厌氧氨氧化促进地球活性氮平衡的恢复

Guibing Zhu, Bangrui Lan, Shuci Liu, Cameron M. Callbeck, Shanyun Wang, Liping Jiang, Asheesh Kumar Yadav, Jan Vymazal, Mike S.M. Jetten, Ganlin Zhang, Yongguan Zhu

工程(英文) ›› 2024, Vol. 38 ›› Issue (7) : 175-183.

PDF(3124 KB)
PDF(3124 KB)
工程(英文) ›› 2024, Vol. 38 ›› Issue (7) : 175-183. DOI: 10.1016/j.eng.2023.09.013
研究论文
Review

厌氧氨氧化促进地球活性氮平衡的恢复

作者信息 +

Planetary Homeostasis of Reactive Nitrogen Through Anaerobic Ammonium Oxidation

Author information +
History +

Abstract

The availability of nitrogen (N) is crucial for both the productivity of terrestrial and aquatic ecosystems globally. However, the overuse of artificial fertilizers and the energy required to fix nitrogen have pushed the global nitrogen cycle (N-cycle) past its safe operating limits, leading to severe nitrogen pollution and the production of significant amounts of greenhouse gas nitrous oxide (N2O). The anaerobic ammonium oxidation (anammox) mechanism can counteract the release of ammonium and N2O in many oxygen-limited situations, assisting in the restoration of the homeostasis of the Earth’s N biogeochemistry. In this work, we looked into the characteristics of the anammox hotspots’ distribution across various types of ecosystems worldwide. Anammox hotspots are present at diverse oxic-anoxic interfaces in terrestrial systems, and they are most prevalent at the oxic-anoxic transition zone in aquatic ecosystems. Based on the discovery of an anammox hotspot capable of oxidizing ammonium anoxically into N2 without N2O by-product, we then designed an innovative concept and technical routes of nature-based anammox hotspot geoengineering for climate change, biodiversity loss, and efficient utilization of water resources. After 15 years of actual use, anammox hotspot geoengineering has proven to be effective in ensuring clean drinking water, regulating the climate, fostering plant and animal diversity, and enhancing long-term environmental quality. The sustainable biogeoengineering of anammox could be a workable natural remedy to resolve the conflicts between environmental pollution and food security connected to N management.

Keywords

Biogeochemical N-cycle / Oxic-anoxic interface / Nature-based solution / Biogeoengineering / Nitrogen sustainable development

引用本文

导出引用
Guibing Zhu, Bangrui Lan, Shuci Liu. 通过厌氧氨氧化实现活性氮生物地球化学循环. Engineering. 2024, 38(7): 175-183 https://doi.org/10.1016/j.eng.2023.09.013

