[1] |
A. Travis, O. Chernova, V. Chernov, R. Aminov. Antimicrobial drug discovery: lessons of history and future strategies. Expert Opin Drug Discov, 13 (11) (2018), pp. 983-985.
|
[2] |
K. Kümmerer. Antibiotics in the aquatic environment—a review—part I. Chemosphere, 75 (4) (2009), pp. 417-434.
|
[3] |
E.Y. Klein, T.P. Van Boeckel, E.M. Martinez, S. Pant, S. Gandra, S.A. Levin, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci USA, 115 (15) (2018), pp. E3463-E3470.
|
[4] |
Z. Zhang, Q. Zhang, T. Wang, N. Xu, T. Lu, W. Hong, et al. Assessment of global health risk of antibiotic resistance genes. Nat Commun, 13 (1) (2022), p. 1553.
|
[5] |
S. Rodriguez-Mozaz, S. Chamorro, E. Marti, B. Huerta, M. Gros, A. Sànchez-Melsió, et al. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res, 69 (2015), pp. 234-242.
|
[6] |
C. Yang, L. Wang, H. Wang, H. Zhang, F. Wang, H. Zhou, et al. Dynamics of antibiotic resistance genes and microbial community in shortcut nitrification-denitrification process under antibiotic stresses. Environ Sci Pollut Res Int, 29 (31) (2022), pp. 46848-46858.
|
[7] |
P. Dadgostar. Antimicrobial resistance: implications and costs. Infect Drug Resist, 12 (2019), pp. 3903-3910.
|
[8] |
S. Qu, X. Huang, X. Song, Y. Wu, X. Ma, J. Shen, et al. A rigid nanoplatform for precise and responsive treatment of intracellular multidrug-resistant bacteria. Engineering, 15 (2022), pp. 57-66.
|
[9] |
C.J.L. Murray, K.S. Ikuta, F. Sharara, L. Swetschinski, G. Robles Aguilar, A. Gray, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet, 399 (10325) (2022), pp. 629-655.
|
[10] |
C.J.H. Von Wintersdorff, J. Penders, J.M. van Niekerk, N.D. Mills, S. Majumder, L.B. van Alphen, et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol, 7 (2016), p. 173.
|
[11] |
F.C. Tenover. Mechanisms of antimicrobial resistance in bacteria. Am J Med, 119 (6) (2006), pp. S3-S10.
|
[12] |
X. Shi, Y. Xia, W. Wei, B.J. Ni. Accelerated spread of antibiotic resistance genes (ARGs) induced by non-antibiotic conditions: roles and mechanisms. Water Res, 224 (2022), p. 119060.
|
[13] |
M.C. Dodd. Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment. J Environ Monit, 14 (7) (2012), pp. 1754-1771.
|
[14] |
Q. Sui, Y. Chen, D. Yu, T. Wang, Y. Hai, J. Zhang, et al. Fates of intracellular and extracellular antibiotic resistance genes and microbial community structures in typical swine wastewater treatment processes. Environ Int, 133 (2019), p. 105183.
|
[15] |
P.J. Vikesland, A. Pruden, P.J.J. Alvarez, D. Aga, H. Bürgmann, X.D. Li, et al. Toward a comprehensive strategy to mitigate dissemination of environmental sources of antibiotic resistance. Environ Sci Technol, 51 (22) (2017), pp. 13061-13069.
|
[16] |
P. Dong, H. Wang, T. Fang, Y. Wang, Q. Ye. Assessment of extracellular antibiotic resistance genes (eARGs) in typical environmental samples and the transforming ability of eARG. Environ Int, 125 (2019), pp. 90-96.
|
[17] |
W. Calero-Cáceres, M. Ye, J.L. Balcázar. Bacteriophages as environmental reservoirs of antibiotic resistance. Trends Microbiol, 27 (7) (2019), pp. 570-577.
|
[18] |
E. Marti, E. Variatza, J.L. Balcazar. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol, 22 (1) (2014), pp. 36-41.
|
[19] |
B.P. Bougnom, L.J.V. Piddock. Wastewater for urban agriculture: a significant factor in dissemination of antibiotic resistance. Environ Sci Technol, 51 (11) (2017), pp. 5863-5864.
|
[20] |
W.P.M. Rowe, C. Baker-Austin, D.W. Verner-Jeffreys, J.J. Ryan, C. Micallef, D.J. Maskell, et al. Overexpression of antibiotic resistance genes in hospital effluents over time. J Antimicrob Chemother, 72 (6) (2017), pp. 1617-1623.
