[1] |
C. Cywes-Bentley, D. Skurnik, T. Zaidi, D. Roux, R.B. Deoliveira, W.S. Garrett, et al. Antibody to a conserved antigenic target is protective against diverse prokaryotic and eukaryotic pathogens. Proc Natl Acad Sci USA, 110 (24) (2013), pp. E2209-E2218
|
[2] |
A.T. Kocer, B. Inan, S.K. Usul, D. Özçimen, M.T. Yilmaz, I. Işıldak. EPSs from microalgae: production, characterization, optimization and techno-economic assessment. Braz J Microbiol, 52 (4) (2021), pp. 1779-1790
|
[3] |
A.K. Abdalla, M.M. Ayyash, A.N. Olaimat, T.M. Osaili, A.A. Al-Nabulsi, N.P. Shah, et al. EPSs as antimicrobial agents: mechanism and spectrum of activity. Front Microbiol, 12 (2021), Article 664395
|
[4] |
L. Tounsi, F. Hentati, H.B. Hlima, M. Barkallah, S. Smaoui, I. Fendri, et al. Microalgae as feedstock for bioactive polysaccharides. Int J Biol Macromol, 221 (2022), pp. 1238-1250
|
[5] |
I. Jawad, H.B. Tawseen, M. Irfan, W. Ahmad, M. Hassan, F. Sattar, et al. Dietary supplementation of microbial dextran and inulin exerts hypocholesterolemic effects and modulates gut microbiota in BALB/c mice models. Int J Mol Sci, 24 (6) (2023), p. 5314
|
[6] |
M.M. Nadzir, R.W. Nurhayati, F.N. Idris, M.H. Nguyen. Biomedical applications of bacterial EPSs: a review. Polymers, 13 (4) (2021), p. 530
|
[7] |
G.B. Whitfield, L.S. Marmont, P.L. Howell. Enzymatic modifications of EPSs enhance bacterial persistence. Front Microbiol, 6 (2015), p. 471
|
[8] |
D. Skurnik, C. Cywes-Bentley, G.B. Pier. The exceptionally broad-based potential of active and passive vaccination targeting the conserved microbial surface polysaccharide PNAG. Expert Rev Vaccines, 15 (8) (2016), pp. 1041-1053
|
[9] |
P. Yoong, C. Cywes-Bentley, G.B. Pier. Poly-N-acetylglucosamine expression by wild-type Yersinia pestis is maximal at mammalian, not flea, temperatures. mBio, 3 (4) (2012), pp. e00217-12
|
[10] |
D. Skurnik, M.R. Jr, Davis Jr, D. Benedetti, K.L. Moravec, C. Cywes-Bentley, D. Roux, et al. Targeting pan-resistant bacteria with antibodies to a broadly conserved surface polysaccharide expressed during infection. J Infect Dis, 205 (11) (2012), pp. 1709-1718
|
[11] |
C. Cywes-Bentley, J.N. Rocha, A.I. Bordin, M. Vinacur, S. Rehman, T.S. Zaidi, et al. Antibody to poly-N-acetyl glucosamine provides protection against intracellular pathogens: mechanism of action and validation in horse foals challenged with Rhodococcus equi. PLoS Pathog, 14 (7) (2018), Article e1007160
|
[12] |
M. Shanmugam, A.O. Oyeniyi, C. Parthiban, S.K. Gujjarlapudi, G.B. Pier, N. Ramasubbu. Role of de-N-acetylase PgaB from Aggregatibacter actinomycetemcomitans in exopolysaccharide export in biofilm mode of growth. Mol Oral Microbiol, 32 (6) (2017), pp. 500-510
|
[13] |
N.S. Taus, C. Cywes-Bentley, W.C. Johnson, G.B. Pier, L.M. Fry, M.R. Mousel, et al. Immunization against a conserved surface polysaccharide stimulates bovine antibodies with opsonic killing activity but does not protect against Babesia bovis challenge. Pathogens, 10 (12) (2021), p. 1598
|
[14] |
