[1] |
Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al., editors. Essentials of glycobiology. 3rd ed. New York City: Cold Spring Harbor Laboratory Press; 2015.
|
[2] |
Nairn AV, Aoki K, dela Rosa M, Porterfield M, Lim JM, Kulik M, et al. Regulation of glycan structures in murine embryonic stem cells: combined transcript profiling of glycan-related genes and glycan structural analysis. J Biol Chem 2012 ;287(45):37835-56.
|
[3] |
A.V. Nairn, W.S. York, K. Harris, E.M. Hall, J.M. Pierce, K.W. Moremen. Regulation of glycan structures in animal tissues: transcript profiling of glycan-related genes. J Biol Chem, 283 (25) ( 2008), pp. 17298-17313
|
[4] |
C.T. Thu, L.K. Mahal. Sweet control: microRNA regulation of the glycome. Biochemistry, 59 (34) ( 2020), pp. 3098-3110
|
[5] |
P. Agrawal, T. Kurcon, K.T. Pilobello, J.F. Rakus, S. Koppolu, Z. Liu, et al.. Mapping posttranscriptional regulation of the human glycome uncovers microRNA defining the glycocode. Proc Natl Acad Sci USA, 111 (11) ( 2014), pp. 4338-4343
|
[6] |
S. Neelamegham, L.K. Mahal. Multi-level regulation of cellular glycosylation: from genes to transcript to enzyme to structure. Curr Opin Struct Biol, 40 ( 2016), pp. 145-152
|
[7] |
M. Klasić, J. Krištić, P. Korać, T. Horvat, D. Markulin, A. Vojta, et al.. DNA hypomethylation upregulates expression of the MGAT3 gene in HepG 2 cells and leads to changes in N-glycosylation of secreted glycoproteins. Sci Rep, 6 ( 2016), p. 24363
|
[8] |
A. Vojta, I. Samaržija, L. Bočkor, V. Zoldoš. Glyco-genes change expression in cancer through aberrant methylation. Biochim Biophys Acta Gen Subj, 1860 (8) ( 2016), pp. 1776-1785
|
[9] |
M. Klasić, D. Markulin, A. Vojta, I. Samaržija, I. Biruš, P. Dobrinić, et al.. Promoter methylation of the MGAT3 and BACH2 genes correlates with the composition of the immunoglobulin G glycome in inflammatory bowel disease. Clin Epigenetics, 10 ( 2018), p. 75
|
[10] |
C. Reily, T.J. Stewart, M.B. Renfrow, J. Novak. Glycosylation in health and disease. Nat Rev Nephrol, 15 (6) ( 2019), pp. 346-366
|
[11] |
S.R. Stowell, T. Ju, R.D. Cummings. Protein glycosylation in cancer. Annu Rev Pathol Mech Dis, 10 ( 2015), pp. 473-510
|
[12] |
R.H. Costa, V.V. Kalinichenko, A.X.L. Holterman, X. Wang. Transcription factors in liver development, differentiation, and regeneration. Hepatology, 38 (6) ( 2003), pp. 1331-1347
|
[13] |
C.S. Lee, N.J. Sund, R. Behr, P.L. Herrera, K.H. Kaestner. FOXA 2 is required for the differentiation of pancreatic α-cells. Dev Biol, 278 (2) ( 2005), pp. 484-495
|
[14] |
H.H. Lau, N.H.J. Ng, L.S.W. Loo, J.B. Jasmen, A.K.K. Teo. The molecular functions of hepatocyte nuclear factors—in and beyond the liver. J Hepatol, 68 (5) ( 2018), pp. 1033-1048
|
[15] |
Y. Inoue, G.P. Hayhurst, J. Inoue, M. Mori, F.J. Gonzalez. Defective ureagenesis in mice carrying a liver-specific disruption of hepatocyte nuclear factor 4α (HNF4α): HNF4α regulates ornithine transcarbamylase in vivo. J Biol Chem, 277 (28) ( 2002), pp. 25257-25265
|
[16] |
Y. Inoue, L.L. Peters, S.H. Yim, J. Inoue, F.J. Gonzalez. Role of hepatocyte nuclear factor 4α in control of blood coagulation factor gene expression. J Mol Med, 84 (4) ( 2006), pp. 334-344
|
[17] |
Y. Inoue, A.M. Yu, J. Inoue, F.J. Gonzalez. Hepatocyte nuclear factor 4α is a central regulator of bile acid conjugation. J Biol Chem, 279 (4) ( 2004), pp. 2480-2489
|
[18] |
