with an in situ formed spinel coating layer. ACS Appl Mater Interfaces, 10 (37) (2018), pp. 31271-31279.
[179]
P. Pang, Z. Wang, Y. Deng, J. Nan, Z. Xing, H. Li. Delayed phase transition and improved cycling/thermal stability by spinel LiNi0.5Mn1.5O4 modification for LiCoO2 cathode at high voltages. ACS Appl Mater Interfaces, 12 (24) (2020), pp. 27339-27349.
[180]
X. Tan, D. Mao, T. Zhao, Y. Zhang, L. Song, Z. Fan, et al. Long-term highly stable high-voltage LiCoO2 synthesized via a solid sulfur-assisted one-pot approach. Small, 18 (26) (2022), p. 2202143.
[181]
X. Yang, C. Wang, P. Yan, T. Jiao, J. Hao, Y. Jiang, et al. Pushing lithium cobalt oxides to 4.7 V by lattice-matched interfacial engineering. Adv Energy Mater, 12 (23) (2022), p. 2200197.
[182]
X. Wang, Q. Wu, S. Li, Z. Tong, D. Wang, H.L. Zhuang, et al. Lithium-aluminum-phosphate coating enables stable 4.6 V cycling performance of LiCoO2 at room temperature and beyond. Energy Storage Mater, 37 (2021), pp. 67-76.
[183]
Z. Li, A. Li, H. Zhang, F. Ning, W. Li, A. Zangiabadi, et al. Multi-scale stabilization of high-voltage LiCoO2 enabled by nanoscale solid electrolyte coating. Energy Storage Mater, 29 (2020), pp. 71-77.
[184]
X. Zhang, B. Peng, L. Zhao, G. Wan, F. Wang, S. Zeng, et al. NASICON-structured LiZr2(PO4)3 surface modification improves ionic conductivity and structural stability of LiCoO2 for a stable 4.6 V cathode. ACS Appl Mater Interfaces, 14 (14) (2022), pp. 16204-16213.
[185]
Y. Wang, Q. Zhang, Z.C. Xue, L. Yang, J. Wang, F. Meng, et al. An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V high-voltage cycle performances. Adv Energy Mater, 10 (28) (2020), p. 2001413.
[186]
S. Sharifi-Asl, F.A. Soto, T. Foroozan, M. Asadi, Y. Yuan, R. Deivanayagam, et al. Anti-oxygen leaking LiCoO2. Adv Funct Mater, 29 (23) (2019), p. 1901110.
[187]
T. Cheng, Q. Cheng, Y. He, M. Ge, Z. Feng, P. Li, et al. A hybrid ionic and electronic conductive coating layer for enhanced electrochemical performance of 4.6 V LiCoO2. ACS Appl Mater Interfaces, 13 (36) (2021), pp. 42917-42926.
[188]
Y.K. Sun, C.S. Yoon, S.T. Myung, I. Belharouak, K. Amine. Role of AlF3 coating on LiCoO2 particles during cycling to cutoff voltage above 4.5 V. J Electrochem Soc, 156 (12) (2009), p. A1005.
[189]
Y.H. Luo, H.X. Wei, L.B. Tang, Y.D. Huang, Z.Y. Wang, Z.J. He, et al. Nickel-rich and cobalt-free layered oxide cathode materials for lithium ion batteries. Energy Storage Mater, 50 (2022), pp. 274-307.
[190]
W. Lu, J. Zhang, J. Xu, X. Wu, L. Chen. In situ visualized cathode electrolyte interphase on LiCoO2 in high voltage cycling. ACS Appl Mater Interfaces, 9 (22) (2017), pp. 19313-19318.
[191]
S. Mao, Z. Shen, W. Zhang, Q. Wu, Z. Wang, Y. Lu. Outside-in nanostructure fabricated on LiCoO2 surface for high-voltage lithium-ion batteries. Adv Sci, 9 (11) (2022), p. 2104841.
[192]
M. Lucero, T.M. Holstun, Y. Yao, R. Faase, M. Wang, A.T. N’Diaye, et al. Dual-shell silicate and alumina coating for long lasting and high capacity lithium ion batteries. J Energy Chem, 68 (2022), pp. 314-323.
[193]
M.D. Levi, G. Salitra, B. Markovsky, H. Teller, D. Aurbach, U. Heider, et al. Solid-state electrochemical kinetics of Li-ion intercalation into Li1-xCoO2: simultaneous application of electroanalytical techniques SSCV, PITT, and EIS. J Electrochem Soc, 146 (4) (1999), pp. 1279-1289.
[194]
H. Chen, C.P. Grey. Molten salt synthesis and high rate performance of the “desert-rose” form of LiCoO2. Adv Mater, 20 (11) (2008), pp. 2206-2210.
[195]
X. Xiao, X. Liu, L. Wang, H. Zhao, Z. Hu, X. He, et al. LiCoO2 nanoplates with exposed (001) planes and high rate capability for lithium-ion batteries. Nano Res, 5 (6) (2012), pp. 395-401.
