[1] |
N. Guo, M.C. Leu. Additive manufacturing: technology, applications and research needs. Front Mech Eng, 8 (3) (2013), pp. 215-243.
|
[2] |
Y. Song, Y. Yan, R. Zhang, D. Xu, F. Wang. Manufacture of the die of an automobile deck part based on rapid prototyping and rapid tooling technology. J Mater Process Technol, 120 (1-3) (2002), pp. 237-242.
|
[3] |
Vilaro T, Abed S, Knapp W. Direct manufacturing of technical parts using selective laser melting:example of automotive application. In: Proceedings of 12th European Forum on Rapid Prototyping; 2008 Mar 5-6; Paris, France. Paris: French Rapid Prototyping and additive manufacturing Association (AFPR); 2008.
|
[4] |
J. Giannatsis, V. Dedoussis. Additive fabrication technologies applied to medicine and health care: a review. Int J Adv Manuf Technol, 40 (1-2) (2009), pp. 116-127.
|
[5] |
E. Sachlos. J. Czernuszka. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater, 5 (2003), pp. 29-40.
|
[6] |
L. Moroni, J.A. Burdick, C. Highley, S.J. Lee, Y. Morimoto, S. Takeuchi, et al. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat Rev Mater, 3 (5) (2018), pp. 21-37.
|
[7] |
Y. Chen, J. Zhang, X. Liu, S. Wang, J. Tao, Y. Huang, et al. Noninvasive in vivo 3D bioprinting. Sci Adv, 6 (23) (2020), eaba7406.
|
[8] |
S. Kyle, Z.M. Jessop, A. Al-Sabah, I.S. Whitaker. ‘Printability’ of candidate biomaterials for extrusion based 3D printing: state-of-the-art. Adv Healthc Mater, 6 (16) (2017), p. 1700264.
|
[9] |
S. Kundu (Ed.), Silk biomaterials for tissue engineering and regenerative medicine, Elsevier, Amsterdam (2014).
|
[10] |
B. Kundu, R. Rajkhowa, S.C. Kundu, X. Wang. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev, 65 (4) (2013), pp. 457-470.
|
[11] |
Y. Yang, X. Chen, F. Ding, P. Zhang, J. Liu, X. Gu. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials, 28 (9) (2007), pp. 1643-1652.
|
[12] |
S. Hofmann, H. Hagenmüller, A.M. Koch, R. Müller, G. Vunjak-Novakovic, D.L. Kaplan, et al. Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds. Biomaterials, 28 (6) (2007), pp. 1152-1162.
|
[13] |
Y.P. Singh, N. Bhardwaj, B.B. Mandal. Potential of agarose/silk fibroin blended hydrogel for in vitro cartilage tissue engineering. ACS Appl Mater Interfaces, 8 (33) (2016), pp. 21236-21249.
|
[14] |
L. Shi, F. Wang, W. Zhu, Z. Xu, S. Fuchs, J. Hilborn, et al. Self-healing silk fibroin-based hydrogel for bone regeneration: dynamic metal-ligand self-assembly approach. Adv Funct Mater, 27 (37) (2017), p. 1700591.
|
[15] |
M.J. Rodriguez, J. Brown, J. Giordano, S.J. Lin, F.G. Omenetto, D.L. Kaplan. Silk based bioinks for soft tissue reconstruction using 3-dimensional (3D) printing with in vitro and in vivo assessments. Biomaterials, 117 (2017), pp. 105-115.
|
[16] |
S.Y. Park, C.S. Ki, Y.H. Park, H.M. Jung, K.M. Woo, H.J. Kim. Electrospun silk fibroin scaffolds with macropores for bone regeneration: an in vitro and in vivo study. Tissue Eng Part A, 16 (4) (2010), pp. 1271-1279.
|
[17] |
W. Zhang, J. He, X. Li, Y. Liu, W. Bian, D. Li, et al. Fabrication and in vivo implantation of ligament-bone composite scaffolds based on three-dimensional printing technique. Chin J Repar Reconstr Surg, 28 (3) (2014), pp. 314-317.Chinese.
|
[18] |
J. Melke, S. Midha, S. Ghosh, K. Ito, S. Hofmann. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater, 31 (2016), pp. 1-16.
|
[19] |
C.H. Chen, J. Liu, C.K. Chua, S.M. Chou, V. Shyu, J.P. Chen. Cartilage tissue engineering with silk fibroin scaffolds fabricated by indirect additive manufacturing technology. Materials, 7 (3) (2014), pp. 2104-2119.
