[1] |
P.J. Crutzen. Geology of mankind. Nature, 415 (6867) (2002), p. 23
|
[2] |
J. Rockström, W. Steffen, K. Noone, Å. Persson, F.S. Chapin III, E.F. Lambin, et al. A safe operating space for humanity. Nature, 461 (7263) (2009), pp. 472-475
|
[3] |
W. Steffen, K. Richardson, J. Rockstrom, S.E. Cornell, I. Fetzer, E.M. Bennett, et al. Planetary boundaries: guiding human development on a changing planet. Science, 347 (6223) (2015), p. 1259855
|
[4] |
X.T. Ju, G.X. Xing, X.P. Chen, S.L. Zhang, L.J. Zhang, X.J. Liu, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci USA, 106 (9) (2009), pp. 3041-3046
|
[5] |
T.M. Bowles, S.S. Atallah, E.E. Campbell, A.C.M. Gaudin, W.R. Wieder, A.S. Grandy. Addressing agricultural nitrogen losses in a changing climate. Nat Sustain, 1 (8) (2018), pp. 399-408
|
[6] |
A.J. Burgin, S.K. Hamilton. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front Ecol Environ, 5 (2) (2007), pp. 89-96
|
[7] |
M.M.M. Kuypers, A.O. Sliekers, G. Lavik, M. Schmid, B.B. Jørgensen, J.G. Kuenen, et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature, 422 (6932) (2003), pp. 608-611
|
[8] |
T. Dalsgaard, D.E. Canfield, J. Petersen, B. Thamdrup, J. Acuña-González. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce. Costa Rica Nature, 422 (6932) (2003), pp. 606-608
|
[9] |
B. Kartal, W.J. Maalcke, N.M. de Almeida, I. Cirpus, J. Gloerich, W. Geerts, et al. Molecular mechanism of anaerobic ammonium oxidation. Nature, 479 (7371) (2011), pp. 127-130
|
[10] |
G.B. Zhu, S.Y. Wang, Y. Wang, C. Wang, N. Risgaard-Petersen, M.S.M. Jetten, et al. Anaerobic ammonia oxidation in a fertilized paddy soil. ISME J, 5 (12) (2011), pp. 1905-1912
|
[11] |
G.B. Zhu, S.Y. Wang, W.D. Wang, Y. Wang, L. Zhou, B. Jiang, et al. Hotspots of anaerobic ammonia oxidation at land/freshwater interfaces. Nat Geosci, 6 (2) (2013), pp. 103-107
|
[12] |
M. Jetten, I. Cirpus, B. Kartal, L. van Niftrik, K.T. van de Pas-Schoonen, O. Sliekers, et al. 1994-2004: 10 years of research on the anaerobic oxidation of ammonium. Biochem Soc Trans, 33 (1) (2005), pp. 119-123
|
[13] |
B. Kartal, L. van Niftrik, J.T. Keltjens, H.J.M. Op den Camp, M.S.M. Jetten. Anammox—growth physiology, cell biology, and metabolism. Adv Microb Physiol, 60 (2012), pp. 211-262
|
[14] |
M.M.M. Kuypers, G. Lavik, D. Woebken, M. Schmid, B.M. Fuchs, R. Amann, et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc Natl Acad Sci USA, 102 (18) (2005), pp. 6478-6483
|
[15] |
T. Dalsgaard, B. Thamdrup, D.E. Canfield. Anaerobic ammonium oxidation (anammox) in the marine environment. Res Microbiol, 156 (4) (2005), pp. 457-464
|
[16] |
A.H. Devol. Denitrification, anammox, and N2 production in marine sediments. Annu Rev Mar Sci, 7 (1) (2015), pp. 403-423
|
[17] |
G.B. Zhu, S.Y. Wang, L.L. Zhou, Y. Wang, S. Zhao, C. Xia, et al. Ubiquitous anaerobic ammonium oxidation in inland waters of China: an overlooked nitrous oxide mitigation process. Sci Rep, 5 (1) (2015), p. 17306
|
[18] |
K. Lansdown, B.A. McKew, C. Whitby, C.M. Heppell, A.J. Dumbrell, A. Binley, et al. Importance and controls of anaerobic ammonium oxidation influenced by riverbed geology. Nat Geosci, 9 (5) (2016), pp. 357-360
|
