电动汽车电池再生担当城市太阳能储存新角色

陈瑾瑜, 张浩然, 赵鹏军, 陈智恒, 严晋跃

工程(英文) ›› 2023, Vol. 29 ›› Issue (10) : 45-49.

PDF(1184 KB)
PDF(1184 KB)
工程(英文) ›› 2023, Vol. 29 ›› Issue (10) : 45-49. DOI: 10.1016/j.eng.2023.09.002
观点述评

电动汽车电池再生担当城市太阳能储存新角色

作者信息 +

Repurposing EV Batteries for Storing Solar Energy

Author information +
History +

引用本文

导出引用
陈瑾瑜, 张浩然, 赵鹏军. 电动汽车电池再生担当城市太阳能储存新角色. Engineering. 2023, 29(10): 45-49 https://doi.org/10.1016/j.eng.2023.09.002

参考文献

[1]
Y.M. Wei, K. Chen, J.N. Kang, W. Chen, X.Y. Wang, X. Zhang. Policy and management of carbon peaking and carbon neutrality: a literature review. Engineering, 14 ( 2022), pp. 52-63
[2]
X. Wu, C. Li, L. Shao, J. Meng, L. Zhang, G. Chen. Is solar power renewable and carbon-neutral: evidence from a pilot solar tower plant in China under a systems view. Renew Sustain Energy Rev, 138 ( 2021), Article 110655
[3]
International Energy Agency. Solar PV [Internet]. Paris: International Energy Agency; [cited 2023 Sep 14]. Available from: https://www.iea.org/reports/solar-pv.
[4]
F. Schöniger, R. Thonig, G. Resch, J. Lilliestam. Making the sun shine at night: comparing the cost of dispatchable concentrating solar power and photovoltaics with storage. Energy Sources B Econ Plan Policy, 16 (1) ( 2021), pp. 55-74. DOI: 10.1080/15567249.2020.1843565
[5]
Enkhardt S. New global solar capacity additions hit 191 GW in 2022, says IRENA [Internet]. Berlin: PV Magazine; 2023 Mar 22 [cited 2023 Sep 14]. Available from: https://www.pv-magazine.com/2023/03/22/new-global-solar-capacity-additions-hit-191-gw-in-2022-says-irena/#:∼:text=IRENA%20says%20developers%20installed%20295,solar%20was%20installed%20last%20year.
[6]
International Energy Agency. Snapshot of global PV markets 2021 [Internet]. International Energy Agency, Paris ( 2021) May 31 [cited 2023 Sep 14]. Available from: https://reglobal.org/snapshot-of-global-pv-markets-2021/
[7]
International Energy Agency. Electricity market report 2023 [Internet]. International Energy Agency, Paris ( 2023). Feb [cited 2023 Sep 14]. Available from: https://www.iea.org/reports/electricity-market-report-2023
[8]
D. Kamath, R. Arsenault, H.C. Kim, A. Anctil. Economic and environmental feasibility of second-life lithium-ion batteries as fast-charging energy storage. Environ Sci Tech, 54 (11) ( 2020), pp. 6878-6887. DOI: 10.1021/acs.est.9b05883
[9]
N. Horesh, C. Quinn, H. Wang, R. Zane, M. Ferry, S. Tong, et al.. Driving to the future of energy storage: techno-economic analysis of a novel method to recondition second life electric vehicle batteries. Appl Energy, 295 ( 2021), Article 117007
[10]
US Department of Energy. Bipartisan infrastructure law: electric drive vehicle battery recycling and second life applications. US Department of Energy, Washington, DC ( 2022)
[11]
Lewis M. This solar + storage system is made up of 1,300 second-life EV batteries [Internet]. Fremont: Electrek; 2023 Feb 7 [cited 2023 Sep 14]. Available from: https://electrek.co/2023/02/07/this-solar-storage-system-is-made-up-of-1300-second-life-ev-batteries/.
[12]
Statista.Battery-electric vehicle sales worldwide from 2011 to 2022 [Internet]. New York City: Statista; 2023 Apr [cited 2023 Sep 14]. Available from: https://www.statista.com/statistics/1059214/global-battery-electric-vehicle-sales/.
[13]
Eddy J, Pfeiffer A,van de Staaij J. Recharging economies: the EV-battery manufacturing outlook for Europe [Internet]. Neftchiler Avenue: McKinsey & Company; 2019 Jun 13 [cited 2023 Sep 14]. Available from: https://www.mckinsey.com/industries/oil-and-gas/our-insights/recharging-economies-the-ev-battery-manufacturing-outlook-for-europe.
[14]
Engel H, Hertzke P, Siccardo G. Second-life EV batteries: the newest value pool in energy storage [Internet]. Neftchiler Avenue: McKinsey & Company; 2019 Apr 30 [cited 2023 Sep 14]. Available from: https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/second-life-ev-batteries-the-newest-value-pool-in-energy-storage.
[15]
E. Cready, J. Lippert, J. Pihl, I. Weinstock, P. Symons. Technical and economic feasibility of applying used EV batteries in stationary applications [Report]. Sandia National Lab (SNL-NM), Albuquerque ( 2003)
[16]
X. Hu, H. Yuan, C. Zou, Z. Li, L. Zhang. Co-estimation of state of charge and state of health for lithium-ion batteries based on fractional-order calculus. IEEE Trans Vehicular Technol, 67 (11) ( 2018), pp. 10319-10329. DOI: 10.1109/tvt.2018.2865664
[17]
T. Wang, Y. Jiang, L. Kang, Y. Liu. Determination of retirement points by using a multi-objective optimization to compromise the first and second life of electric vehicle batteries. J Clean Prod, 275 ( 2020), Article 123128
[18]
Baumann M, Rohr S, Lienkamp M. Cloud-connected battery management for decision making on second-life of electric vehicle batteries. In: Proceedings of the 2018 Thirteenth International Conference on Ecological Vehicles and Renewable Energies (EVER); 2018 Apr 10-12; Monte Carlo, Monaco. New York City: IEEE; 2018. p. 1-6.
[19]
X. Lai, Q. Chen, X. Tang, Y. Zhou, F. Gao, Y. Guo, et al.. Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: a lifespan perspective. eTransportation, 12 ( 2022), Article 100169
[20]
J. Zhu, I. Mathews, D. Ren, W. Li, D. Cogswell, B. Xing, et al.. End-of-life or second-life options for retired electric vehicle batteries. Cell Rep Phys Sci, 2 (8) ( 2021), Article 100537
PDF(1184 KB)

Accesses

Citation

Detail

段落导航
相关文章

/