|
[20] |
N. Bhardwaj, Q.T. Nguyen, A.C. Chen, D.L. Kaplan, R.L. Sah, S.C. Kundu. Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering. Biomaterials, 32 (25) (2011), pp. 5773-5781.
|
[21] |
C. Vepari, D.L. Kaplan. Silk as a biomaterial. Prog Polym Sci, 32 (8-9) (2007), pp. 991-1007.
|
[22] |
Y.K. Seo, H.H. Yoon, K.Y. Song, S.Y. Kwon, H.S. Lee, Y.S. Park, et al. Increase in cell migration and angiogenesis in a composite silk scaffold for tissue-engineered ligaments. J Orthop Res, 27 (4) (2009), pp. 495-503.
|
[23] |
ISO/ASTM 52900:2015E: Standard terminology for additive manufacturing-general principles-terminology. ISO and ASTM standard. New York: The World Trade Organization Technical Barriers to Trade (TBT) Committee; 2015.
|
[24] |
Wohlers T, Campbell RI, Huff R, Diegel O, Kowen J. 3D printing and additive manufacturing state of the industry 2019 Wohlers Report. Report. Colorado: Wohlers Associates; 2019.
|
[25] |
J. Zhang, B.J. Allardyce, R. Rajkhowa, X. Wang, X. Liu. 3D printing of silk powder by binder jetting technique. Addit Manuf, 38 (2021), 101820.
|
[26] |
G. Thilagavathi, S. Viju. Silk as a suture material. Advances in Silk Science and Technology, Woodhead Publishing, Cambridge (2015), pp. 219-232.
|
[27] |
Y. Huang, G. Sun, L. Lyu, Y. Li, D. Li, Q. Fan, et al. Dityrosine-inspired photocrosslinking technique for 3D printing of silk fibroin-based composite hydrogel scaffolds. Soft Matter, 18 (19) (2022), pp. 3705-3712.
|
[28] |
K. Luo, Y. Yang, Z. Shao. Physically crosslinked biocompatible silk-fibroin-based hydrogels with high mechanical performance. Adv Funct Mater, 26 (6) (2016), pp. 872-880.
|
[29] |
P.H.G. Chao, S. Yodmuang, X. Wang, L. Sun, D.L. Kaplan, G. Vunjak-Novakovic. Silk hydrogel for cartilage tissue engineering. J Biomed Mater Res B Appl Biomater, 95B (1) (2010), pp. 84-90.
|
[30] |
U.J. Kim, J. Park, C. Li, H.J. Jin, R. Valluzzi, D.L. Kaplan. Structure and properties of silk hydrogels. Biomacromolecules, 5 (3) (2004), pp. 786-792.
|
[31] |
J. Rnjak-Kovacina, L.S. Wray, K.A. Burke, T. Torregrosa, J.M. Golinski, W. Huang, et al. Lyophilized silk sponges: a versatile biomaterial platform for soft tissue engineering. ACS Biomater Sci Eng, 1 (4) (2015), pp. 260-270.
|
[32] |
S.S. Silva, A. Motta, M.T. Rodrigues, A.F. Pinheiro, M.E. Gomes, J.F. Mano, et al. Novel genipin-cross-linked chitosan/silk fibroin sponges for cartilage engineering strategies. Biomacromolecules, 9 (10) (2008), pp. 2764-2774.
|
[33] |
S. Lu, X. Wang, Q. Lu, X. Zhang, J.A. Kluge, N. Uppal, et al. Insoluble and flexible silk films containing glycerol. Biomacromolecules, 11 (1) (2010), pp. 143-150.
|
[34] |
M.K. Gupta, S.K. Khokhar, D.M. Phillips, L.A. Sowards, L.F. Drummy, M.P. Kadakia, et al. Patterned silk films cast from ionic liquid solubilized fibroin as scaffolds for cell growth. Langmuir, 23 (3) (2007), pp. 1315-1319.
|
[35] |
B.J. Allardyce, M. Atlas, R. Dilley, X. Wang. Silk films as a repair material for perforations of the tympanic membrane. B. Allardyce, R. Rajkhowa, M.D. Atlas, R.J. Dilley, X. Wang (Eds.), Proceedings of the 89th Textile Institute World Conference; 2014 Dec 2-6; Fiber Society, Wuhan, China. Tokyo (2014), pp. 6-10.
|
[36] |
Yu Z. SF/chitosan scaffold material for liver tissue engineering [dissertation]. Beijing: Tsinghua University; 2009.