[19] |
B. Kartal, J.G. Kuenen, M. van Loosdrecht. Sewage treatment with anammox. Science, 328 (5979) (2010), pp. 702-703
|
[20] |
S. Lackner, E.M. Gilbert, S.E. Vlaeminck, A. Joss, H. Horn, M.C.M. van Loosdrecht. Full-scale partial nitritation/anammox experiences—an application survey. Water Res, 55 (2014), pp. 292-303
|
[21] |
D.R. Speth, M.H. In ’t Zandt, S. Guerrero-Cruz, B.E. Dutilh, M.S.M. Jetten. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system. Nat Commun, 7 (2016), p. 11172
|
[22] |
L. Zhang, S. Zhang, Y. Peng, X. Han, Y. Gan. Nitrogen removal performance and microbial distribution in pilot- and full-scale integrated fixed-biofilm activated sludge reactors based on nitritation-anammox process. Bioresour Technol, 196 (2015), pp. 448-453
|
[23] |
W.R.L. Van der Star, W.R. Abma, D. Blommers, J.W. Mulder, T. Tokutomi, M. Strous, et al. Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Res, 41 (18) (2007), pp. 4149-4163
|
[24] |
T. Schaubroeck, H. De Clippeleir, N. Weissenbacher, J. Dewulf, P. Boeckx, S.E. Vlaeminck, et al. Environmental sustainability of an energy self-sufficient sewage treatment plant: improvements through DEMON and co-digestion. Water Res, 74 (2015), pp. 166-179
|
[25] |
J. Thorslund, J. Jarsj, F. Jaramillo, J.W. Jawitz, S. Manzoni, N.B. Basu, et al. Wetlands as large-scale nature-based solutions: status and challenges for research, engineering and management. Ecol Eng, 108 (2017), pp. 489-497
|
[26] |
R.J. Naiman, H. Décamps. The ecology of interfaces: riparian zones. Annu Rev Ecol Syst, 28 (1) (1997), pp. 621-658
|
[27] |
L.A. Bristow, T. Dalsgaard, L. Tiano, D.B. Mills, A.D. Bertagnolli, J.J. Wright, et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc Natl Acad Sci USA, 113 (38) (2016), pp. 10601-10606
|
[28] |
B. Kraft, N. Jehmlich, M. Larsen, L.A. Bristow, M. Könneke, B. Thamdrup, et al. Oxygen and nitrogen production by an ammonia-oxidizing archaeon. Science, 375 (6576) (2022), pp. 97-100
|
[29] |
M.M. Jensen, P. Lam, N.P. Revsbech, B. Nagel, B. Gaye, M.S.M. Jetten, et al. Intensive nitrogen loss over the Omani Shelf due to anammox coupled with dissimilatory nitrite reduction to ammonium. ISME J, 5 (10) (2011), pp. 1660-1670
|
[30] |
T. Kalvelage, G. Lavik, P. Lam, S. Contreras, L. Arteaga, C.R. Löscher, et al. Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone. Nat Geosci, 6 (3) (2013), pp. 228-234
|
[31] |
P. Lam, G. Lavik, M.M. Jensen, J. van de Vossenberg, M. Schmid, D. Woebken, et al. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc Natl Acad Sci USA, 106 (12) (2009), pp. 4752-4757
|
[32] |
C.M. Callbeck, B. Ehrenfels, K.B.L. Baumann, B. Wehrli, C.J. Schubert. Anoxic chlorophyll maximum enhances local organic matter remineralization and nitrogen loss in Lake Tanganyika. Nat Commun, 12 (1) (2021), p. 830
|
[33] |
A. Paulmier, D. Ruiz-Pino. Oxygen minimum zones (OMZs) in the modern ocean. Prog Oceanogr, 80 (3-4) (2009), pp. 113-128
|
[34] |
D.J. Greenwood. The effect of oxygen concentration on the decomposition of organic materials in soil. Plant Soil, 14 (4) (1961), pp. 360-376
|
[35] |