[196]
X. Xiao, L. Yang, H. Zhao, Z. Hu, Y. Li. Facile synthesis of LiCoO2 nanowires with high electrochemical performance. Nano Res, 5 (1) (2012), pp. 27-32.
[197]
L. Xue, Q. Zhang, X. Zhu, L. Gu, J. Yue, Q. Xia, et al. 3D LiCoO2 nanosheets assembled nanorod arrays via confined dissolution-recrystallization for advanced aqueous lithium-ion batteries. Nano Energy, 56 (2019), pp. 463-472.
[198]
F. Zhang, J. Dong, D. Yi, J. Xia, Z. Lu, Y. Yang, et al. Archimedean polyhedron LiCoO2 for ultrafast rechargeable Li-ion batteries. Chem Eng J, 423 (2021), p. 130122.
[199]
Z. Xu, M.M. Rahman, L. Mu, Y. Liu, F. Lin. Chemomechanical behaviors of layered cathode materials in alkali metal ion batteries. J Mater Chem A, 6 (44) (2018), pp. 21859-21884.
[200]
X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu, J.Y. Huang. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano, 6 (2) (2012), pp. 1522-1531.
[201]
G. Li, Z. Zhang, Z. Huang, C. Yang, Z. Zuo, H. Zhou. Understanding the accumulated cycle capacity fade caused by the secondary particle fracture of LiNi1-x-yCoxMnyO2 cathode for lithium ion batteries. J Solid State Electrochem, 21 (3) (2017), pp. 673-682.
[202]
S. Xia, L. Mu, Z. Xu, J. Wang, C. Wei, L. Liu, et al. Chemomechanical interplay of layered cathode materials undergoing fast charging in lithium batteries. Nano Energy, 53 (2018), pp. 753-762.
[203]
J. Chen, H. Chen, S. Zhang, A. Dai, T. Li, Y. Mei, et al. Structure/interface coupling effect for high-voltage LiCoO2 cathode. Adv Mater, 34 (42) (2022), p. 2204845.
[204]
A. Fu, Z. Zhang, J. Lin, Y. Zou, C. Qin, C. Xu, et al. Highly stable operation of LiCoO2 at cut-off ≥ 4.6 V enabled by synergistic structural and interfacial manipulation. Energy Storage Mater, 46 (2022), pp. 406-416.
[205]
T. Tian, T.W. Zhang, Y.C. Yin, Y.H. Tan, Y.H. Song, L.L. Lu, et al. Blow-spinning enabled precise doping and coating for improving high-voltage lithium cobalt oxide cathode performance. Nano Lett, 20 (1) (2020), pp. 677-685.
[206]
H.T. Xu, H. Zhang, L. Liu, Y. Feng, Y. Wang. Fabricating hexagonal Al-doped LiCoO2 nanomeshes based on crystal-mismatch strategy for ultrafast lithium storage. ACS Appl Mater Interfaces, 7 (37) (2015), pp. 20979-20986.
[207]
L. Liu, C. Liu, L. Jiang, J. Li, Y. Ding, S. Wang, et al. Ultrafast non-volatile flash memory based on van der Waals heterostructures. Nat Nanotechnol, 16 (8) (2021), pp. 874-881.
[208]
A.M. Hussain, Y.L. Huang, K.J. Pan, I.A. Robinson, X. Wang, E.D. Wachsman. A redox-robust ceramic anode-supported low-temperature solid oxide fuel cell. ACS Appl Mater Interfaces, 12 (16) (2020), pp. 18526-18532.
[209]
Y. Qin, K. Xu, Q. Wang, M. Ge, T. Cheng, M. Liu, et al. In-situ constructing a rigid and stable dual-layer CEI film improving high-voltage 4.6 V LiCoO2 performances. Nano Energy, 96 (2022), p. 107082.
[210]
Y. Qin, Z. Ren, Q. Wang, Y. Li, J. Liu, Y. Liu, et al. Simplifying the electrolyte systems with the functional cosolvent. ACS Appl Mater Interfaces, 11 (31) (2019), pp. 27854-27861.
[211]
D. Sun, Q. Wang, J. Zhou, Y. Lyu, Y. Liu, B. Guo. Forming a stable CEI layer on LiNi0.5Mn1.5O4 cathode by the synergy effect of FEC and HDI. J Electrochem Soc, 165 (10) (2018), pp. A2032-A2036.
[212]
Y. Zhu, X. Luo, H. Zhi, X. Yang, L. Xing, Y. Liao, et al. Structural exfoliation of layered cathode under high voltage and its suppression by interface film derived from electrolyte additive. ACS Appl Mater Interfaces, 9 (13) (2017), pp. 12021-12034.
[213]
Z.X. Lu, K.W. Mu, Z.Y. Zhang, Q. Luo, Y.H. Yin, X.B. Liu, et al. A porous current collector cleaner enables thin cathode electrolyte interphase on LiCoO2 for stable high-voltage cycling. J Mater Chem A, 9 (47) (2021), pp. 26989-26998.