|
[37] |
B. Lotz, C.F. Colonna. The chemical structure and the crystalline structures of Bombyx mori silk fibroin. Biochimie, 61 (2) (1979), pp. 205-214.
|
[38] |
C.Z. Zhou, F. Confalonieri, M. Jacquet, R. Perasso, Z.G. Li, J. Janin. Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins, 44 (2) (2001), pp. 119-122.
|
[39] |
C.Z. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic, C. Esnault, T. Yang, et al. Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res, 28 (12) (2000), pp. 2413-2419.
|
[40] |
G. Xu, L. Gong, Z. Yang, X.Y. Liu. What makes spider silk fibers so strong? From molecular-crystallite network to hierarchical network structures. Soft Matter, 10 (13) (2014), pp. 2116-2123.
|
[41] |
L.F. Drummy, B.L. Farmer, R.R. Naik. Correlation of the beta-sheet crystal size in silk fibers with the protein amino acid sequence. Soft Matter, 3 (7) (2007), pp. 877-882.
|
[42] |
Hodgkinson T. Silk fibroin biomaterials for skin tissue engineering applications [dissertation]. Manchester: University of Manchester; 2014.
|
[43] |
R. Valluzzi, S.P. Gido, W. Muller, D.L. Kaplan. Orientation of silk III at the air-water interface. Int J Biol Macromol, 24 (2-3) (1999), pp. 237-242.
|
[44] |
J. Zhang, B.J. Allardyce, R. Rajkhowa, Y. Zhao, R.J. Dilley, S.L. Redmond, et al. 3D printing of silk particle-reinforced chitosan hydrogel structures and their properties. ACS Biomater Sci Eng, 4 (8) (2018), pp. 3036-3046.
|
[45] |
J. Zhang, B.J. Allardyce, R. Rajkhowa, S. Kalita, R.J. Dilley, X. Wang, et al. Silk particles, microfibres and nanofibres: a comparative study of their functions in 3D printing hydrogel scaffolds. Mater Sci Eng C, 103 (2019), 109784.
|
[46] |
R. Zhang, Y. Tao, Q. Xu, N. Liu, P. Chen, Y. Zhou, et al. Rheological and ion-conductive properties of injectable and self-healing hydrogels based on xanthan gum and silk fibroin. Int J Biol Macromol, 144 (2020), pp. 473-482.
|
[47] |
C. Vyas, J. Zhang, Ø. Øvrebø, B. Huang, I. Roberts, M. Setty, et al. 3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications. Mater Sci Eng C, 118 (2021), 111433.
|
[48] |
M. Umar, W.Y. Li, G.E. Bonacchini, K. Min, S. Arif, F.G. Omenetto, et al. Inkjet-printed lasing silk text on reusable distributed feedback boards. Opt Mater Express, 10 (3) (2020), pp. 818-830.
|
[49] |
L. Ma, A. Patil, R. Wu, Y. Zhang, Z. Meng, W. Zhang, et al. A capacitive humidity sensor based on all-protein embedded with gold nanoparticles @carbon composite for human respiration detection. Nanotechnology, 32 (19) (2021), 19LT01.
|
[50] |
M.K. DeBari, M.N. Keyser, M.A. Bai, R.D. Abbott. 3D printing with silk: considerations and applications. Connect Tissue Res, 61 (2) (2020), pp. 163-173.
|
[51] |
X.H. Tan, L. Liu, A. Mitryashkin, Y.Y. Wang, J.C.H. Goh. Silk fibroin as a bioink—a thematic review of functionalization strategies for bioprinting applications. ACS Biomater Sci Eng, 8 (8) (2022), pp. 3242-3270.
|
[52] |
P. Rider, Y. Zhang, C. Tse, Y. Zhang, D. Jayawardane, J. Stringer, et al. Biocompatible silk fibroin scaffold prepared by reactive inkjet printing. J Mater Sci, 51 (18) (2016), pp. 8625-8630.
|
[53] |
A. Antic, J. Zhang, N. Amini, D. Morton, K. Hapgood. Screening pharmaceutical excipient powders for use in commercial 3D binder jetting printers. Adv Powder Technol, 32 (7) (2021), pp. 2469-2483.
|
[54] |
H. Tao, B. Marelli, M. Yang, B. An, M.S. Onses, J.A. Rogers, et al. Inkjet printing of regenerated silk fibroin: from printable forms to printable functions. Adv Mater, 27 (29) (2015), pp. 4273-4279.
|
[55] |
P.M. Rider, I.M. Brook, P.J. Smith, C.A. Miller. Reactive inkjet printing of regenerated silk fibroin films for use as dental barrier membranes. Micromachines, 9 (2) (2018), p. 46.