参考文献

[1]
P.J. Crutzen. Geology of mankind. Nature, 415 (6867) (2002), p. 23
[2]
J. Rockström, W. Steffen, K. Noone, Å. Persson, F.S. Chapin III, E.F. Lambin, et al. A safe operating space for humanity. Nature, 461 (7263) (2009), pp. 472-475
[3]
W. Steffen, K. Richardson, J. Rockstrom, S.E. Cornell, I. Fetzer, E.M. Bennett, et al. Planetary boundaries: guiding human development on a changing planet. Science, 347 (6223) (2015), p. 1259855
[4]
X.T. Ju, G.X. Xing, X.P. Chen, S.L. Zhang, L.J. Zhang, X.J. Liu, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci USA, 106 (9) (2009), pp. 3041-3046
[5]
T.M. Bowles, S.S. Atallah, E.E. Campbell, A.C.M. Gaudin, W.R. Wieder, A.S. Grandy. Addressing agricultural nitrogen losses in a changing climate. Nat Sustain, 1 (8) (2018), pp. 399-408
[6]
A.J. Burgin, S.K. Hamilton. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front Ecol Environ, 5 (2) (2007), pp. 89-96
[7]
M.M.M. Kuypers, A.O. Sliekers, G. Lavik, M. Schmid, B.B. Jørgensen, J.G. Kuenen, et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature, 422 (6932) (2003), pp. 608-611
[8]
T. Dalsgaard, D.E. Canfield, J. Petersen, B. Thamdrup, J. Acuña-González. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce. Costa Rica Nature, 422 (6932) (2003), pp. 606-608
[9]
B. Kartal, W.J. Maalcke, N.M. de Almeida, I. Cirpus, J. Gloerich, W. Geerts, et al. Molecular mechanism of anaerobic ammonium oxidation. Nature, 479 (7371) (2011), pp. 127-130
[10]
G.B. Zhu, S.Y. Wang, Y. Wang, C. Wang, N. Risgaard-Petersen, M.S.M. Jetten, et al. Anaerobic ammonia oxidation in a fertilized paddy soil. ISME J, 5 (12) (2011), pp. 1905-1912
[11]
G.B. Zhu, S.Y. Wang, W.D. Wang, Y. Wang, L. Zhou, B. Jiang, et al. Hotspots of anaerobic ammonia oxidation at land/freshwater interfaces. Nat Geosci, 6 (2) (2013), pp. 103-107
[12]
M. Jetten, I. Cirpus, B. Kartal, L. van Niftrik, K.T. van de Pas-Schoonen, O. Sliekers, et al. 1994-2004: 10 years of research on the anaerobic oxidation of ammonium. Biochem Soc Trans, 33 (1) (2005), pp. 119-123
[13]
B. Kartal, L. van Niftrik, J.T. Keltjens, H.J.M. Op den Camp, M.S.M. Jetten. Anammox—growth physiology, cell biology, and metabolism. Adv Microb Physiol, 60 (2012), pp. 211-262
[14]
M.M.M. Kuypers, G. Lavik, D. Woebken, M. Schmid, B.M. Fuchs, R. Amann, et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc Natl Acad Sci USA, 102 (18) (2005), pp. 6478-6483
[15]
T. Dalsgaard, B. Thamdrup, D.E. Canfield. Anaerobic ammonium oxidation (anammox) in the marine environment. Res Microbiol, 156 (4) (2005), pp. 457-464
[16]
A.H. Devol. Denitrification, anammox, and N2 production in marine sediments. Annu Rev Mar Sci, 7 (1) (2015), pp. 403-423
[17]
G.B. Zhu, S.Y. Wang, L.L. Zhou, Y. Wang, S. Zhao, C. Xia, et al. Ubiquitous anaerobic ammonium oxidation in inland waters of China: an overlooked nitrous oxide mitigation process. Sci Rep, 5 (1) (2015), p. 17306
[18]
K. Lansdown, B.A. McKew, C. Whitby, C.M. Heppell, A.J. Dumbrell, A. Binley, et al. Importance and controls of anaerobic ammonium oxidation influenced by riverbed geology. Nat Geosci, 9 (5) (2016), pp. 357-360
[19]
B. Kartal, J.G. Kuenen, M. van Loosdrecht. Sewage treatment with anammox. Science, 328 (5979) (2010), pp. 702-703
[20]
S. Lackner, E.M. Gilbert, S.E. Vlaeminck, A. Joss, H. Horn, M.C.M. van Loosdrecht. Full-scale partial nitritation/anammox experiences—an application survey. Water Res, 55 (2014), pp. 292-303
[21]
D.R. Speth, M.H. In ’t Zandt, S. Guerrero-Cruz, B.E. Dutilh, M.S.M. Jetten. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system. Nat Commun, 7 (2016), p. 11172
[22]
L. Zhang, S. Zhang, Y. Peng, X. Han, Y. Gan. Nitrogen removal performance and microbial distribution in pilot- and full-scale integrated fixed-biofilm activated sludge reactors based on nitritation-anammox process. Bioresour Technol, 196 (2015), pp. 448-453