Y. Ramos, J. Rocha, A.L. Hael, J. van Gestel, H. Vlamakis, C. Cywes-Bentley, et al. PolyGlcNAc-containing exopolymers enable surface penetration by non-motile Enterococcus faecalis. PLoS Pathog, 15 (2) (2019), Article e1007571
|
[15] |
D. Van Dissel, J. Willemse, B. Zacchetti, D. Claessen, G.B. Pier, G.P. van Wezel. Production of poly-β-1,6-N-acetylglucosamine by MatAB is required for hyphal aggregation and hydrophilic surface adhesion by Streptomyces. Microb Cell, 5 (6) (2018), pp. 269-279
|
[16] |
T.C. Stevenson, C. Cywes-Bentley, T.D. Moeller, K.B. Weyant, D. Putnam, Y.F. Chang, et al. Immunization with outer membrane vesicles displaying conserved surface polysaccharide antigen elicits broadly antimicrobial antibodies. Proc Natl Acad Sci USA, 115 (14) (2018), pp. E3106-E3115
|
[17] |
G. Zhao, T.S. Zaidi, C. Bozkurt-Guzel, T.H. Zaidi, J.A. Lederer, G.P. Priebe, et al. Efficacy of antibody to PNAG against keratitis caused by fungal pathogens. Invest Ophthalmol Visual Sci, 57 (15) (2016), pp. 6797-6804
|
[18] |
D. Roux, C. Cywes-Bentley, Y.F. Zhang, S. Pons, M. Konkol, D.B. Kearns, et al. Identification of poly-N-acetylglucosamine as a major polysaccharide component of the Bacillus subtilis biofilm matrix. J Biol Chem, 290 (31) (2015), pp. 19261-19272
|
[19] |
D.H. Kwan, S.G. Withers. Periplasmic de-acylase helps bacteria don their biofilm coat. Proc Natl Acad Sci USA, 111 (30) (2014), pp. 10904-10905
|
[20] |
D.J. Little, G. Li, C. Ing, B.R. DiFrancesco, N.C. Bamford, H. Robinson, et al. Modification and periplasmic translocation of the biofilm exopolysaccharide poly-β-1,6-N-acetyl-D-glucosamine. Proc Natl Acad Sci USA, 111 (30) (2014), pp. 11013-11018
|
[21] |
S. Steiner, C. Lori, A. Boehm, U. Jenal. Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein-protein interaction. EMBO J, 32 (3) (2013), pp. 354-368
|
[22] |
D.J. Little, R. Pfoh, F. Le Mauff, N.C. Bamford, C. Notte, P. Baker, et al. PgaB orthologues contain a glycoside hydrolase domain that cleaves deacetylated poly-β(1,6)-N-acetylglucosamine and can disrupt bacterial biofilms. PLoS Pathog, 14 (4) (2018), Article e1006998
|
[23] |
E. Balducci, F. Papi, E. Capialbi, L. Del Bino. Polysaccharides’ structures and functions in biofilm architecture of antimicrobial-resistant (AMR) pathogens. Int J Mol Sci, 24 (4) (2023), p. 4030
|
[24] |
I.R. De los Mozos, M. Vergara-Irigaray, V. Segura, M. Villanueva, N. Bitarte, M. Saramago, et al. Base pairing interaction between 5′- and 3′-UTRs controls icaR mRNA translation in Staphylococcus aureus. PLoS Genet, 9 (12) (2013), Article e1004001
|
[25] |
M. Echeverz, B. Garcia, A. Sabalza, J. Valle, T. Gabaldon, C. Solano, et al. Lack of the PGA exopolysaccharide in Salmonella as an adaptive trait for survival in the host. PLoS Genet, 13 (5) (2017), Article e1006816
|
[26] |
H.T.T. Nguyen, T.H. Nguyen, M. Otto. The staphylococcal exopolysaccharide PIA—biosynthesis and role in biofilm formation, colonization, and infection. Comput Struct Biotechnol J, 18 (2020), pp. 3324-3334
|
[27] |
A.R. Fullen, J.L. Gutierrez-Ferman, K.S. Yount, C.F. Love, H.G. Choi, M.A. Vargas, et al. BPS polysaccharide of Bordetella pertussis resists antimicrobial peptides by functioning as a dual surface shield and decoy and converts Escherichia coli into a respiratory pathogen. PLoS Pathog, 18 (8) (2022), Article e1010764