|
[21] |
J.C.G. Sousa, A.R. Ribeiro, M.O. Barbosa, M.F.R. Pereira, A.M.T. Silva. A review on environmental monitoring of water organic pollutants identified by EU guidelines. J Hazard Mater, 344 (2018), pp. 146-162.
|
[22] |
P. Krzeminski, M.C. Tomei, P. Karaolia, A. Langenhoff, C.M.R. Almeida, E. Felis, et al. Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: a review. Sci Total Environ, 648 (2019), pp. 1052-1081.
|
[23] |
L. Cizmas, V.K. Sharma, C.M. Gray, T.J. McDonald. Pharmaceuticals and personal care products in waters: occurrence, toxicity, and risk. Environ Chem Lett, 13 (4) (2015), pp. 381-394.
|
[24] |
J. Lee, J.H. Jeon, J. Shin, H.M. Jang, S. Kim, M.S. Song, et al. Quantitative and qualitative changes in antibiotic resistance genes after passing through treatment processes in municipal wastewater treatment plants. Sci Total Environ, 605-606 (2017), pp. 906-914.
|
[25] |
G. Reichert, S. Hilgert, J. Alexander, J.C. Rodrigues de Azevedo, T. Morck, S. Fuchs, et al. Determination of antibiotic resistance genes in a WWTP-impacted river in surface water, sediment, and biofilm: influence of seasonality and water quality. Sci Total Environ, 768 (2021).
|
[26] |
J.L. Wilkinson, A.B.A. Boxall, D.W. Kolpin, K.M.Y. Leung, R.W.S. Lai, C. Galbán-Malagón, et al. Pharmaceutical pollution of the world’s rivers. Proc Natl Acad Sci USA, 119 (8) (2022), Article e2113947119.
|
[27] |
C. Uluseker, K.M. Kaster, K. Thorsen, D. Basiry, S. Shobana, M. Jain, et al. A review on occurrence and spread of antibiotic resistance in wastewaters and in wastewater treatment plants: mechanisms and perspectives. Front Microbiol, 12 (2021), p. 717809.
|
[28] |
S. Li, B.S. Ondon, S.H. Ho, Q. Zhou, F. Li. Drinking water sources as hotspots of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs): occurrence, spread, and mitigation strategies. J Water Process Eng, 53 (2023), p. 103907.
|
[29] |
H.C. Su, Y.S. Liu, C.G. Pan, J. Chen, L.Y. He, G.G. Ying. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: from drinking water source to tap water. Sci Total Environ, 616-617 (2018), pp. 453-461.
|
[30] |
D. Mackenzie. Ultraviolet light fights new virus. Engineering, 6 (8) (2020), pp. 851-853.
|
[31] |
V.K. Sharma, X. Yu, T.J. McDonald, C. Jinadatha, D.D. Dionysiou, M. Feng. Elimination of antibiotic resistance genes and control of horizontal transfer risk by UV-based treatment of drinking water: a mini review. Front Environ Sci Eng (2019; 13(3):37).
|
[32] |
Q. Hu, X.X. Zhang, S. Jia, K. Huang, J. Tang, P. Shi, et al. Metagenomic insights into ultraviolet disinfection effects on antibiotic resistome in biologically treated wastewater. Water Res, 101 (2016), pp. 309-317.
|
[33] |
S.S. Liu, H.M. Qu, D. Yang, H. Hu, W.L. Liu, Z.G. Qiu, et al. Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant. Water Res, 136 (2018), pp. 131-136.
|
[34] |
Q. Yuan, P. Yu, Y. Cheng, P. Zuo, Y. Xu, Y. Cui, et al. Chlorination (but not UV disinfection) generates cell debris that increases extracellular antibiotic resistance gene transfer via proximal adsorption to recipients and upregulated transformation genes. Environ Sci Technol, 56 (23) (2022), pp. 17166-17176.
|
[35] |
H. Liu, Z. Li, C. Liu, Z. Qiang, T. Karanfil, M. Yang. Elimination and redistribution of intracellular and extracellular antibiotic resistance genes in water and wastewater disinfection processes: a review. ACS EST Water, 2 (12) (2022), pp. 2273-2288.
|
[36] |
Y. Hu, T. Zhang, L. Jiang, Y. Luo, S. Yao, D. Zhang, et al. Occurrence and reduction of antibiotic resistance genes in conventional and advanced drinking water treatment processes. Sci Total Environ, 669 (2019), pp. 777-784.
|
[37] |
M.T. Guo, C. Kong. Antibiotic resistant bacteria survived from UV disinfection: safety concerns on genes dissemination. Chemosphere, 224 (2019), pp. 827-832.
|
[38] |
G. Zhang, W. Li, S. Chen, W. Zhou, J. Chen. Problems of conventional disinfection and new sterilization methods for antibiotic resistance control. Chemosphere, 254 (2020), p. 126831.