[23]
W.R.L. Van der Star, W.R. Abma, D. Blommers, J.W. Mulder, T. Tokutomi, M. Strous, et al. Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Res, 41 (18) (2007), pp. 4149-4163
[24]
T. Schaubroeck, H. De Clippeleir, N. Weissenbacher, J. Dewulf, P. Boeckx, S.E. Vlaeminck, et al. Environmental sustainability of an energy self-sufficient sewage treatment plant: improvements through DEMON and co-digestion. Water Res, 74 (2015), pp. 166-179
[25]
J. Thorslund, J. Jarsj, F. Jaramillo, J.W. Jawitz, S. Manzoni, N.B. Basu, et al. Wetlands as large-scale nature-based solutions: status and challenges for research, engineering and management. Ecol Eng, 108 (2017), pp. 489-497
[26]
R.J. Naiman, H. Décamps. The ecology of interfaces: riparian zones. Annu Rev Ecol Syst, 28 (1) (1997), pp. 621-658
[27]
L.A. Bristow, T. Dalsgaard, L. Tiano, D.B. Mills, A.D. Bertagnolli, J.J. Wright, et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc Natl Acad Sci USA, 113 (38) (2016), pp. 10601-10606
[28]
B. Kraft, N. Jehmlich, M. Larsen, L.A. Bristow, M. Könneke, B. Thamdrup, et al. Oxygen and nitrogen production by an ammonia-oxidizing archaeon. Science, 375 (6576) (2022), pp. 97-100
[29]
M.M. Jensen, P. Lam, N.P. Revsbech, B. Nagel, B. Gaye, M.S.M. Jetten, et al. Intensive nitrogen loss over the Omani Shelf due to anammox coupled with dissimilatory nitrite reduction to ammonium. ISME J, 5 (10) (2011), pp. 1660-1670
[30]
T. Kalvelage, G. Lavik, P. Lam, S. Contreras, L. Arteaga, C.R. Löscher, et al. Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone. Nat Geosci, 6 (3) (2013), pp. 228-234
[31]
P. Lam, G. Lavik, M.M. Jensen, J. van de Vossenberg, M. Schmid, D. Woebken, et al. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc Natl Acad Sci USA, 106 (12) (2009), pp. 4752-4757
[32]
C.M. Callbeck, B. Ehrenfels, K.B.L. Baumann, B. Wehrli, C.J. Schubert. Anoxic chlorophyll maximum enhances local organic matter remineralization and nitrogen loss in Lake Tanganyika. Nat Commun, 12 (1) (2021), p. 830
[33]
A. Paulmier, D. Ruiz-Pino. Oxygen minimum zones (OMZs) in the modern ocean. Prog Oceanogr, 80 (3-4) (2009), pp. 113-128
[34]
D.J. Greenwood. The effect of oxygen concentration on the decomposition of organic materials in soil. Plant Soil, 14 (4) (1961), pp. 360-376
[35]
S.A. Nie, H. Li, X.R. Yang, Z. Zhang, B. Weng, F. Huang, et al. Nitrogen loss by anaerobic oxidation of ammonium in rice rhizosphere. ISME J, 9 (9) (2015), pp. 2059-2067
[36]
G.B. Zhu, S.Y. Wang, Y.X. Li, L. Zhuang, S. Zhao, C. Wang, et al. Microbial pathways for nitrogen loss in an upland soil. Environ Microbiol, 20 (5) (2018), pp. 1723-1738
[37]
A. Brune, P. Frenzel, H. Cypionka. Life at the oxic-anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev, 24 (5) (2000), pp. 691-710
[38]
A.N. Bezbaruah, T.C. Zhang. Ph, redox, and oxygen microprofiles in rhizosphere of bulrush (Scirpus validus) in a constructed wetland treating municipal wastewater. Biotechnol Bioeng, 88 (1) (2004), pp. 60-70
[39]
Y.L. Li, X.X. Wang. Root-induced changes in radial oxygen loss, rhizosphere oxygen profile, and nitrification of two rice cultivars in Chinese red soil regions. Plant Soil, 365 (1-2) (2013), pp. 115-126
[40]
N. Lenzewski, P. Mueller, R.J. Meier, G. Liebsch, K. Jensen, K. Koop-Jakobsen. Dynamics of oxygen and carbon dioxide in rhizospheres of Lobelia dortmanna—a planar optode study of belowground gas exchange between plants and sediment. New Phytol, 218 (1) (2018), pp. 131-141
[41]
M.E. McClain, E.W. Boyer, C.L. Dent, S.E. Gergel, N.B. Grimm, P.M. Groffman, et al. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems, 6 (4) (2003), pp. 301-312