|
[56] |
D.A. Gregory, P. Kumar, A. Jimenez-Franco, Y. Zhang, Y. Zhang, S.J. Ebbens, et al. Reactive inkjet printing and propulsion analysis of silk-based self-propelled micro-stirrers. Jove-J Vis Exp, 146 (2019), e59030.
|
[57] |
Y. Zhang, D.A. Gregory, Y. Zhang, P.J. Smith, S.J. Ebbens, X. Zhao. Reactive inkjet printing of functional silk stirrers for enhanced mixing and sensing. Small, 15 (1) (2019), p. 1804213.
|
[58] |
Z. Liu, Z. Zhou, S. Zhang, L. Sun, Z. Shi, Y. Mao, et al. “Print-to-pattern”: silk-based water lithography. Small, 14 (47) (2018), p. 1802953.
|
[59] |
S. Limem, P. Calvert, H.J. Kim, D.L. Kaplan. Differentiation of bone marrow stem cells on inkjet printed silk lines. MRS Proc, 950 (2006).
|
[60] |
R. Suntivich, I. Drachuk, R. Calabrese, D.L. Kaplan, V.V. Tsukruk. Inkjet printing of silk nest arrays for cell hosting. Biomacromolecules, 15 (4) (2014), pp. 1428-1435.
|
[61] |
I. Drachuk, R. Suntivich, R. Calabrese, S. Harbaugh, N. Kelley-Loughnane, D.L. Kaplan, et al. Printed dual cell arrays for multiplexed sensing. ACS Biomater Sci Eng, 1 (5) (2015), pp. 287-294.
|
[62] |
A.M. Compaan, K. Christensen, Y. Huang. Inkjet bioprinting of 3D silk fibroin cellular constructs using sacrificial alginate. ACS Biomater Sci Eng, 3 (8) (2017), pp. 1519-1526.
|
[63] |
J.N. Huang, Z.J. Xu, W. Qiu, F. Chen, Z.H. Meng, C. Hou, et al. Stretchable and heat-resistant protein-based electronic skin for human thermoregulation. Adv Funct Mater, 30 (13) (2020), p. 1910547.
|
[64] |
C. Guo, C. Li, H.V. Vu, P. Hanna, A. Lechtig, Y. Qiu, et al. Thermoplastic moulding of regenerated silk. Nat Mater, 19 (1) (2020), pp. 102-108.
|
[65] |
J. Cesarano, R. Segalman, P. Calvert. Robocasting provides mouldless fabrication from slurry deposition. Ceram Ind, 148 (4) (1998), pp. 94-96.
|
[66] |
Cesarano J III. Calvert P, inventor. Corporation S, assignee. Freeforming objects with low-binder slurry. United States patent US 06027326A. 2000 Feb 22.
|
[67] |
M. Mooney. Explicit formulas for slip and fluidity. J Rheol, 2 (2) (1931), pp. 210-222.
|
[68] |
R.H. Christopher, S. Middleman. Power-law flow through a packed tube. Ind Eng Chem Fundam, 4 (4) (1965), pp. 422-426.
|
[69] |
M. Schaffner, J.A. Faber, L. Pianegonda, P.A. Rühs, F. Coulter, A.R. Studart. 3D printing of robotic soft actuators with programmable bioinspired architectures. Nat Commun, 9 (1) (2018), p. 878.
|
[70] |
S.V. Murphy, A. Atala. 3D bioprinting of tissues and organs. Nat Biotechnol, 32 (8) (2014), pp. 773-785.
|
[71] |
X. Mu, C. Gonzalez-Obeso, Z. Xia, J.K. Sahoo, G. Li, P. Cebe, et al. 3D printing of monolithic proteinaceous cantilevers using regenerated silk fibroin. Molecules, 27 (7) (2022), p. 2148.
|
[72] |
E. Kim, J.M. Seok, S.B. Bae, S.A. Park, W.H. Park. Silk fibroin enhances cytocompatibilty and dimensional stability of alginate hydrogels for light-based three-dimensional bioprinting. Biomacromolecules, 22 (5) (2021), pp. 1921-1931.
|
[73] |
F.B. Kadumudi, M. Hasany, M.K. Pierchala, M. Jahanshahi, N. Taebnia, M. Mehrali, et al. The manufacture of unbreakable bionics via multifunctional and self-healing silk-graphene hydrogels. Adv Mater, 33 (35) (2021), p. 2100047.