|
[39] |
M. Gmurek, E. Borowska, T. Schwartz, H. Horn. Does light-based tertiary treatment prevent the spread of antibiotic resistance genes? Performance, regrowth and future direction. Sci Total Environ, 817 (2022), p. 153001.
|
[40] |
Y. Zhang, Y.G. Zhao, F. Maqbool, Y. Hu. Removal of antibiotics pollutants in wastewater by UV-based advanced oxidation processes: influence of water matrix components, processes optimization and application: a review. J Water Process Eng, 45 (2022), p. 102496.
|
[41] |
Y. Yoon, H.J. Chung, D.Y. Wen Di, M.C. Dodd, H.G. Hur, Y. Lee. Inactivation efficiency of plasmid-encoded antibiotic resistance genes during water treatment with chlorine, UV, and UV/H2O2. Water Res, 123 (2017), pp. 783-793.
|
[42] |
Y. Hu, T. Zhang, L. Jiang, S. Yao, H. Ye, K. Lin, et al. Removal of sulfonamide antibiotic resistant bacterial and intracellular antibiotic resistance genes by UVC-activated peroxymonosulfate. Chem Eng J, 368 (2019), pp. 888-895.
|
[43] |
H. Lee, E. Lee, C.H. Lee, K. Lee. Degradation of chlorotetracycline and bacterial disinfection in livestock wastewater by ozone-based advanced oxidation. J Ind Eng Chem, 17 (3) (2011), pp. 468-473.
|
[44] |
T. Zhang, Y. Hu, L. Jiang, S. Yao, K. Lin, Y. Zhou, et al. Removal of antibiotic resistance genes and control of horizontal transfer risk by UV, chlorination and UV/chlorination treatments of drinking water. Chem Eng J, 358 (2019), pp. 589-597.
|
[45] |
E.A. Serna-Galvis, L. Salazar-Ospina, J.N. Jiménez, N.J. Pino, R.A. Torres-Palma. Elimination of carbapenem resistant Klebsiella pneumoniae in water by UV-C, UV-C/persulfate and UV-C/H2O2. Evaluation of response to antibiotic, residual effect of the processes and removal of resistance gene. J Environ Chem Eng, 8 (1) (2020), p. 102196.
|
[46] |
C. Zhou, J. Wu, L. Dong, B. Liu, D. Xing, S. Yang, et al. Removal of antibiotic resistant bacteria and antibiotic resistance genes in wastewater effluent by UV-activated persulfate. J Hazard Mater, 388 (2020), p. 122070.
|
[47] |
I. Arslan-Alaton, A. Karatas, Ö. Pehlivan, O. Koba Ucun, T. Ölmez-Hancı. Effect of UV-A-assisted iron-based and UV-C-driven oxidation processes on organic matter and antibiotic resistance removal in tertiary treated urban wastewater. Catal Today, 361 (2021), pp. 152-158.
|
[48] |
X. Meng, F. Li, L. Yi, M.Y. Dieketseng, X. Wang, L. Zhou, et al. Free radicals removing extracellular polymeric substances to enhance the degradation of intracellular antibiotic resistance genes in multi-resistant Pseudomonas Putida by UV/H2O2 and UV/peroxydisulfate disinfection processes. J Hazard Mater, 430 (2022), p. 128502.
|
[49] |
M. Umar, F. Roddick, L. Fan. Moving from the traditional paradigm of pathogen inactivation to controlling antibiotic resistance in water—role of ultraviolet irradiation. Sci Total Environ, 662 (2019), pp. 923-939.
|
[50] |
J. Zhong, B. Yang, F.Z. Gao, Q. Xiong, Y. Feng, Y. Li, et al. Performance and mechanism in degradation of typical antibiotics and antibiotic resistance genes by magnetic resin-mediated UV-Fenton process. Ecotoxicol Environ Saf, 227 (2021), p. 112908.
|
[51] |
X. Chen, W. Han, M. Patel, Q. Wang, Q. Li, S. Zhao, et al. Inactivation of a pathogenic NDM-1-positive Escherichia coli strain and the resistance gene blaNDM-1 by TiO2/UVA photocatalysis. Sci Total Environ, 846 (2022), p. 157369.
|
[52] |
T. Jäger, N. Hembach, C. Elpers, A. Wieland, J. Alexander, C. Hiller, et al. Reduction of antibiotic resistant bacteria during conventional and advanced wastewater treatment, and the disseminated loads released to the environment. Front Microbiol, 9 (2018), p. 2599.