[42]
W.D. Wang, D.L. Wang, C.Q. Yin. A field study on the hydrochemistry of land/inland water ecotones with reed domination. Acta Hydrochim Hydrobiol, 30 (2-3) (2002), pp. 117-127
[43]
M.M. Hefting, R. Bobbink, M.P. Janssens. Spatial variation in denitrification and N2O emission in relation to nitrate removal efficiency in a N-stressed riparian buffer zone. Ecosystems, 9 (4) (2006), pp. 550-563
[44]
Y. Wang, G.B. Zhu, L. Ye, X. Feng, H.J.M. Op den Camp, C. Yin. Spatial distribution of archaeal and bacterial ammonia oxidizers in the littoral buffer zone of a nitrogen-rich lake. J Environ Sci, 24 (5) (2012), pp. 790-799
[45]
W. Aeschbach-Hertig, T. Gleeson. Regional strategies for the accelerating global problem of groundwater depletion. Nat Geosci, 5 (12) (2012), pp. 853-861
[46]
R.G. Taylor, B. Scanlon, P. Döll, M. Rodell, R. van Beek, Y. Wada, et al. Ground water and climate change. Nat Clim Chang, 3 (4) (2013), pp. 322-329
[47]
L. Zhang, Y. Narita, L. Gao, M. Ali, M. Oshiki, S. Okabe. Maximum specific growth rate of anammox bacteria revisited. Water Res, 116 (2017), pp. 296-303
[48]
M. Strous, J.G. Kuenen, M.S.M. Jetten. Key physiology of anaerobic ammonium oxidation. Appl Environ Microbiol, 65 (7) (1999), pp. 3248-3250
[49]
D.R. Lovley, F.H. Chapelle, J.C. Woodward. Use of dissolved H2 concentrations to determine distribution of microbially catalyzed redox reactions in anoxic groundwater. Environ Sci Technol, 28 (7) (1994), pp. 1205-1210
[50]
M. Bonte, B.M. van Breukelen, P.J. Stuyfzand. Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water and shallow geothermal energy production. Water Res, 47 (14) (2013), pp. 5088-5100
[51]
C.J. Stevens. Nitrogen in the environment. Science, 363 (6427) (2019), pp. 578-580
[52]
S.P. Seitzinger, L. Phillips. Nitrogen stewardship in the Anthropocene. Science, 357 (6349) (2017), pp. 350-531
[53]
L.M. Zhang, H.W. Hu, J.P. Shen, J.Z. He. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J, 6 (5) (2012), pp. 1032-1045
[54]
X. Sun, J. Zhao, X. Zhou, Q. Bei, W. Xia, B. Zhao, et al. Salt tolerance-based niche differentiation of soil ammonia oxidizers. ISME J, 16 (2) (2022), pp. 412-422
[55]
J.I. Prosser, G.W. Nicol. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol, 20 (11) (2012), pp. 523-531
[56]
L.E. Lehtovirta-Morley, K. Stoecker, A. Vilcinskas, J.I. Prosser, G.W. Nicol. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc Natl Acad Sci USA, 108 (38) (2011), pp. 15892-15897
[57]
M. Tourna, M. Stieglmeier, A. Spang, M. Könneke, A. Schintlmeister, T. Urich, et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc Natl Acad Sci USA, 108 (20) (2011), pp. 8420-8425
[58]
M.O. Rivett, S.R. Buss, P. Morgan, J.W.N. Smith, C.D. Bemment. Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res, 42 (16) (2008), pp. 4215-4232
[59]
S. Qi, W. Liu, H. Shu, F. Liu, J. Ma. Soil NO3- storage from oasis development in deserts: implications for the prevention and control of groundwater pollution. Hydrol Processes, 34 (20) (2020), pp. 3941-3954
[60]
T.A. Moore, Y.P. Xing, B. Lazenby, M.D.J. Lynch, S. Schiff, W.D. Robertson, et al. Prevalence of anaerobic ammonium-oxidizing bacteria in contaminated groundwater. Environ Sci Technol, 45 (17) (2011), pp. 7217-7225
[61]
S.I. Schmidt, H.J. Hahn. What is groundwater and what does this mean to fauna? —An opinion. Limnologica, 42 (1) (2012), pp. 1-6
[62]
R.L. Smith, J.K. Bohlke, B. Song, C.R. Tobias. Role of anaerobic ammonium oxidation (anammox) in nitrogen removal from a freshwater aquifer. Environ Sci Technol, 49 (20) (2015), pp. 12169-12177
[63]
S.Y. Wang, G.B. Zhu, L.J. Zhuang, Y. Li, L. Liu, G. Lavik, et al. Anaerobic ammonium oxidation is a major N-sink in aquifer systems around the world. ISME J, 14 (1) (2020), pp. 151-163