S.A. Nie, H. Li, X.R. Yang, Z. Zhang, B. Weng, F. Huang, et al. Nitrogen loss by anaerobic oxidation of ammonium in rice rhizosphere. ISME J, 9 (9) (2015), pp. 2059-2067
|
[36] |
G.B. Zhu, S.Y. Wang, Y.X. Li, L. Zhuang, S. Zhao, C. Wang, et al. Microbial pathways for nitrogen loss in an upland soil. Environ Microbiol, 20 (5) (2018), pp. 1723-1738
|
[37] |
A. Brune, P. Frenzel, H. Cypionka. Life at the oxic-anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev, 24 (5) (2000), pp. 691-710
|
[38] |
A.N. Bezbaruah, T.C. Zhang. Ph, redox, and oxygen microprofiles in rhizosphere of bulrush (Scirpus validus) in a constructed wetland treating municipal wastewater. Biotechnol Bioeng, 88 (1) (2004), pp. 60-70
|
[39] |
Y.L. Li, X.X. Wang. Root-induced changes in radial oxygen loss, rhizosphere oxygen profile, and nitrification of two rice cultivars in Chinese red soil regions. Plant Soil, 365 (1-2) (2013), pp. 115-126
|
[40] |
N. Lenzewski, P. Mueller, R.J. Meier, G. Liebsch, K. Jensen, K. Koop-Jakobsen. Dynamics of oxygen and carbon dioxide in rhizospheres of Lobelia dortmanna—a planar optode study of belowground gas exchange between plants and sediment. New Phytol, 218 (1) (2018), pp. 131-141
|
[41] |
M.E. McClain, E.W. Boyer, C.L. Dent, S.E. Gergel, N.B. Grimm, P.M. Groffman, et al. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems, 6 (4) (2003), pp. 301-312
|
[42] |
W.D. Wang, D.L. Wang, C.Q. Yin. A field study on the hydrochemistry of land/inland water ecotones with reed domination. Acta Hydrochim Hydrobiol, 30 (2-3) (2002), pp. 117-127
|
[43] |
M.M. Hefting, R. Bobbink, M.P. Janssens. Spatial variation in denitrification and N2O emission in relation to nitrate removal efficiency in a N-stressed riparian buffer zone. Ecosystems, 9 (4) (2006), pp. 550-563
|
[44] |
Y. Wang, G.B. Zhu, L. Ye, X. Feng, H.J.M. Op den Camp, C. Yin. Spatial distribution of archaeal and bacterial ammonia oxidizers in the littoral buffer zone of a nitrogen-rich lake. J Environ Sci, 24 (5) (2012), pp. 790-799
|
[45] |
W. Aeschbach-Hertig, T. Gleeson. Regional strategies for the accelerating global problem of groundwater depletion. Nat Geosci, 5 (12) (2012), pp. 853-861
|
[46] |
R.G. Taylor, B. Scanlon, P. Döll, M. Rodell, R. van Beek, Y. Wada, et al. Ground water and climate change. Nat Clim Chang, 3 (4) (2013), pp. 322-329
|
[47] |
L. Zhang, Y. Narita, L. Gao, M. Ali, M. Oshiki, S. Okabe. Maximum specific growth rate of anammox bacteria revisited. Water Res, 116 (2017), pp. 296-303
|
[48] |
M. Strous, J.G. Kuenen, M.S.M. Jetten. Key physiology of anaerobic ammonium oxidation. Appl Environ Microbiol, 65 (7) (1999), pp. 3248-3250
|
[49] |
D.R. Lovley, F.H. Chapelle, J.C. Woodward. Use of dissolved H2 concentrations to determine distribution of microbially catalyzed redox reactions in anoxic groundwater. Environ Sci Technol, 28 (7) (1994), pp. 1205-1210
|
[50] |
M. Bonte, B.M. van Breukelen, P.J. Stuyfzand. Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water and shallow geothermal energy production. Water Res, 47 (14) (2013), pp. 5088-5100
|
[51] |
C.J. Stevens. Nitrogen in the environment. Science, 363 (6427) (2019), pp. 578-580
|
[52] |
S.P. Seitzinger, L. Phillips. Nitrogen stewardship in the Anthropocene. Science, 357 (6349) (2017), pp. 350-531