|
[53] |
W. Xue, C. Zhang, D. Zhou. Positive and negative effects of recirculating aquaculture water advanced oxidation: O3 and O3/UV treatments improved water quality but increased antibiotic resistance genes. Water Res, 235 (2023), p. 119835.
|
[54] |
Y. Zhang, Y. Zhuang, J. Geng, H. Ren, Y. Zhang, L. Ding, et al. Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection. Sci Total Environ, 512-513 (2015), pp. 125-132.
|
[55] |
D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, U. Hübner. Evaluation of advanced oxidation processes for water and wastewater treatment—a critical review. Water Res, 139 (2018), pp. 118-131.
|
[56] |
X. Liu, J. Hu. Effect of DNA sizes and reactive oxygen species on degradation of sulphonamide resistance sul1 genes by combined UV/free chlorine processes. J Hazard Mater, 392 (2020), p. 122283.
|
[57] |
S. Phattarapattamawong, N. Chareewan, C. Polprasert. Comparative removal of two antibiotic resistant bacteria and genes by the simultaneous use of chlorine and UV irradiation (UV/chlorine): influence of free radicals on gene degradation. Sci Total Environ, 755 (2021), p. 142696.
|
[58] |
C. Ye, Y. Chen, L. Feng, K. Wan, J. Li, M. Feng, et al. Effect of the ultraviolet/chlorine process on microbial community structure, typical pathogens, and antibiotic resistance genes in reclaimed water. Front Environ Sci Eng, 16 (8) (2022), p. 100.
|
[59] |
S.S. Shekhawat, N.M. Kulshreshtha, V. Vivekanand, A.B. Gupta. Impact of combined chlorine and UV technology on the bacterial diversity, antibiotic resistance genes and disinfection by-products in treated sewage. Bioresour Technol, 339 (2021), p. 125615.
|
[60] |
H. Wang, J. Wang, S. Li, G. Ding, K. Wang, T. Zhuang, et al. Synergistic effect of UV/chlorine in bacterial inactivation, resistance gene removal, and gene conjugative transfer blocking. Water Res, 185 (2020), p. 116290.
|
[61] |
F. Zeng, S. Cao, W. Jin, X. Zhou, W. Ding, R. Tu, et al. Inactivation of chlorine-resistant bacterial spores in drinking water using UV irradiation, UV/hydrogen peroxide and UV/peroxymonosulfate: efficiency and mechanism. J Clean Prod, 243 (2020), p. 118666.
|
[62] |
N. Augsburger, N. Zaouri, H. Cheng, P.Y. Hong. The use of UV/H2O2 to facilitate removal of emerging contaminants in anaerobic membrane bioreactor effluents. Environ Res, 198 (2021), p. 110479.
|
[63] |
D. Das, A. Bordoloi, M.P. Achary, D.J. Caldwell, R.P.S. Suri. Degradation and inactivation of chromosomal and plasmid encoded resistance genes/ARBs and the impact of different matrices on UV and UV/H2O2 based advanced oxidation process. Sci Total Environ, 833 (2022), p. 155205.
|
[64] |
Y. Zhang, Y. Zhuang, J. Geng, H. Ren, K. Xu, L. Ding. Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes. Sci Total Environ, 550 (2016), pp. 184-191.
|
[65] |
S.G. Michael, I. Michael-Kordatou, S. Nahim-Granados, M.I. Polo-López, J. Rocha, A.B. Martínez-Piernas, et al. Investigating the impact of UV-C/H2O2 and sunlight/H2O2 on the removal of antibiotics, antibiotic resistance determinants and toxicity present in urban wastewater. Chem Eng J, 388 (2020), p. 124383.
|
[66] |
G. Ferro, F. Guarino, S. Castiglione, L. Rizzo. Antibiotic resistance spread potential in urban wastewater effluents disinfected by UV/H2O2 process. Sci Total Environ, 560-561 (2016), pp. 29-35.
|
[67] |
C. Guo, K. Wang, S. Hou, L. Wan, J. Lv, Y. Zhang, et al. H2O2 and/or TiO2 photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes. J Hazard Mater, 323 (2017), pp. 710-718.
|
[68] |
A.C. Miranda, M. Lepretti, L. Rizzo, I. Caputo, V. Vaiano, O. Sacco, et al. Surface water disinfection by chlorination and advanced oxidation processes: inactivation of an antibiotic resistant E. coli strain and cytotoxicity evaluation. Sci Total Environ, 554-555 (2016), pp. 1-6.
|
[69] |
V.G. Beretsou, I. Michael-Kordatou, C. Michael, D. Santoro, M. El-Halwagy, T. Jäger, et al. A chemical, microbiological and (eco)toxicological scheme to understand the efficiency of UV-C/H2O2 oxidation on antibiotic-related microcontaminants in treated urban wastewater. Sci Total Environ, 744 (2020), p. 140835.