[64]
Di Toro DM, Connolly JP. Mathematical models of water quality in large lakes part 2:Lake Erie. Report. Duluth: Office of Research and Development, US Environmental Protection Agency; 1980.
[65]
J.P.R.A. Sweerts, V.S. Louis, T.E. Cappenberg. Oxygen concentration profiles and exchange in sediment cores with circulated overlying water. Freshw Biol, 21 (3) (1989), pp. 401-409
[66]
J.J.M. de Klein, C.C. Overbeek, C.J. Jørgensen, A.J. Veraart. Effect of temperature on oxygen profiles and denitrification rates in freshwater sediments. Wetlands, 37 (2017), pp. 975-983
[67]
D.M. Di Toro. Sediment flux modeling. Wiley-Interscience, New York City (2001)
[68]
D.M. Di Toro, J.J. Fitzpatrick. Chesapeake Bay sediment flux model. US Army Engineer Waterways Experiment Station, Vicksburg (1993)
[69]
M. Trimmer, R.J. Gowen, B.M. Stewart. Changes in sediment processes across the western Irish Sea front. Estuar Coast Shelf Sci, 56 (5-6) (2003), pp. 1011-1019
[70]
T. Dalsgaard, B. Thamdrup. Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments. Appl Environ Microbiol, 68 (8) (2002), pp. 3802-3808
[71]
P. Engström, T. Dalsgaard, S. Hulth, R.C. Aller. Anaerobic ammonium oxidation by nitrite (anammox): implications for N2 production in coastal marine sediments. Geochim Cosmochim Acta, 69 (8) (2005), pp. 2057-2065
[72]
S. Rysgaard, R.N. Glud, N. Risgaard-Petersen, T. Dalsgaard. Denitrification and anammox activity in Arctic marine sediments. Limnol Oceanogr, 49 (5) (2004), pp. 1493-1502
[73]
S. Rysgaard, R.N. Glud. Anaerobic N2 production in Arctic sea ice. Limnol Oceanogr, 49 (1) (2004), pp. 86-94
[74]
P. Lam, M.M.M. Kuypers. Microbial nitrogen cycling processes in oxygen minimum zones. Annu Rev Mar Sci, 3 (1) (2011), pp. 317-345
[75]
L.A. Codispoti, J.A. Brandes, J.P. Christensen, A.H. Devol, S.W.A. Naqvi, H.W. Paerl, et al. The oceanic fixed nitrogen and nitrous oxide budgets: moving targets as we enter the anthropocene?. Sci Mar, 65 (S2) (2001), pp. 85-105
[76]
T. Dalsgaard, B. Thamdrup, L. Farías, N.P. Revsbech. Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. Limnol Oceanogr, 57 (5) (2012), pp. 1331-1346
[77]
C.J. Schubert, E. Durisch-Kaiser, B. Wehrli, B. Thamdrup, P. Lam, M.M.M. Kuypers. Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environ Microbiol, 8 (10) (2006), pp. 1857-1863
[78]
P. Lam, M.M. Jensen, G. Lavik, D.F. McGinnis, B. Müller, C.J. Schubert, et al. Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proc Natl Acad Sci USA, 104 (17) (2007), pp. 7104-7109
[79]
J.B. Kirkpatrick, C.A. Fuchsman, E. Yakushev, J.T. Staley, J.W. Murray. Concurrent activity of anammox and denitrifying bacteria in the Black Sea. Front Microbiol, 3 (2012), p. 256
[80]
C.M. Callbeck, D.E. Canfield, M.M.M. Kuypers, P. Yilmaz, G. Lavik, B. Thamdrup, et al. Sulfur cycling in oceanic oxygen minimum zones. Limnol Oceanogr, 66 (6) (2021), pp. 2360-2392
[81]
B. Ma, P. Bao, Y. Wei, G. Zhu, Z. Yuan, Y. Peng. Suppressing nitrite-oxidizing bacteria growth to achieve nitrogen removal from domestic wastewater via anammox using intermittent aeration with low dissolved oxygen. Sci Rep, 5 (1) (2015), p. 13048
[82]
B. Ma, X.X. Xu, S.J. Ge, B. Li, Y. Wei, H. Zhu, et al. Reducing carbon source consumption through a novel denitratation/anammox biofilter to remove nitrate from synthetic secondary effluent. Bioresour Technol, 309 (2020), Article 123377
[83]
X. Xu, B. Ma, W.K. Lu, D. Feng, Y. Wei, C. Ge, et al. Effective nitrogen removal in a granule-based partial-denitrification/anammox reactor treating low C/N sewage. Bioresour Technol, 297 (2020), Article 122467
[84]
S.Y. Wang, Y.Z. Peng, B. Ma, S. Wang, G. Zhu. Anaerobic ammonium oxidation in traditional municipal wastewater treatment plants with low-strength ammonium loading: widespread but overlooked. Water Res, 84 (2015), pp. 66-75
