智能网联汽车预期功能安全关键挑战与中国解决方案

李骏, 邵文博, 王红

工程(英文) ›› 2023, Vol. 31 ›› Issue (12) : 27-30.

PDF(1088 KB)
PDF(1088 KB)
工程(英文) ›› 2023, Vol. 31 ›› Issue (12) : 27-30. DOI: 10.1016/j.eng.2023.09.008
观点述评

智能网联汽车预期功能安全关键挑战与中国解决方案

作者信息 +

Key Challenges and Chinese Solutions for SOTIF in Intelligent Connected Vehicles

Author information +
History +

摘要

智能网联汽车(ICV)是全球汽车工业转型和发展的关键战略焦点,对提升驾驶安全、改善交通效率和实现低碳交通具有重要意义。然而,在ICV的发展中,由于系统复杂性提升,以及动态和挑战性的场景层出不穷,预期功能安全(SOTIF)问题已成为ICV研究和商业化面临的最关键障碍之一。本研究从全球ICV相关事故出发,强调了SOTIF问题的紧迫性,并总结了SOTIF发展面临的关键挑战,包括ICV的长尾场景问题、系统复杂性和多样性,以及人工智能算法的不透明性和不确定性。为解决这些挑战,提出了包含离线安全设计与开发、车载安全监测与防护以及主动持续学习与成长的覆盖ICV全生命周期的中国解决方案,为推动ICV的安全产业化提供重要指导建议。

关键词

智能网联汽车 / 预期功能安全(SOTIF) / 离线开发 / 车载防护 / 持续学习 /

引用本文

导出引用
李骏, 邵文博, 王红. 智能网联汽车预期功能安全关键挑战与中国解决方案. Engineering. 2023, 31(12): 27-30 https://doi.org/10.1016/j.eng.2023.09.008

参考文献

[1]
X. Kuang, F. Zhao, H. Hao, Z. Liu. Intelligent connected vehicles: the industrial practices and impacts on automotive value-chains in China. Asia Pac Bus Rev, 24 (1) ( 2018), pp. 1-21
CrossRef ADS Google scholar
[2]
National Transportation Safety Board. Highway accident report:collision between vehicle controlled by developmental automated driving system and pedestrian, Tempe, Arizona, March 18, 2018 [Internet]. Washington, DC: The National Academies of Sciences, Engineering, and Medicine; 2019 Nov 19 [ cited 2022 Dec 20]. Available from: https://trid.trb.org/view/1751168.
[3]
ca. gov [Internet]. Sacramento: The California Department of Motor Vehicles; [cited 2022 Dec 29]. Available from: https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/testing-autonomous-vehicles-with-a-driver/.
[4]
ISO 21448:Road vehicles—safety of the intended functionality. International standard. Geneva: The International Organization for Standardization; 2022.
[5]
W. Shao, J. Li, Y. Zhang, H. Wang. Key technologies to ensure the safety of the intended functionality for intelligent vehicles. Automot Eng, 44 (9) ( 2022), pp. 1289-1304(Chinese).
[6]
Ma Z, Yang Y, Wang G, Xu X, Shen H, Zhang M. Rethinking open-world object detection in autonomous driving scenarios. In: Proceedings of the 30th ACM International Conference on Multimedia; 2022 Oct 10-14; Lisboa, Portugal. New York City: Association for Computing Machinery; 2022. p. 1279-88.
[7]
N. Kalra, S.M. Paddock. Driving to safety: how many miles of driving would it take to demonstrate autonomous vehicle reliability?. Transp Res Part A, 94 ( 2016), pp. 182-193
[8]
D. Li, H. Gao. A hardware platform framework for an intelligent vehicle based on a driving brain. Engineering, 4 (4) ( 2018), pp. 464-470
[9]
J. Wang, H. Huang, K. Li, J. Li. Towards the unified principles for level 5 autonomous vehicles. Engineering, 7 (9) ( 2021), pp. 1313-1325
[10]
Reschka A, Böhmer JR, Nothdurft T, Hecker P, Lichte B, Maurer M. A surveillance and safety system based on performance criteria and functional degradation for an autonomous vehicle. Sep 16-19; Anchorage AK, USA.Proceedings of 2012 15th International IEEE Conference on Intelligent Transportation Systems; 2012 Piscataway: IEEE; 2012. p. 237-42.
[11]
Top 30 self driving technology and car companies [Internet]. GreyB; 2017 Sep 6 [ cited 2023 Aug 30]. Available from: https://www.greyb.com/blog/autonomous-vehicle-companies/.
[12]
Hu Y, Yang J, Chen L, Li K, Sima C, Zhu X, et al. Planning-oriented autonomous driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2023 Jun 18-22; Vancouver BC, Canada. Piscataway: IEEE; 2023. p. 17853-62.
[13]
D. Omeiza, H. Webb, M. Jirotka, L. Kunze. Explanations in autonomous driving: a survey. IEEE Trans Intell Transp Syst, 23 (8) ( 2022), pp. 10142-10162 DOI: 10.1109/tits.2021.3122865
[14]
M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu, M. Ghavamzadeh, et al.. A review of uncertainty quantification in deep learning: techniques, applications and challenges. Inf Fusion, 76 ( 2021), pp. 243-297
PDF(1088 KB)

Accesses

Citation

Detail

段落导航
相关文章

/