|
[53] |
L.M. Zhang, H.W. Hu, J.P. Shen, J.Z. He. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J, 6 (5) (2012), pp. 1032-1045
|
[54] |
X. Sun, J. Zhao, X. Zhou, Q. Bei, W. Xia, B. Zhao, et al. Salt tolerance-based niche differentiation of soil ammonia oxidizers. ISME J, 16 (2) (2022), pp. 412-422
|
[55] |
J.I. Prosser, G.W. Nicol. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol, 20 (11) (2012), pp. 523-531
|
[56] |
L.E. Lehtovirta-Morley, K. Stoecker, A. Vilcinskas, J.I. Prosser, G.W. Nicol. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc Natl Acad Sci USA, 108 (38) (2011), pp. 15892-15897
|
[57] |
M. Tourna, M. Stieglmeier, A. Spang, M. Könneke, A. Schintlmeister, T. Urich, et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc Natl Acad Sci USA, 108 (20) (2011), pp. 8420-8425
|
[58] |
M.O. Rivett, S.R. Buss, P. Morgan, J.W.N. Smith, C.D. Bemment. Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res, 42 (16) (2008), pp. 4215-4232
|
[59] |
S. Qi, W. Liu, H. Shu, F. Liu, J. Ma. Soil NO3- storage from oasis development in deserts: implications for the prevention and control of groundwater pollution. Hydrol Processes, 34 (20) (2020), pp. 3941-3954
|
[60] |
T.A. Moore, Y.P. Xing, B. Lazenby, M.D.J. Lynch, S. Schiff, W.D. Robertson, et al. Prevalence of anaerobic ammonium-oxidizing bacteria in contaminated groundwater. Environ Sci Technol, 45 (17) (2011), pp. 7217-7225
|
[61] |
S.I. Schmidt, H.J. Hahn. What is groundwater and what does this mean to fauna? —An opinion. Limnologica, 42 (1) (2012), pp. 1-6
|
[62] |
R.L. Smith, J.K. Bohlke, B. Song, C.R. Tobias. Role of anaerobic ammonium oxidation (anammox) in nitrogen removal from a freshwater aquifer. Environ Sci Technol, 49 (20) (2015), pp. 12169-12177
|
[63] |
S.Y. Wang, G.B. Zhu, L.J. Zhuang, Y. Li, L. Liu, G. Lavik, et al. Anaerobic ammonium oxidation is a major N-sink in aquifer systems around the world. ISME J, 14 (1) (2020), pp. 151-163
|
[64] |
Di Toro DM, Connolly JP. Mathematical models of water quality in large lakes part 2:Lake Erie. Report. Duluth: Office of Research and Development, US Environmental Protection Agency; 1980.
|
[65] |
J.P.R.A. Sweerts, V.S. Louis, T.E. Cappenberg. Oxygen concentration profiles and exchange in sediment cores with circulated overlying water. Freshw Biol, 21 (3) (1989), pp. 401-409
|
[66] |
J.J.M. de Klein, C.C. Overbeek, C.J. Jørgensen, A.J. Veraart. Effect of temperature on oxygen profiles and denitrification rates in freshwater sediments. Wetlands, 37 (2017), pp. 975-983
|
[67] |
D.M. Di Toro. Sediment flux modeling. Wiley-Interscience, New York City (2001)
|
[68] |
D.M. Di Toro, J.J. Fitzpatrick. Chesapeake Bay sediment flux model. US Army Engineer Waterways Experiment Station, Vicksburg (1993)
|
[69] |
M. Trimmer, R.J. Gowen, B.M. Stewart. Changes in sediment processes across the western Irish Sea front. Estuar Coast Shelf Sci, 56 (5-6) (2003), pp. 1011-1019
|
[70] |
T. Dalsgaard, B. Thamdrup. Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments. Appl Environ Microbiol, 68 (8) (2002), pp. 3802-3808
|
[71] |