|
[74] |
L. Huang, W. Yuan, Y. Hong, S. Fan, X. Yao, T. Ren, et al. 3D printed hydrogels with oxidized cellulose nanofibers and silk fibroin for the proliferation of lung epithelial stem cells. Cellulose, 28 (1) (2021), pp. 241-257.
|
[75] |
J. Yang, C. Deng, M. Shafiq, Z. Li, Q. Zhang, H. Du, et al. Localized delivery of FTY-720 from 3D printed cell-laden gelatin/silk fibroin composite scaffolds for enhanced vascularized bone regeneration. Smart Mater Med, 3 (2022), pp. 217-229.
|
[76] |
X. Mu, Y. Wang, C. Guo, Y. Li, S. Ling, W. Huang, et al. 3D printing of silk protein structures by aqueous solvent-directed molecular assembly. Macromol Biosci, 20 (1) (2020), p. 1900191.
|
[77] |
Y.P. Singh, A. Bandyopadhyay, B.B. Mandal. 3D bioprinting using cross-linker-free silk-gelatin bioink for cartilage tissue engineering. ACS Appl Mater Interfaces, 11 (37) (2019), pp. 33684-33696.
|
[78] |
S. Das, F. Pati, Y.J. Choi, G. Rijal, J.H. Shim, S.W. Kim, et al. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater, 11 (2015), pp. 233-246.
|
[79] |
M. Milazzo, V. Fitzpatrick, C.E. Owens, I.M. Carraretto, G.H. McKinley, D.L. Kaplan, et al. 3D printability of silk/hydroxyapatite composites for microprosthetic applications. ACS Biomater Sci Eng, 9 (3) (2023), pp. 1285-1295.
|
[80] |
S. Ghosh, S.T. Parker, X. Wang, D.L. Kaplan, J.A. Lewis. Direct-write assembly of microperiodic silk fibroin scaffolds for tissue engineering applications. Adv Funct Mater, 18 (13) (2008), pp. 1883-1889.
|
[81] |
M.J. Rodriguez, T.A. Dixon, E. Cohen, W. Huang, F.G. Omenetto, D.L. Kaplan. 3D freeform printing of silk fibroin. Acta Biomater, 71 (2018), pp. 379-387.
|
[82] |
P. Ng, A.R. Pinho, M.C. Gomes, Y. Demidov, E. Krakor, D. Grume, et al. Fabrication of antibacterial, osteo-inductor 3D printed aerogel-based scaffolds by incorporation of drug laden hollow mesoporous silica microparticles into the self-assembled silk fibroin biopolymer. Macromol Biosci, 22 (4) (2022), p. 2100442.
|
[83] |
D. Gong, Q. Lin, Z. Shao, X. Chen, Y. Yang. Preparing 3D-printable silk fibroin hydrogels with robustness by a two-step crosslinking method. RSC Adv, 10 (45) (2020), pp. 27225-27234.
|
[84] |
D.L. Heichel, J.A. Tumbic, M.E. Boch, A.W. Ma, K.A. Burke. Silk fibroin reactive inks for 3D printing crypt-like structures. Biomed Mater, 15 (5) (2020), 055037.
|
[85] |
M. Zhou, X. Wu, J. Luo, G. Yang, Y. Lu, S. Lin, et al. Copper peptide-incorporated 3D-printed silk-based scaffolds promote vascularized bone regeneration. Chem Eng J, 422 (2021), 130147.
|
[86] |
A. Sharma, P. Rawal, D.M. Tripathi, D. Alodiya, S.K. Sarin, S. Kaur, et al. Upgrading hepatic differentiation and functions on 3D printed silk-decellularized liver hybrid scaffolds. ACS Biomater Sci Eng, 7 (8) (2021), pp. 3861-3873.
|
[87] |
S. Jiang, Z. Yu, L. Zhang, G. Wang, X. Dai, X. Lian, et al. Effects of different aperture-sized type I collagen/silk fibroin scaffolds on the proliferation and differentiation of human dental pulp cells. Regen Biomater, 8(4):rbab028 (2021).
|
[88] |
X.H. Li, X. Zhu, X.Y. Liu, H.H. Xu, W. Jiang, J.J. Wang, et al. The corticospinal tract structure of collagen/silk fibroin scaffold implants using 3D printing promotes functional recovery after complete spinal cord transection in rats. J Mater Sci: Mater Med, 32 (4) (2021), pp. 31-32.
|
[89] |
H. Li, N. Li, H. Zhang, Y. Zhang, H. Suo, L. Wang, et al. Three-dimensional bioprinting of perfusable hierarchical microchannels with alginate and silk fibroin double cross-linked network. 3D Print Addit Manuf, 7 (2020), pp. 78-84.