Y. Kamiyama, T. Matsubara, K. Yoshinari, K. Nagata, H. Kamimura, Y. Yamazoe.Role of human hepatocyte nuclear factor 4α in the expression of drug-metabolizing enzymes and transporters in human hepatocytes assessed by use of small interfering RNA. Drug Metab Pharmacokinet, 22 (4) ( 2007), pp. 287-298
|
[19] |
C. Walesky, U. Apte. Role of hepatocyte nuclear factor 4α (HNF4α) in cell proliferation and cancer. Gene Expr, 16 (3) ( 2015), pp. 101-108
|
[20] |
J.W. Hoskins, J. Jia, M. Flandez, H. Parikh, W. Xiao, I. Collins, et al.. Transcriptome analysis of pancreatic cancer reveals a tumor suppressor function for HNF1A. Carcinogenesis, 35 (12) ( 2014), pp. 2670-2678
|
[21] |
L. Pelletier, S. Rebouissou, A. Paris, E. Rathahao-Paris, E. Perdu, P. Bioulac-Sage, et al.. Loss of hepatocyte nuclear factor 1α function in human hepatocellular adenomas leads to aberrant activation of signaling pathways involved in tumorigenesis. Hepatology, 51 (2) ( 2010), pp. 557-566
|
[22] |
Z. Luo, Y. Li, H. Wang, J. Fleming, M. Li, Y. Kang, et al.. Hepatocyte nuclear factor 1A (HNF1A) as a possible tumor suppressor in pancreatic cancer. PLoS One, 10 (3) ( 2015), Article e0121082
|
[23] |
A.S. Teeli, K. Łuczyńska, E. Haque, M.A. Gayas, D. Winiarczyk, H. Taniguchi. Disruption of tumor suppressors HNF4α/HNF1α causes tumorigenesis in liver. Cancers, 13 (21) ( 2021), p. 5357
|
[24] |
O. Bluteau, E. Jeannot, P. Bioulac-Sage, J.M. Marqués, J.F. Blanc, H. Bui, et al.. Bi-allelic inactivation of TCF 1 in hepatic adenomas. Nat Genet, 32 (2) ( 2002), pp. 312-315
|
[25] |
S.A. Duncan, M.A. Navas, D. Dufort, J. Rossant, M. Stoffelt. Regulation of a transcription factor network required for differentiation and metabolism. Science, 281 (5377) ( 1998), pp. 692-695
|
[26] |
D.T. Odom, N. Zizlsperger, D.B. Gordon, G.W. Bell, N.J. Rinaldi, H.L. Murray, et al.. Control of pancreas and liver gene expression by HNF transcription factors. Science, 303 (5662) ( 2004), pp. 1378-1381
|
[27] |
Z. Li, G. Tuteja, J. Schug, K.H. Kaestner. FOXA1 and FOXA2 are essential for sexual dimorphism in liver cancer. Cell, 148 (1,2) ( 2012), pp. 72-83
|
[28] |
G. Lauc, A. Essafi, J.E. Huffman, C. Hayward, A. Knežević, J.J. Kattla, et al.. Genomics meets glycomics—the first GWAS study of human N-glycome identifies HNF1α as a master regulator of plasma protein fucosylation. PLoS Genet, 6 (12) ( 2010), Article e1001256
|
[29] |
V. Zoldoš, T. Horvat, M. Novokmet, C. Cuenin, A. Mužinić, M. Pučić, et al.. Epigenetic silencing of HNF1A associates with changes in the composition of the human plasma N-glycome. Epigenetics, 7 (2) ( 2012), pp. 164-172
|
[30] |
G. Josipović, V. Tadić, M. Klasić, V. Zanki, I. Bečeheli, F. Chung, et al.. Antagonistic and synergistic epigenetic modulation using orthologous CRISPR/dCas9-based modular system. Nucleic Acids Res, 47 (18) ( 2019), pp. 9637-9657
|
[31] |
A.V. Tyakht, E.N. Ilina, D.G. Alexeev, D.S. Ischenko, A.Y. Gorbachev, T.A. Semashko, et al.. RNA-Seq gene expression profiling of HepG 2 cells: the influence of experimental factors and comparison with liver tissue. BMC Genomics, 15 (1) ( 2014), p. 1108
|
[32] |
S. Oki, T. Ohta, G. Shioi, H. Hatanaka, O. Ogasawara, Y. Okuda, et al.. ChIP-Atlas: a data-mining suite powered by full integration of public ChIP-seq data. EMBO Rep, 19 (12) ( 2018), Article e46255
|
[33] |
Z. Zou, T. Ohta, F. Miura, S. Oki. ChIP-Atlas 2021 update: a data-mining suite for exploring epigenomic landscapes by fully integrating ChIP-seq, ATAC-seq and Bisulfite-seq data. Nucleic Acids Res, 50 (W1) ( 2022), pp. W175-W182
|
[34] |
T.D. Schmittgen, K.J. Livak. Analyzing real-time PCR data by the comparative CT method. Nat Protoc, 3 (6) ( 2008), pp. 1101-1108