|
[70] |
R. Gao, M. Yu, J. Xie, M. Sui. Inactivation of vancomycin-resistant Enterococcus faecalis and degradation of intracellular vanB gene under exposure to UV and UV/H2O2. J Water Process Eng, 49 (2022), p. 103004.
|
[71] |
I. Michael-Kordatou, M. Iacovou, Z. Frontistis, E. Hapeshi, D.D. Dionysiou, D. Fatta-Kassinos. Erythromycin oxidation and ERY-resistant Escherichia coli inactivation in urban wastewater by sulfate radical-based oxidation process under UV-C irradiation. Water Res, 85 (2015), pp. 346-358.
|
[72] |
S. Yao, Y. Hu, J. Ye, J. Xie, X. Zhao, L. Liu, et al. Disinfection and mechanism of super-resistant Acinetobacter sp. and the plasmid-encoded antibiotic resistance gene blaNDM-1 by UV/peroxymonosulfate. Chem Eng J, 433 (2022), p. 133565.
|
[73] |
I. Berruti, S. Nahim-Granados, M.J. Abeledo-Lameiro, I. Oller, M.I. Polo-López. UV- C peroxymonosulfate activation for wastewater regeneration: simultaneous inactivation of pathogens and degradation of contaminants of emerging concern. Molecules, 26 (16) (2021), p. 4890.
|
[74] |
T. Zhang, K. Lv, Q. Lu, L. Wang, X. Liu. Removal of antibiotic-resistant genes during drinking water treatment: a review. J Environ Sci, 104 (2021), pp. 415-429.
|
[75] |
J. Chen, S. Loeb, J.H. Kim. LED revolution: fundamentals and prospects for UV disinfection applications. Environ Sci Water Res Technol, 3 (2) (2017), pp. 188-202.
|
[76] |
Y. Li, M. Yang, X. Zhang, J. Jiang, J. Liu, C.F. Yau, et al. Two-step chlorination: a new approach to disinfection of a primary sewage effluent. Water Res, 108 (2017), pp. 339-347.
|
[77] |
Y. Zhang, W. Chu, T. Xu, D. Yin, B. Xu, P. Li, et al. Impact of pre-oxidation using H2O2 and ultraviolet/H2O2 on disinfection byproducts generated from chlor(am)ination of chloramphenicol. Chem Eng J, 317 (2017), pp. 112-118.
|
[78] |
L.C. Ferreira, M. Castro-Alférez, S. Nahim-Granados, M.I. Polo-López, M.S. Lucas, G. Li Puma, et al. Inactivation of water pathogens with solar photo-activated persulfate oxidation. Chem Eng J, 381 (2020), p. 122275.
|
[79] |
D. Wang, A.L. Junker, M. Sillanpää, Y. Jiang, Z. Wei. Photo-based advanced oxidation processes for zero pollution: where are we now?. Engineering, 23 (2023), pp. 19-23.
|
[80] |
G.Q. Li, Z.Y. Huo, Q.Y. Wu, Y. Lu, H.Y. Hu. Synergistic effect of combined UV-LED and chlorine treatment on Bacillus subtilis spore inactivation. Sci Total Environ, 639 (2018), pp. 1233-1240.
|
[81] |
L. Chen, S. Gao, L. Lou, Z. Zhou. Removal of intracellular and extracellular antibiotic resistance genes from swine wastewater by sequential electrocoagulation and electro-Fenton processes. Environ Eng Sci, 38 (2) (2021), pp. 74-80.
|
[82] |
L. Wang, C. Ye, L. Guo, C. Chen, X. Kong, Y. Chen, et al. Assessment of the UV/chlorine process in the disinfection of Pseudomonas aeruginosa: efficiency and mechanism. Environ Sci Technol, 55 (13) (2021), pp. 9221-9230.
|
[83] |
Y. Liu, X. He, Y. Fu, D.D. Dionysiou. Degradation kinetics and mechanism of oxytetracycline by hydroxyl radical-based advanced oxidation processes. Chem Eng J, 284 (2016), pp. 1317-1327.
|
[84] |
R. Xiao, K. Liu, L. Bai, D. Minakata, Y. Seo, R. Kaya Göktaş, et al. Inactivation of pathogenic microorganisms by sulfate radical: present and future. Chem Eng J, 371 (2019), pp. 222-232.
|
[85] |
X. Lu, Y. Shao, N. Gao, J. Chen, Y. Zhang, H. Xiang, et al. Degradation of diclofenac by UV-activated persulfate process: kinetic studies, degradation pathways and toxicity assessments. Ecotoxicol Environ Saf, 141 (2017), pp. 139-147.