|
[90] |
Z. Zheng, J. Wu, M. Liu, H. Wang, C. Li, M.J. Rodriguez, et al. 3D bioprinting of self-standing silk-based bioink. Adv Healthc Mater, 7 (6) (2018), p. 1701026.
|
[91] |
V. Fitzpatrick, Z. Martín-Moldes, A. Deck, R. Torres-Sanchez, A. Valat, D. Cairns, et al. Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization. Biomaterials, 276 (2021), 120995.
|
[92] |
Q. Li, S. Xu, Q. Feng, Q. Dai, L. Yao, Y. Zhang, et al. 3D printed silk-gelatin hydrogel scaffold with different porous structure and cell seeding strategy for cartilage regeneration. Bioact Mater, 6 (10) (2021), pp. 3396-3410.
|
[93] |
B.K. Bhunia, S. Dey, A. Bandyopadhyay, B.B. Mandal. 3D printing of annulus fibrosus anatomical equivalents recapitulating angle-ply architecture for intervertebral disc replacement. Appl Mater Today, 23 (2021), 101031.
|
[94] |
N. Karamat-Ullah, Y. Demidov, M. Schramm, D. Grumme, J. Auer, C. Bohr, et al. 3D printing of antibacterial, biocompatible, and biomimetic hybrid aerogel-based scaffolds with hierarchical porosities via integrating antibacterial peptide-modified silk fibroin with silica nanostructure. ACS Biomater Sci Eng, 7 (9) (2021), pp. 4545-4556.
|
[95] |
P. Dorishetty, R. Balu, A. Gelmi, J.P. Mata, N.K. Dutta, N.R. Choudhury. 3D printable soy/silk hybrid hydrogels for tissue engineering applications. Biomacromolecules, 22 (9) (2021), pp. 3668-3678.
|
[96] |
H. Maleki, S. Montes, N. Hayati-Roodbari, F. Putz, N. Huesing. Compressible, thermally insulating, and fire retardant aerogels through self-assembling silk fibroin biopolymers inside a silica structure—an approach towards 3D printing of aerogels. ACS Appl Mater Interfaces, 10 (26) (2018), pp. 22718-22730.
|
[97] |
P. Dorishetty, R. Balu, S.S. Athukoralalage, T.L. Greaves, J. Mata, L. De Campo, et al. Tunable biomimetic hydrogels from silk fibroin and nanocellulose. ACS Sustain Chem & Eng, 8 (6) (2020), pp. 2375-2389.
|
[98] |
N. Zhong, T. Dong, Z. Chen, Y. Guo, Z. Shao, X. Zhao. A novel 3D-printed silk fibroin-based scaffold facilitates tracheal epithelium proliferation in vitro. J Biomater Appl, 34 (1) (2019), pp. 3-11.
|
[99] |
S.B. Bon, I. Chiesa, M. Degli Esposti, D. Morselli, P. Fabbri, C. De Maria, et al. Carbon nanotubes/regenerated silk composite as a three-dimensional printable bio-adhesive ink with self-powering properties. ACS Appl Mater Interfaces, 13 (18) (2021), pp. 21007-21017.
|
[100] |
D.K. Patel, S.D. Dutta, J. Hexiu, K. Ganguly, K.T. Lim. 3D-printable chitosan/silk fibroin/cellulose nanoparticle scaffolds for bone regeneration via M2 macrophage polarization. Carbohydr Polym, 281 (2022), 119077.
|
[101] |
L. Huang, X. Du, S. Fan, G. Yang, H. Shao, D. Li, et al. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Carbohydr Polym, 221 (2019), pp. 146-156.
|
[102] |
T. Huang, C. Fan, M. Zhu, Y. Zhu, W. Zhang, L. Li. 3D-printed scaffolds of biomineralized hydroxyapatite nanocomposite on silk fibroin for improving bone regeneration. Appl Surf Sci, 467-468 (2019), pp. 345-353.
|
[103] |
L. Wei, S. Wu, M. Kuss, X. Jiang, R. Sun, P. Reid, et al. 3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering. Bioact Mater, 4 (2019), pp. 256-260.
|
[104] |
J. Wang, A. Goyanes, S. Gaisford, A.W. Basit. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm, 503 (1-2) (2016), pp. 207-212.
|
[105] |
S. Wadnap, S. Krishnamoorthy, Z. Zhang, C. Xu. Biofabrication of 3D cell-encapsulated tubular constructs using dynamic optical projection stereolithography. J Mater Sci: Mater Med, 30 (3) (2019), p. 36.