|
[28] |
C.R. Arciola, L. Baldassarri, L. Montanaro. In catheter infections by Staphylococcus epidermidis the intercellular adhesion (ica) locus is a molecular marker of the virulent slime-producing strains. J Biomed Mater Res, 59 (3) (2002), pp. 557-562
|
[29] |
T. Maira-Litrán, A. Kropec, D.A. Goldmann, G.B. Pier.Comparative opsonic and protective activities of Staphylococcus aureus conjugate vaccines containing native or deacetylated staphylococcal poly-N-acetyl-β-(1-6) -glucosamine. Infect Immun, 73 (10) (2005), pp. 6752-6762
|
[30] |
S. Pons, E. Frapy, Y. Sereme, C. Gaultier, F. Lebreton, A. Kropec, et al. A high-throughput sequencing approach identifies immunotherapeutic targets for bacterial meningitis in neonates. EBioMedicine, 88 (2023), Article 104439
|
[31] |
C. Pozzi, K. Wilk, J.C. Lee, M. Gening, N. Nifantiev, G.B. Pier. Opsonic and protective properties of antibodies raised to conjugate vaccines targeting six Staphylococcus aureus antigens. PLoS One, 7 (10) (2012), Article e46648
|
[32] |
D. Skurnik, M. Merighi, M. Grout, M. Gadjeva, T. Maira-Litran, M. Ericsson, et al. Animal and human antibodies to distinct Staphylococcus aureus antigens mutually neutralize opsonic killing and protection in mice. J Clin Invest, 120 (9) (2010), pp. 3220-3233
|
[33] |
M.L. Gening, T. Maira-Litrán, A. Kropec, D. Skurnik, M. Grout, Y.E. Tsvetkov, et al. Synthetic β-(1→6)-linked N-acetylated and nonacetylated oligoglucosamines used to produce conjugate vaccines for bacterial pathogens. Infect Immun, 78 (2) (2010), pp. 764-772
|
[34] |
T. Zaidi, T. Zaidi, P. Yoong, G.B. Pier. Staphylococcus aureus corneal infections: effect of the Panton-Valentine leukocidin (PVL) and antibody to PVL on virulence and pathology. Invest Ophthalmol Visual Sci, 54 (7) (2013), pp. 4430-4438
|
[35] |
T.S. Zaidi, T. Zaidi, G.B. Pier. Antibodies to conserved surface polysaccharides protect mice against bacterial conjunctivitis. Invest Ophthalmol Visual Sci, 59 (6) (2018), pp. 2512-2519
|
[36] |
T. Maira-Litrán, L.V. Bentancor, C. Bozkurt-Guzel, J.M. O’Malley, C. Cywes-Bentley, G.B. Pier. Synthesis and evaluation of a conjugate vaccine composed of Staphylococcus aureus poly-N-acetyl-glucosamine and clumping factor A.PLoS One, 7 (9) (2012), p. e43813
|
[37] |
N.H. Søe, N.V. Jensen, A.L. Jensen, J. Koch, S.S. Poulsen, G.B. Pier, et al. Active and passive immunization against Staphylococcus aureus periprosthetic osteomyelitis in rats. In Vivo, 31 (1) (2017), pp. 45-50
|
[38] |
S.K. Kahn, C. Cywes-Bentley, G.P. Blodgett, N.M. Canaday, C.E. Turner-Garcia, M. Vinacur, et al. Antibody activities in hyperimmune plasma against the Rhodococcus equi virulence-associated protein A or poly-N-acetyl glucosamine are associated with protection of foals against rhodococcal pneumonia. PLoS One, 16 (8) (2021), Article e0250133
|
[39] |