|
[86] |
S. Khan, X. He, J.A. Khan, H.M. Khan, D.L. Boccelli, D.D. Dionysiou. Kinetics and mechanism of sulfate radical- and hydroxyl radical-induced degradation of highly chlorinated pesticide lindane in UV/peroxymonosulfate system. Chem Eng J, 318 (2017), pp. 135-142.
|
[87] |
X. He, A.A. de la Cruz, K.E. O’Shea, D.D. Dionysiou. Kinetics and mechanisms of cylindrospermopsin destruction by sulfate radical-based advanced oxidation processes. Water Res, 63 (2014), pp. 168-178.
|
[88] |
X. Duan, X. Niu, J. Gao, S. Wacławek, L. Tang, D.D. Dionysiou. Comparison of sulfate radical with other reactive species. Curr Opin Chem Eng, 38 (2022), p. 100867.
|
[89] |
Y. Zhang, Y.G. Zhao, D. Yang, Y. Zhao. Insight into the removal of tetracycline-resistant bacteria and resistance genes from mariculture wastewater by ultraviolet/persulfate advanced oxidation process. J Hazard Mater Adv, 7 (2022), p. 100129.
|
[90] |
T.T. More, J.S.S. Yadav, S. Yan, R.D. Tyagi, R.Y. Surampalli. Extracellular polymeric substances of bacteria and their potential environmental applications. J Environ Manage, 144 (2014), pp. 1-25.
|
[91] |
K. Fish, A.M. Osborn, J.B. Boxall. Biofilm structures (EPS and bacterial communities) in drinking water distribution systems are conditioned by hydraulics and influence discolouration. Sci Total Environ, 593-594 (2017), pp. 571-580.
|
[92] |
S. Jia, P. Shi, Q. Hu, B. Li, T. Zhang, X.X. Zhang. Bacterial community shift drives antibiotic resistance promotion during drinking water chlorination. Environ Sci Technol, 49 (20) (2015), pp. 12271-12279.
|
[93] |
Z. Zhang, B. Li, N. Li, M.F. Sardar, T. Song, C. Zhu, et al. Effects of UV disinfection on phenotypes and genotypes of antibiotic-resistant bacteria in secondary effluent from a municipal wastewater treatment plant. Water Res, 157 (2019), pp. 546-554.
|
[94] |
C.W. McKinney, A. Pruden. Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater. Environ Sci Technol, 46 (24) (2012), pp. 13393-13400.
|
[95] |
M. Nihemaiti, Y. Yoon, H. He, M.C. Dodd, J.P. Croué, Y. Lee. Degradation and deactivation of a plasmid-encoded extracellular antibiotic resistance gene during separate and combined exposures to UV254 and radicals. Water Res, 182 (2020), p. 115921.
|
[96] |
B.F. Kalisvaart. Re-use of wastewater: preventing the recovery of pathogens by using medium-pressure UV lamp technology. Water Sci Technol, 50 (6) (2004), pp. 337-344.
|
[97] |
S. Rattanakul, K. Oguma. Inactivation kinetics and efficiencies of UV-LEDs against Pseudomonas aeruginosa, Legionella pneumophila, and surrogate microorganisms. Water Res, 130 (2018), pp. 31-37.
|
[98] |
A.B. Soro, P. Whyte, D.J. Bolton, B.K. Tiwari. Modelling the effect of UV light at different wavelengths and treatment combinations on the inactivation of Campylobacter jejuni. Innov Food Sci Emerg Technol, 69 (2021), p. 102626.
|
[99] |
Z. Jing, Z. Lu, D. Santoro, Z. Zhao, Y. Huang, Y. Ke, et al. Which UV wavelength is the most effective for chlorine-resistant bacteria in terms of the impact of activity, cell membrane and DNA?. Chem Eng J, 447 (2022), p. 137584.
|
[100] |
Pirnie JP, Linden M, Malley KG. Ultraviolet disinfection guidance manual for the final long term 2 enhanced surface water treatment rule. EPA 815-R-06-007. Washington, DC: US Environmental Protection Agency; 2006.
|
[101] |
S. Ghosh, Y. Chen, J. Hu. Application of UVC and UVC based advanced disinfection technologies for the inactivation of antibiotic resistance genes and elimination of horizontal gene transfer activities: opportunities and challenges. Chem Eng J, 450 (2022), p. 138234.
|
[102] |
Clarke S, Bettin W. Ultraviolet light disinfection in the use of individual water purification devices. Harford: U.S. Army Center for Health Promotion and Preventive Medicine; 2006.