P. Engström, T. Dalsgaard, S. Hulth, R.C. Aller. Anaerobic ammonium oxidation by nitrite (anammox): implications for N2 production in coastal marine sediments. Geochim Cosmochim Acta, 69 (8) (2005), pp. 2057-2065
|
[72] |
S. Rysgaard, R.N. Glud, N. Risgaard-Petersen, T. Dalsgaard. Denitrification and anammox activity in Arctic marine sediments. Limnol Oceanogr, 49 (5) (2004), pp. 1493-1502
|
[73] |
S. Rysgaard, R.N. Glud. Anaerobic N2 production in Arctic sea ice. Limnol Oceanogr, 49 (1) (2004), pp. 86-94
|
[74] |
P. Lam, M.M.M. Kuypers. Microbial nitrogen cycling processes in oxygen minimum zones. Annu Rev Mar Sci, 3 (1) (2011), pp. 317-345
|
[75] |
L.A. Codispoti, J.A. Brandes, J.P. Christensen, A.H. Devol, S.W.A. Naqvi, H.W. Paerl, et al. The oceanic fixed nitrogen and nitrous oxide budgets: moving targets as we enter the anthropocene?. Sci Mar, 65 (S2) (2001), pp. 85-105
|
[76] |
T. Dalsgaard, B. Thamdrup, L. Farías, N.P. Revsbech. Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. Limnol Oceanogr, 57 (5) (2012), pp. 1331-1346
|
[77] |
C.J. Schubert, E. Durisch-Kaiser, B. Wehrli, B. Thamdrup, P. Lam, M.M.M. Kuypers. Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environ Microbiol, 8 (10) (2006), pp. 1857-1863
|
[78] |
P. Lam, M.M. Jensen, G. Lavik, D.F. McGinnis, B. Müller, C.J. Schubert, et al. Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proc Natl Acad Sci USA, 104 (17) (2007), pp. 7104-7109
|
[79] |
J.B. Kirkpatrick, C.A. Fuchsman, E. Yakushev, J.T. Staley, J.W. Murray. Concurrent activity of anammox and denitrifying bacteria in the Black Sea. Front Microbiol, 3 (2012), p. 256
|
[80] |
C.M. Callbeck, D.E. Canfield, M.M.M. Kuypers, P. Yilmaz, G. Lavik, B. Thamdrup, et al. Sulfur cycling in oceanic oxygen minimum zones. Limnol Oceanogr, 66 (6) (2021), pp. 2360-2392
|
[81] |
B. Ma, P. Bao, Y. Wei, G. Zhu, Z. Yuan, Y. Peng. Suppressing nitrite-oxidizing bacteria growth to achieve nitrogen removal from domestic wastewater via anammox using intermittent aeration with low dissolved oxygen. Sci Rep, 5 (1) (2015), p. 13048
|
[82] |
B. Ma, X.X. Xu, S.J. Ge, B. Li, Y. Wei, H. Zhu, et al. Reducing carbon source consumption through a novel denitratation/anammox biofilter to remove nitrate from synthetic secondary effluent. Bioresour Technol, 309 (2020), Article 123377
|
[83] |
X. Xu, B. Ma, W.K. Lu, D. Feng, Y. Wei, C. Ge, et al. Effective nitrogen removal in a granule-based partial-denitrification/anammox reactor treating low C/N sewage. Bioresour Technol, 297 (2020), Article 122467
|
[84] |
S.Y. Wang, Y.Z. Peng, B. Ma, S. Wang, G. Zhu. Anaerobic ammonium oxidation in traditional municipal wastewater treatment plants with low-strength ammonium loading: widespread but overlooked. Water Res, 84 (2015), pp. 66-75
|
[85] |
B. Ma, W.T. Qian, C.S. Yuan, Z. Yuan, Y. Peng. Achieving mainstream nitrogen removal through coupling anammox with denitratation. Environ Sci Technol, 51 (15) (2017), pp. 8405-8413
|
[86] |
W.K. Lu, Y.L. Zhang, Q.Q. Wang, Y. Wei, Y. Bu, B. Ma. Achieving advanced nitrogen removal in a novel partial denitrification/anammox-nitrifying (PDA-N) biofilter process treating low C/N ratio municipal wastewater. Bioresour Technol, 340 (2021), Article 125661
|
[87] |