|
[106] |
F.P. Melchels, J. Feijen, D.W. Grijpma. A review on stereolithography and its applications in biomedical engineering. Biomaterials, 31 (24) (2010), pp. 6121-6130.
|
[107] |
C.A. Murphy, K.S. Lim, T.B. Woodfield. Next evolution in organ-scale biofabrication: bioresin design for rapid high-resolution vat polymerization. Adv Mater, 34 (20) (2022), p. 2107759.
|
[108] |
S. Suri, L.H. Han, W. Zhang, A. Singh, S. Chen, C.E. Schmidt. Solid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering. Biomed Microdevices, 13 (6) (2011), pp. 983-993.
|
[109] |
C. Yu, J. Schimelman, P.R. Wang, K.L. Miller, X.Y. Ma, S.T. You, et al. Photopolymerizable biomaterials and light-based 3D printing strategies for biomedical applications. Chem Rev, 120 (19) (2020), pp. 10695-10743.
|
[110] |
M. Gastaldi, F. Cardano, M. Zanetti, G. Viscardi, C. Barolo, S. Bordiga, et al. Functional dyes in polymeric 3D printing: applications and perspectives. ACS Materials Lett, 3 (1) (2021), pp. 1-17.
|
[111] |
K. Yu, X.J. Zhang, Y. Sun, Q. Gao, J.Z. Fu, X.J. Cai, et al. Printability during projection-based 3D bioprinting. Bioact Mater, 11 (2022), pp. 254-267.
|
[112] |
S. Shin, H. Kwak, J. Hyun. Melanin nanoparticle-incorporated silk fibroin hydrogels for the enhancement of printing resolution in 3D-projection stereolithography of poly(ethylene glycol)-tetraacrylate bio-ink. ACS Appl Mater Interfaces, 10 (28) (2018), pp. 23573-23582.
|
[113] |
S.H. Kim, Y.K. Yeon, J.M. Lee, J.R. Chao, Y.J. Lee, Y.B. Seo, et al. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat Commun, 9 (1) (2018), p. 2350.
|
[114] |
O. Ajiteru, M.T. Sultan, Y.J. Lee, Y.B. Seo, H. Hong, J.S. Lee, et al. A 3D printable electroconductive biocomposite bioink based on silk fibroin-conjugated graphene oxide. Nano Lett, 20 (9) (2020), pp. 6873-6883.
|
[115] |
O. Ajiteru, K.Y. Choi, T.H. Lim, D.Y. Kim, H. Hong, Y.J. Lee, et al. A digital light processing 3D printed magnetic bioreactor system using silk magnetic bioink. Biofabrication, 13 (3) (2021), p. 034102.
|
[116] |
S. Egawa, H. Kurita, T. Kanno, F. Narita. Effect of silk fibroin concentration on the properties of polyethylene glycol dimethacrylates for digital light processing printing. Adv Eng Mater, 23 (9) (2021), p. 2100487.
|
[117] |
D. Shin, J. Hyun. Silk fibroin microneedles fabricated by digital light processing 3D printing. J Ind Eng Chem, 95 (2021), pp. 126-133.
|
[118] |
M. Xie, L. Lian, X. Mu, Z. Luo, C.E. Garciamendez-Mijares, Z. Zhang, et al. Volumetric additive manufacturing of pristine silk-based (bio)inks. Nat Commun, 14 (1) (2023), p. 210.
|
[119] |
H. Lee, D. Shin, S. Shin, J. Hyun. Effect of gelatin on dimensional stability of silk fibroin hydrogel structures fabricated by digital light processing 3D printing. J Ind Eng Chem, 89 (2020), pp. 119-127.
|
[120] |
K. Na, S. Shin, H. Lee, D. Shin, J. Baek, H. Kwak, et al. Effect of solution viscosity on retardation of cell sedimentation in DLP 3D printing of gelatin methacrylate/silk fibroin bioink. J Ind Eng Chem, 61 (2018), pp. 340-347.
|
[121] |
H. Kwak, S. Shin, H. Lee, J. Hyun. Formation of a keratin layer with silk fibroin-polyethylene glycol composite hydrogel fabricated by digital light processing 3D printing. J Ind Eng Chem, 72 (2019), pp. 232-240.
|
[122] |
H. Hong, Y.B. Seo, D.Y. Kim, J.S. Lee, Y.J. Lee, H. Lee, et al. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials, 232 (2020), 119679.