|
[103] |
Z. Wu, K. Guo, J. Fang, X. Yang, H. Xiao, S. Hou, et al. Factors affecting the roles of reactive species in the degradation of micropollutants by the UV/chlorine process. Water Res, 126 (2017), pp. 351-360.
|
[104] |
Y. Yeom, J. Han, X. Zhang, C. Shang, T. Zhang, X. Li, et al. A review on the degradation efficiency, DBP formation, and toxicity variation in the UV/chlorine treatment of micropollutants. Chem Eng J, 424 (2021), p. 130053.
|
[105] |
S. Yao, J. Ye, J. Xia, Y. Hu, X. Zhao, J. Xie, et al. Inactivation and photoreactivation of blaNDM-1-carrying super-resistant bacteria by UV, chlorination and UV/chlorination. J Hazard Mater, 439 (2022), p. 129549.
|
[106] |
Y. Xiao, L. Zhang, W. Zhang, K.Y. Lim, R.D. Webster, T.T. Lim. Comparative evaluation of iodoacids removal by UV/persulfate and UV/H2O2 processes. Water Res, 102 (2016), pp. 629-639.
|
[107] |
H. Ghodbane, O. Hamdaoui. Decolorization of antraquinonic dye, C.I. Acid Blue 25, in aqueous solution by direct UV irradiation, UV/H2O2 and UV/Fe(II) processes. Chem Eng J, 160 (1) (2010), pp. 226-231.
|
[108] |
C. Cui, L. Jin, L. Jiang, Q. Han, K. Lin, S. Lu, et al. Removal of trace level amounts of twelve sulfonamides from drinking water by UV-activated peroxymonosulfate. Sci Total Environ, 572 (2016), pp. 244-251.
|
[109] |
F. Rehman, M. Sayed, J.A. Khan, N.S. Shah, H.M. Khan, D.D. Dionysiou. Oxidative removal of brilliant green by UV/S2O82-, UV/HSO5- and UV/H2O2 processes in aqueous media: a comparative study. J Hazard Mater, 357 (2018), pp. 506-514.
|
[110] |
J.F. Gao, W.J. Duan, W.Z. Zhang, Z.L. Wu. Effects of persulfate treatment on antibiotic resistance genes abundance and the bacterial community in secondary effluent. Chem Eng J, 382 (2020), p. 121860.
|
[111] |
Y. Yang, C. Xu, X. Cao, H. Lin, J. Wang. Antibiotic resistance genes in surface water of eutrophic urban lakes are related to heavy metals, antibiotics, lake morphology and anthropic impact. Ecotoxicology, 26 (6) (2017), pp. 831-840.
|
[112] |
S. Zhang, Y. Wang, H. Song, J. Lu, Z. Yuan, J. Guo. Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera. Environ Int, 129 (2019), pp. 478-487.
|
[113] |
Q. Qiu, G. Li, Y. Dai, Y. Xu, P. Bao. Removal of antibiotic resistant microbes by Fe(II)-activated persulfate oxidation. J Hazard Mater, 396 (2020), p. 122733.
|
[114] |
C.A. Delcomyn, K.E. Bushway, M.V. Henley. Inactivation of biological agents using neutral oxone-chloride solutions. Environ Sci Technol, 40 (8) (2006), pp. 2759-2764.
|
[115] |
Y. Zhang, A.Z. Gu, T. Cen, X. Li, M. He, D. Li, et al. Sub- inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment. Environ Pollut, 237 (2018), pp. 74-82.
|
[116] |
M.Y. Lee, W.L. Wang, Y. Du, H.Y. Hu, N. Huang, Z. Xu, et al. Enhancement effect among a UV, persulfate, and copper (UV/PS/Cu2+) system on the degradation of nonoxidizing biocide: the kinetics, radical species, and degradation pathway. Chem Eng J, 382 (2020), p. 122312.
|
[117] |
A. Cai, J. Deng, T. Zhu, C. Ye, J. Li, S. Zhou, et al. Enhanced oxidation of carbamazepine by UV-LED/persulfate and UV-LED/H2O2 processes in the presence of trace copper ions. Chem Eng J, 404 (2021), p. 127119.
|
[118] |
C. Sichel, C. Garcia, K. Andre. Feasibility studies: UV/chlorine advanced oxidation treatment for the removal of emerging contaminants. Water Res, 45 (19) (2011), pp. 6371-6380.
|
[119] |
K. Guo, Z. Wu, S. Yan, B. Yao, W. Song, Z. Hua, et al. Comparison of the UV/chlorine and UV/H2O2 processes in the degradation of PPCPs in simulated drinking water and wastewater: kinetics, radical mechanism and energy requirements. Water Res, 147 (2018), pp. 184-194.