[85]
B. Ma, W.T. Qian, C.S. Yuan, Z. Yuan, Y. Peng. Achieving mainstream nitrogen removal through coupling anammox with denitratation. Environ Sci Technol, 51 (15) (2017), pp. 8405-8413
[86]
W.K. Lu, Y.L. Zhang, Q.Q. Wang, Y. Wei, Y. Bu, B. Ma. Achieving advanced nitrogen removal in a novel partial denitrification/anammox-nitrifying (PDA-N) biofilter process treating low C/N ratio municipal wastewater. Bioresour Technol, 340 (2021), Article 125661
[87]
A.O. Sliekers, K.A. Third, W. Abma, J.G. Kuenen, M.S.M. Jetten. CANON and Anammox in a gas-lift reactor. FEMS Microbiol Lett, 218 (2) (2003), pp. 339-344
[88]
M. Nielsen, A. Bollmann, O. Sliekers, M. Jetten, M. Schmid, M. Strous, et al.Kinetics, diffusional limitation and microscale distribution of chemistry and organisms in a CANON reactor. FEMS Microbiol Ecol, 51 (2) (2005), pp. 247-256
[89]
M. Laureni, D.G. Weissbrodt, K. Villez, O. Robin, N. de Jonge, A. Rosenthal, et al. Biomass segregation between biofilm and flocs improves the control of nitrite-oxidizing bacteria in mainstream partial nitritation and anammox processes. Water Res, 154 (2019), pp. 104-116
[90]
B. Ma, S.Y. Wang, S.B. Cao, Y. Miao, F. Jia, R. Du, et al. Biological nitrogen removal from sewage via anammox: recent advances. Bioresour Technol, 200 (2016), pp. 981-990
[91]
B. Ma, Y. Peng, S. Zhang, J. Wang, Y. Gan, J. Chang, et al. Performance of anammox uasb reactor treating low strength wastewater under moderate and low temperature. Bioresour Technol, 129 (2013), pp. 606-611
[92]
B. Ma, X. Xu, Y. Wei, C. Ge, Y. Peng. Recent advances in controlling denitritation for achieving denitratation/anammox in mainstream wastewater treatment plants. Bioresour Technol, 299 (2020), Article 122697
[93]
C. Albert, J.H. Spangenberg, B. Schröter. Nature-based solutions: criteria. Nature, 543 (7645) (2017), p. 315
[94]
S.Y. Wang, W.D. Wang, L. Liu, L. Zhuang, S. Zhao, Y. Su, et al. Microbial nitrogen cycle hotspots in the plant-bed/ditch system of a constructed wetland with N2O mitigation. Environ Sci Technol, 52 (11) (2018), pp. 6226-6236
[95]
Zheng J. Purification processes and optimization strategies of a constructed wetland for treating source water in stream networks [dissertation]. Beijing: Graduate University of Chinese Academy of Sciences; 2012.
[96]
H. Tian, R. Xu, J.G. Canadell, R.L. Thompson, W. Winiwarter, P. Suntharalingam, et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 586 (7828) (2020), pp. 248-256
[97]
G.B. Zhu, S.Y. Wang, B. Ma, X. Wang, J. Zhou, S. Zhao, et al. Anammox granular sludge in low-ammonium sewage treatment: not bigger size driving better performance. Water Res, 142 (2018), pp. 147-158
[98]
Y. Yao, H. Tian, H. Shi, S. Pan, R. Xu, N. Pan, et al. Increased global nitrous oxide emissions from streams and rivers in the Anthropocene. Nat Clim Chang, 10 (2) (2020), pp. 138-142
[99]
W.L. Wang, J.K. Moore, A.C. Martiny, F.W. Primeau. Convergent estimates of marine nitrogen fixation. Nature, 566 (7743) (2019), pp. 205-211
[100]
B. Kartal, M.M.M. Kuypers, G. Lavik, J. Schalk, H.J.M. Op den Camp, M.S.M. Jetten, et al. Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environ Microbiol, 9 (3) (2007), pp. 635-642
[101]
Shan J, Zhao X, Sheng R, Xia Y ti C, Quan X, et al. Dissimilatory nitrate reduction processes in typical Chinese paddy soils: rates, relative contributions, and influencing factors. Environ Sci Technol 2016; 50(18):9972-80.
[102]
G.B. Zhu, S.Y. Wang, C. Wang, L. Zhou, S. Zhao, Y. Li, et al. Resuscitation of anammox bacteria after > 10,000 years of dormancy. ISME J, 13 (4) (2019), pp. 1098-1109
PDF(3124 KB)

Accesses

Citation

Detail

段落导航
相关文章

/