[214]
J. Ahn, H.G. Im, Y. Lee, D. Lee, H. Jang, Y. Oh, et al. A novel organosilicon-type binder for LiCoO2 cathode in Li-ion batteries. Energy Storage Mater, 49 (2022), pp. 58-66.
[215]
C. Zou, Y. Huang, L. Zhao, W. Ren, Z. Zhao, J. Liu, et al. Mn2+ ions capture and uniform composite electrodes with PEI aqueous binder for advanced LiMn2O4-based battery. ACS Appl Mater Interfaces, 14 (12) (2022), pp. 14226-14234.
[216]
D. Lv, J. Chai, P. Wang, L. Zhu, C. Liu, S. Nie, et al. Pure cellulose lithium-ion battery separator with tunable pore size and improved working stability by cellulose nanofibrils. Carbohydr Polym, 251 (2021), p. 116975.
[217]
H. Huang, Z. Li, S. Gu, J. Bian, Y. Li, J. Chen, et al. Dextran sulfate lithium as versatile binder to stabilize high-voltage LiCoO2 to 4.6 V. Adv Energy Mater, 11 (44) (2021), p. 2101864.
[218]
Y. Shi, L. Wen, S. Pei, M. Wu, F. Li. Choice for graphene as conductive additive for cathode of lithium-ion batteries. J Energy Chem, 30 (2019), pp. 19-26.
[219]
L. Yan, K. Wang, S. Luo, H. Wu, Y. Luo, Y. Yu, et al. Sandwich- structured cathodes with cross-stacked carbon nanotube films as conductive layers for high-performance lithium-ion batteries. J Mater Chem A, 5 (8) (2017), pp. 4047-4057.
[220]
R. He, G. Tian, S. Li, Z. Han, W. Zhong, S. Cheng, et al. Enhancing the reversibility of lithium cobalt oxide phase transition in thick electrode via low tortuosity design. Nano Lett, 22 (6) (2022), pp. 2429-2436.
[221]
F.L.E. Usseglio-Viretta, W. Mai, A.M. Colclasure, M. Doeff, E. Yi, K. Smith. Enabling fast charging of lithium-ion batteries through secondary-/dual-pore network: part I—analytical diffusion model. Electrochim Acta, 342 (2020), p. 136034.
[222]
X. Wu, S. Xia, Y. Huang, X. Hu, B. Yuan, S. Chen, et al. High-performance, low-cost, and dense-structure electrodes with high mass loading for lithium-ion batteries. Adv Funct Mater, 29 (34) (2019), p. 1903961.
[223]
C. Chen, Y. Zhang, Y. Li, Y. Kuang, J. Song, W. Luo, et al. Highly conductive, lightweight, low-tortuosity carbon frameworks as ultrathick 3D current collectors. Adv Energy Mater, 7 (17) (2017), p. 1700595.
[224]
X. Zhang, Z. Hui, S. King, L. Wang, Z. Ju, J. Wu, et al. Tunable porous electrode architectures for enhanced Li-ion storage kinetics in thick electrodes. Nano Lett, 21 (13) (2021), pp. 5896-5904.
[225]
S. Li, R. Xiong, Z. Han, R. He, S. Li, H. Zhou, et al. Unveiling low-tortuous effect on electrochemical performance toward ultrathick LiFePO4 electrode with 100 mg·cm-2 area loading. J Power Sources, 515 (2021), p. 230588.
[226]
M. Weiss, R. Ruess, J. Kasnatscheew, Y. Levartovsky, N.R. Levy, P. Minnmann, et al. Fast charging of lithium-ion batteries: a review of materials aspects. Adv Energy Mater, 11 (33) (2021), p. 2101126.
[227]
B.S. Vishnugopi, A. Verma, P.P. Mukherjee. Fast charging of lithium-ion batteries via electrode engineering. J Electrochem Soc, 167 (9) (2020), Article 090508.
[228]
X.G. Yang, C.Y. Wang. Understanding the trilemma of fast charging, energy density and cycle life of lithium-ion batteries. J Power Sources, 402 (2018), pp. 489-498.
[229]
M. Li, M. Feng, D. Luo, Z. Chen. Fast charging Li-ion batteries for a new era of electric vehicles. Cell Rep Phys Sci, 1 (10) (2020), p. 100212.
[230]
X. Zhao, R. Yi, L. Zheng, Y. Liu, Z. Li, L. Zeng, et al. graphite batteries by a passivated lithium-carbon composite. Small, 18 (9) (2022), p. 2106394.
[231]
L. Xue, S.V. Savilov, V.V. Lunin, H. Xia. Self-standing porous LiCoO2 nanosheet arrays as 3D cathodes for flexible Li-ion batteries. Adv Funct Mater, 28 (7) (2018), p. 1705836.
PDF(8227 KB)

Accesses

Citation

Detail

段落导航
相关文章

/