|
[120] |
Q. Wan, G. Wen, R. Cao, X. Xu, H. Zhao, K. Li, et al. Comparison of UV-LEDs and LPUV on inactivation and subsequent reactivation of waterborne fungal spores. Water Res, 173 (2020), p. 115553.
|
[121] |
Hong Kong Electrics. Non-residential tariff [Internet]. Hong Kong: HK Electric Investments Limited; undated [cited 2023 Jan 9]. Available from: https://www.hkelectric.com/en/customer-services/billing-payment-electricity-tariffs/non-residential-tariff.
|
[122] |
Y. Xiang, J. Fang, C. Shang. Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process. Water Res, 90 (2016), pp. 301-308.
|
[123] |
D.B. Miklos, W.L. Wang, K.G. Linden, J.E. Drewes, U. Hübner. Comparison of UV-AOPs (UV/H2O2, UV/PDS and UV/chlorine) for TOrC removal from municipal wastewater effluent and optical surrogate model evaluation. Chem Eng J, 362 (2019), pp. 537-547.
|
[124] |
J. Rodríguez-Chueca, S. Varella della Giustina, J. Rocha, T. Fernandes, C. Pablos, Á. Encinas, et al. Assessment of full-scale tertiary wastewater treatment by UV-C based-AOPs: removal or persistence of antibiotics and antibiotic resistance genes?. Sci Total Environ, 652 (2019), pp. 1051-1061.
|
[125] |
F.X. Tian, W.K. Ye, B. Xu, X.J. Hu, S.X. Ma, F. Lai, et al. Comparison of UV-induced AOPs (UV/Cl2, UV/NH2Cl, UV/ClO2 and UV/H2O2) in the degradation of iopamidol: kinetics, energy requirements and DBPs-related toxicity in sequential disinfection processes. Chem Eng J, 398 (2020), p. 125570.
|
[126] |
D. Li, Z. Feng, B. Zhou, H. Chen, R. Yuan. Impact of water matrices on oxidation effects and mechanisms of pharmaceuticals by ultraviolet-based advanced oxidation technologies: a review. Sci Total Environ, 844 (2022), p. 157162.
|
[127] |
Q. Zhao, C. Shang, X. Zhang, G. Ding, X. Yang. Formation of halogenated organic byproducts during medium-pressure UV and chlorine coexposure of model compounds, NOM and bromide. Water Res, 45 (19) (2011), pp. 6545-6554.
|
[128] |
Z. Hua, D. Li, Z. Wu, D. Wang, Y. Cui, X. Huang, et al. DBP formation and toxicity alteration during UV/chlorine treatment of wastewater and the effects of ammonia and bromide. Water Res, 188 (2021), p. 116549.
|
[129] |
C. Wang, N. Moore, K. Bircher, S. Andrews, R. Hofmann. Full-scale comparison of UV/H2O2 and UV/Cl2 advanced oxidation: the degradation of micropollutant surrogates and the formation of disinfection byproducts. Water Res, 161 (2019), pp. 448-458.
|
[130] |
M. Yang, X. Zhang. Comparative developmental toxicity of new aromatic halogenated DBPs in a chlorinated saline sewage effluent to the marine polychaete Platynereis dumerilii. Environ Sci Technol, 47 (19) (2013), pp. 10868-10876.
|
[131] |
E.D. Wagner, M.J. Plewa. CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: an updated review. J Environ Sci, 58 (2017), pp. 64-76.
|
[132] |
W.A. Mitch, S.D. Richardson, X. Zhang, M. Gonsior. High-molecular-weight by-products of chlorine disinfection. Nat Water, 1 (4) (2023), pp. 336-347. Crossref.
|
[133] |
S.D. Richardson, M.J. Plewa, E.D. Wagner, R. Schoeny, D.M. DeMarini. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutat Res, 636 (1-3) (2007), pp. 178-242.
|
[134] |
J.R. Han, X.R. Zhang, J.Y. Jiang, W.X. Li. How much of the total organic halogen and developmental toxicity of chlorinated drinking water might be attributed to aromatic halogenated DBPs?. Environ Sci Technol, 55 (9) (2021), pp. 5906-5916.
|
[135] |
J.R. Han, X.R. Zhang. Evaluating the comparative toxicity of DBP mixtures from different disinfection scenarios: a new approach by combining freeze-drying or rotoevaporation with a marine polychaete bioassay. Environ Sci Technol, 52 (18) (2018), pp. 10552-10561.
|
[136] |
Y. Luo, L. Feng, Y. Liu, L. Zhang. Disinfection by-products formation and acute toxicity variation of hospital wastewater under different disinfection processes. Separ Purif Tech, 238 (2020), p. 116405.
|