S.K. Kahn, C. Cywes-Bentley, G.P. Blodgett, N.M. Canaday, C.E. Turner-Garcia, P. Flores-Ahlschwede, et al. Randomized, controlled trial comparing Rhodococcus equi and poly-N-acetyl glucosamine hyperimmune plasma to prevent R equi pneumonia in foals. J Vet Intern Med, 35 (6) (2021), pp. 2912-2919
|
[40] |
N.D. Cohen, S.K. Kahn, C. Cywes-Bentley, S. Ramirez-Cortez, A.E. Schuckert, M. Vinacur, et al. Serum antibody activity against poly-N-acetyl glucosamine (PNAG), but not PNAG vaccination status, is associated with protecting newborn foals against intrabronchial infection with Rhodococcus equi. Microbiol Spectrum, 9 (1) (2021), Article e00638-21
|
[41] |
J.N. Rocha, L.J. Dangott, W. Mwangi, R.C. Alaniz, A.I. Bordin, C. Cywes-Bentley, et al. PNAG-specific equine IgG1 mediates significantly greater opsonization and killing of Prescottella equi (formerly Rhodococcus equi) than does IgG4/7. Vaccine, 37 (9) (2019), pp. 1142-1150
|
[42] |
D. Skurnik, D. Roux, S. Pons, T. Guillard, X. Lu, C. Cywes-Bentley, et al.Extended-spectrum antibodies protective against carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother, 71 (4) (2016), pp. 927-935
|
[43] |
N. Cerca, T. Maira-Litrán, K.K. Jefferson, M. Grout, D.A. Goldmann, G.B. Pier. Protection against Escherichia coli infection by antibody to the Staphylococcus aureus poly-N-acetylglucosamine surface polysaccharide. Proc Natl Acad Sci USA, 104 (18) (2007), pp. 7528-7533
|
[44] |
M. Mellata, N.M. Mitchell, F. Schödel, R. Curtiss 3rd, G.B. Pier.Novel vaccine antigen combinations elicit protective immune responses against Escherichia coli sepsis. Vaccine, 34 (5) (2016), pp. 656-662
|
[45] |
Lu X, Skurnik D, Pozzi C, Roux D, Cywes-Bentley C, Ritchie JM, et al. A poly-N-acetylglucosamine-Shiga toxin broad-spectrum conjugate vaccine for Shiga toxin-producing Escherichia coli. mBio 2014: 5(2):e00974-14.
|
[46] |
L.V. Bentancor, J.M. O’Malley, C. Bozkurt-Guzel, G.B. Pier, T. Maira-Litrán. Poly-N-acetyl-β-(1-6)-glucosamine is a target for protective immunity against Acinetobacter baumannii infections. Infect Immun, 80 (2) (2012), pp. 651-666
|
[47] |
J. Hülsdünker, O.S. Thomas, E. Haring, S. Unger, N.G. Núñez, S. Tugues, et al. Immunization against poly-N-acetylglucosamine reduces neutrophil activation and GVHD while sparing microbial diversity. Proc Natl Acad Sci USA, 116 (41) (2019), pp. 20700-20706
|
[48] |
A. Kulp, M.J. Kuehn. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol, 64 (2010), pp. 163-184
|
[49] |
A.R. Gorringe, R. Pajón. Bexsero: a multicomponent vaccine for prevention of meningococcal disease. Hum Vaccines Immunother, 8 (2) (2012), pp. 174-183
|
[50] |
alopexx.com [Internet]. Cambridge: Alopexx incorporation; [cited 2023 Oct 10]. Available from: https://www.alopexx.com/pipeline/vaccine-av0328.
|
[51] |
ClinicalTrials.gov [Internet]. Bethesda: National Library of Medicine; [cited 2023 Oct 10]. Available from: https://clinicaltrials.gov/study/NCT02853617.
|
[52] |
C. Soliman, A.K. Walduck, E. Yuriev, J.S. Richards, C. Cywes-Bentley, G.B. Pier, et al. Structural basis for antibody targeting of the broadly expressed microbial polysaccharide poly-N-acetylglucosamine. J Biol Chem, 293 (14) (2018), pp. 5079-5089
|