A.O. Sliekers, K.A. Third, W. Abma, J.G. Kuenen, M.S.M. Jetten. CANON and Anammox in a gas-lift reactor. FEMS Microbiol Lett, 218 (2) (2003), pp. 339-344
|
[88] |
M. Nielsen, A. Bollmann, O. Sliekers, M. Jetten, M. Schmid, M. Strous, et al.Kinetics, diffusional limitation and microscale distribution of chemistry and organisms in a CANON reactor. FEMS Microbiol Ecol, 51 (2) (2005), pp. 247-256
|
[89] |
M. Laureni, D.G. Weissbrodt, K. Villez, O. Robin, N. de Jonge, A. Rosenthal, et al. Biomass segregation between biofilm and flocs improves the control of nitrite-oxidizing bacteria in mainstream partial nitritation and anammox processes. Water Res, 154 (2019), pp. 104-116
|
[90] |
B. Ma, S.Y. Wang, S.B. Cao, Y. Miao, F. Jia, R. Du, et al. Biological nitrogen removal from sewage via anammox: recent advances. Bioresour Technol, 200 (2016), pp. 981-990
|
[91] |
B. Ma, Y. Peng, S. Zhang, J. Wang, Y. Gan, J. Chang, et al. Performance of anammox uasb reactor treating low strength wastewater under moderate and low temperature. Bioresour Technol, 129 (2013), pp. 606-611
|
[92] |
B. Ma, X. Xu, Y. Wei, C. Ge, Y. Peng. Recent advances in controlling denitritation for achieving denitratation/anammox in mainstream wastewater treatment plants. Bioresour Technol, 299 (2020), Article 122697
|
[93] |
C. Albert, J.H. Spangenberg, B. Schröter. Nature-based solutions: criteria. Nature, 543 (7645) (2017), p. 315
|
[94] |
S.Y. Wang, W.D. Wang, L. Liu, L. Zhuang, S. Zhao, Y. Su, et al. Microbial nitrogen cycle hotspots in the plant-bed/ditch system of a constructed wetland with N2O mitigation. Environ Sci Technol, 52 (11) (2018), pp. 6226-6236
|
[95] |
Zheng J. Purification processes and optimization strategies of a constructed wetland for treating source water in stream networks [dissertation]. Beijing: Graduate University of Chinese Academy of Sciences; 2012.
|
[96] |
H. Tian, R. Xu, J.G. Canadell, R.L. Thompson, W. Winiwarter, P. Suntharalingam, et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 586 (7828) (2020), pp. 248-256
|
[97] |
G.B. Zhu, S.Y. Wang, B. Ma, X. Wang, J. Zhou, S. Zhao, et al. Anammox granular sludge in low-ammonium sewage treatment: not bigger size driving better performance. Water Res, 142 (2018), pp. 147-158
|
[98] |
Y. Yao, H. Tian, H. Shi, S. Pan, R. Xu, N. Pan, et al. Increased global nitrous oxide emissions from streams and rivers in the Anthropocene. Nat Clim Chang, 10 (2) (2020), pp. 138-142
|
[99] |
W.L. Wang, J.K. Moore, A.C. Martiny, F.W. Primeau. Convergent estimates of marine nitrogen fixation. Nature, 566 (7743) (2019), pp. 205-211
|
[100] |
B. Kartal, M.M.M. Kuypers, G. Lavik, J. Schalk, H.J.M. Op den Camp, M.S.M. Jetten, et al. Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environ Microbiol, 9 (3) (2007), pp. 635-642
|
[101] |
Shan J, Zhao X, Sheng R, Xia Y ti C, Quan X, et al. Dissimilatory nitrate reduction processes in typical Chinese paddy soils: rates, relative contributions, and influencing factors. Environ Sci Technol 2016; 50(18):9972-80.
|
[102] |
G.B. Zhu, S.Y. Wang, C. Wang, L. Zhou, S. Zhao, Y. Li, et al. Resuscitation of anammox bacteria after > 10,000 years of dormancy. ISME J, 13 (4) (2019), pp. 1098-1109
|