|
[123] |
R. Liang, X. Shen, C. Xie, Y. Gu, J. Li, H. Wu, et al. Silk gel recruits specific cell populations for scarless skin regeneration. Appl Mater Today, 23 (2021), 101004.
|
[124] |
S.H. Kim, Y.B. Seo, Y.K. Yeon, Y.J. Lee, H.S. Park, M.T. Sultan, et al. 4D-bioprinted silk hydrogels for tissue engineering. Biomaterials, 260 (2020), 120281.
|
[125] |
X. Mu, J.K. Sahoo, P. Cebe, D.L. Kaplan. Photo-crosslinked silk fibroin for 3D printing. Polymers, 12 (12) (2020), p. 2936.
|
[126] |
H. Kodama. Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer. Rev Sci Instrum, 52 (11) (1981), pp. 1770-1773.
|
[127] |
L.Y. Zhou, J. Fu, Y. He. A review of 3D printing technologies for soft polymer materials. Adv Funct Mater, 30 (28) (2020), p. 2000187.
|
[128] |
J.R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A.R. Johnson, D. Kelly, et al. Continuous liquid interface production of 3D objects. Science, 347 (6228) (2015), pp. 1349-1352.
|
[129] |
S.C. Ligon, R. Liska, J. Stampfl, M. Gurr, R. Mülhaupt. Polymers for 3D printing and customized additive manufacturing. Chem Rev, 117 (15) (2017), pp. 10212-10290.
|
[130] |
S. Wu, J. Serbin, M. Gu. Two-photon polymerisation for three-dimensional micro-fabrication. J Photochem Photobiol, 181 (1) (2006), pp. 1-11.
|
[131] |
F. Valente, M.S. Hepburn, J. Chen, A.A. Aldana, B.J. Allardyce, S. Shafei, et al. Bioprinting silk fibroin using two-photon lithography enables control over the physico-chemical material properties and cellular response. Bioprinting, 25 (2022), p. e00183.
|
[132] |
M. Pawlicki, H.A. Collins, R.G. Denning, H.L. Anderson. Two-photon absorption and the design of two-photon dyes. Angew Chem Int Edit, 48 (18) (2009), pp. 3244-3266.
|
[133] |
B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature, 398 (6722) (1999), pp. 51-54.
|
[134] |
Tibbits S, The emergence of “4D printing” [internet]. New York City: Technology, Entertainment, Design (TED) Conference; 2013 Feb [cited 2022 Dec 10]. Available from: https://www.ted.com/talks/skylar_tibbits_the_emergence_of_4d_printing
|
[135] |
X. Kuang, D.J. Roach, J. Wu, C.M. Hamel, Z. Ding, T. Wang, et al. Advances in 4D printing: materials and applications. Adv Funct Mater, 29 (2) (2019), p. 1805290.
|
[136] |
M.F. El-Kady, Y. Shao, R.B. Kaner. Graphene for batteries, supercapacitors and beyond. Nat Rev Mater, 1 (7) (2016), p. 16033.
|
[137] |
A. Lendlein, R. Langer. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science, 296 (5573) (2002), pp. 1673-1676.
|
[138] |
C. De Maria, I. Chiesa, D. Morselli, M.R. Ceccarini, S. Bittolo Bon, M. Degli Esposti, et al. Biomimetic tendrils by four dimensional printing bimorph springs with torsion and contraction properties based on bio-compatible graphene/silk fibroin and poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Adv Funct Mater, 31 (52) (2021), p. 2105665.
|
[139] |
H. Zheng, B. Zuo. Functional silk fibroin hydrogels: preparation, properties and applications. J Mater Chem B Mater Biol Med, 9 (5) (2021), pp. 1238-1258.
|
[140] |
X. Huang, M. Zhang, J. Ming, X. Ning, S. Bai. High-strength and high-toughness silk fibroin hydrogels: a strategy using dynamic host-guest interactions. ACS Appl Bio Mater, 3 (10) (2020), pp. 7103-7112.
|
[141] |
H. Liu, Z. Sun, C. Guo. Chemical modification of silk proteins: current status and future prospects. Adv Fiber Mater, 4 (4) (2022), pp. 705-719.
|
[142] |
A.R. Murphy, D.L. Kaplan. Biomedical applications of chemically-modified silk fibroin. J Mater Chem, 19 (36) (2009), pp. 6443-6450.
|
[143] |
D.L. Heichel, K.A. Burke. Dual-mode cross-linking enhances adhesion of silk fibroin hydrogels to intestinal tissue. ACS Biomater Sci Eng, 5 (7) (2019), pp. 3246-3259.
|