|
[35] |
C. Berasain, M. Arechederra, J. Argemí, M.G. Fernández-Barrena, M.A. Avila. Loss of liver function in chronic liver disease: an identity crisis. J Hepatol, 78 (2) ( 2023), pp. 401-414
|
[36] |
C.J. Kuo, P.B. Conley, L. Chen, F.M. Sladek, J.E. Darnell Jr, G.R. Crabtree. A transcriptional hierarchy involved in mammalian cell-type specification. Nature, 355 (6359) ( 1992), pp. 457-461
|
[37] |
J.M. Tian, U. Schibler. Tissue-specific expression of the gene encoding hepatocyte nuclear factor 1 may involve hepatocyte nuclear factor 4. Genes Dev, 5 (12A) ( 1991), pp. 2225-2234
|
[38] |
W. Zhong, J. Mirkovitch, J.E. Darnell Jr.. Tissue-specific regulation of mouse hepatocyte nuclear factor 4 expression. Mol Cell Biol, 14 (11) ( 1994), pp. 7276-7284
|
[39] |
NTB Nguyen, J Lin, SJ Tay, Mariati, J Yeo, T Nguyen-Khuong, et al.. Multiplexed engineering glycosyltransferase genes in CHO cells via targeted integration for producing antibodies with diverse complex-type N-glycans. Sci Rep, 11 (1) ( 2021), p. 12969
|
[40] |
A. Wahl, E. van den Akker, L. Klaric, J. Štambuk, E. Benedetti, R. Plomp, et al.. Genome-wide association study on immunoglobulin G glycosylation patterns. Front Immunol, 9 ( 2018), p. 277
|
[41] |
G. Lauc, J.E. Huffman, M. Pučić, L. Zgaga, B. Adamczyk, A. Mužinić, et al.. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. PLoS Genet, 9 (1) ( 2013), Article e1003225
|
[42] |
A.S. Shadrina, A.S. Zlobin, O.O. Zaytseva, L. Klarić, S.Z. Sharapov, E.D. Pakhomov, et al.. Multivariate genome-wide analysis of immunoglobulin G N-glycosylation identifies new loci pleiotropic with immune function. Hum Mol Genet, 30 (13) ( 2021), pp. 1259-1270
|
[43] |
Klarić L, Tsepilov YA, Stanton CM, Mangino M, Sikka TT, Esko T, et al. Glycosylation of immunoglobulin G is regulated by a large network of genes pleiotropic with inflammatory diseases. Sci Adv 2020 ;6(8):eaax0301.
|
[44] |
A. Landini, I. Trbojević-Akmačić, P. Navarro, Y.A. Tsepilov, S.Z. Sharapov, F. Vučković, et al.. Genetic regulation of post-translational modification of two distinct proteins. Nat Commun, 13 (1) ( 2022), p. 1586
|
[45] |
I. Trbojević-Akmačić, G.S.M. Lageveen-Kammeijer, B. Heijs, T. Petrović, H. Deriš, M. Wuhrer, et al.. High-throughput glycomic methods. Chem Rev, 122 (20) ( 2022), pp. 15865-15913
|
[46] |
G. Thanabalasingham, J.E. Huffman, J.J. Kattla, M. Novokmet, I. Rudan, A.L. Gloyn, et al.. Mutations in HNF1A result in marked alterations of plasma glycan profile. Diabetes, 62 (4) ( 2013), pp. 1329-1337
|
[47] |
A. Mijakovac, K. Miškec, J. Krištić, V.V. Bočkor, V. Tadić, M. Bošković, et al.. A transient expression system with stably integrated CRISPR-dCas 9 fusions for regulation of genes involved in immunoglobulin G glycosylation. CRISPR J, 5 (2) ( 2022), pp. 237-253
|
[48] |
A. Mijakovac, J. Jurić, W.M. Kohrt, J. Krištić, D. Kifer, K.M. Gavin, et al.. Effects of estradiol on immunoglobulin G glycosylation: mapping of the downstream signaling mechanism. Front Immunol, 12 ( 2021), Article 680227
|
[49] |
Frkatović-Hodžić A, Miškec K, Mijakovac A, Nostaeva A, Sharapov SZ, Landini A, et al. Mapping of the gene network that regulates glycan clock of ageing. 2023. medRxiv: 2023.04.25.23289027.
|
[50] |
A. Cvetko, M. Mangino, M. Tijardović, D. Kifer, M. Falchi, T. Keser, et al.. Plasma N-glycome shows continuous deterioration as the diagnosis of insulin resistance approaches. BMJ Open Diabetes Res Care, 9 (1) ( 2021), Article e002263
|