[1] |
P. Forster, T. Storelvmo, K. Armour, W. Collins, J.L. Dufresne, D. Frame, et al. The Earth’s energy budget, climate feedbacks, and climate sensitivity.V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger (Eds.), Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge (2021), pp. 923-1054
|
[2] |
H. Shi, D. Yang, W. Wang, D. Fu, L. Gao, J. Zhang, et al. First estimation of high-resolution solar photovoltaic resource maps over China with Fengyun-4A satellite and machine learning. Renew Sustain Energy Rev, 184 (2023), Article 113549
|
[3] |
J.H. Seinfeld, C. Bretherton, K.S. Carslaw, H. Coe, P.J. DeMott, E.J. Dunlea, et al. Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system. Proc Natl Acad Sci USA, 113 (21) (2016), pp. 5781-5790
|
[4] |
A.A. Chudnovsky, P. Koutrakis, I. Kloog, S. Melly, F. Nordio, A. Lyapustin, et al. Fine particulate matter predictions using high resolution aerosol optical depth (AOD) retrievals. Atmos Environ, 89 (2014), pp. 189-198
|
[5] |
H. Che, X. Xia, H. Zhao, L. Li, K. Gui, Y. Zheng, et al. Aerosol optical and radiative properties and their environmental effects in China: a review. Earth-Science Rev, 248 (2024), Article 104634
|
[6] |
E.W. Butt, A. Rap, A. Schmidt, C.E. Scott, K.J. Pringle, C.L. Reddington, et al. The impact of residential combustion emissions on atmospheric aerosol, human health, and climate. Atmos Chem Phys, 16 (2) (2016), pp. 873-905
|
[7] |
F.M. Bréon, A. Vermeulen, J. Descloitres. An evaluation of satellite aerosol products against sunphotometer measurements. Remote Sens Environ, 115 (12) (2011), pp. 3102-3111
|
[8] |
G. de Leeuw, T. Holzer-Popp, S. Bevan, W.H. Davies, J. Descloitres, R.G. Grainger, et al. Evaluation of seven European aerosol optical depth retrieval algorithms for climate analysis. Remote Sens Environ, 162 (2015), pp. 295-315
|
[9] |
A. Mhawish, M. Sorek-Hamer, R. Chatfield, T. Banerjee, M. Bilal, M. Kumar, et al. Aerosol characteristics from earth observation systems: a comprehensive investigation over South Asia (2000-2019). Remote Sens Environ, 259 (2021), Article 112410
|
[10] |
X. Xia, H. Che, H. Shi, H. Chen, X. Zhang, P. Wang, et al. Advances in sunphotometer-measured aerosol optical properties and related topics in China: impetus and perspectives. Atmos Res, 249 (2021), Article 105286
|
[11] |
C.A. Gueymard, D. Yang. Worldwide validation of CAMS and MERRA-2 reanalysis aerosol optical depth products using 15 years of AERONET observations. Atmos Environ, 225 (2020), Article 117216
|
[12] |
B.N. Holben, T.F. Eck, I. Slutsker, D. Tanré, J.P. Buis, A. Setzer, et al. AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sens Environ, 66 (1) (1998), pp. 1-16
|
[13] |
D.M. Giles, A. Sinyuk, M.G. Sorokin, J.S. Schafer, A. Smirnov, I. Slutsker, et al. Advancements in the Aerosol Robotic Network (AERONET) version 3 database—automated near-real-time quality control algorithm with improved cloud screening for sun photometer aerosol optical depth (AOD) measurements. Atmos Meas Tech, 12 (1) (2019), pp. 169-209
|
[14] |
T. Nakajima, M. Campanelli, H. Che, V. Estellés, H. Irie, S.W. Kim, et al. An overview of and issues with sky radiometer technology and SKYNET. Atmos Meas Tech, 13 (8) (2020), pp. 4195-4218
|
[15] |
H. Che, X. Xia, H. Zhao, O. Dubovik, B.N. Holben, P. Goloub, et al. Spatial distribution of aerosol microphysical and optical properties and direct radiative effect from the China aerosol remote sensing network. Atmos Chem Phys, 19 (18) (2019), pp. 11843-11864
|
[16] |
J. Xin, Y.Y. Wang, Y. Pan, D. Ji, Z. Liu, T. Wen, et al. The campaign on atmospheric aerosol research network of China: CARE-China. Bull Am Meteorol Soc, 96 (7) (2015), pp. 1137-1155
|
[17] |
Z.Q. Li, H. Xu, K.T. Li, D.H. Li, Y.S. Xie, L. Li, et al. Comprehensive study of optical, physical, chemical, and radiative properties of total columnar atmospheric aerosols over China: an overview of Sun-Sky Radiometer Observation Network (SONET) measurements. Bull Am Meteorol Soc, 99 (4) (2018), pp. 739-755
|
[18] |
J. Schmetz, P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, et al. An introduction to Meteosat Second Generation (MSG). Bull Am Meteorol Soc, 83 (7) (2002), pp. 977-992
|
[19] |
K. Bessho, K. Date, M. Hayashi, A. Ikeda, T. Imai, H. Inoue, et al. An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J Meteorol Soc Jpn, 94 (2) (2016), pp. 151-183
|
[20] |
H. Choi, S. Park, Y. Kang, J. Im, S. Song. Retrieval of hourly PM2.5 using top-of-atmosphere reflectance from geostationary ocean color imagers I and II. Environ Pollut, 323 (2023), Article 121169
|
[21] |
J. Yang, Z. Zhang, C. Wei, F. Lu, Q. Guo. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull Am Meteorol Soc, 98 (8) (2017), pp. 1637-1658
|
[22] |
P. Zhang, L. Zhu, S. Tang, L. Gao, L. Chen, W. Zheng, et al. General comparison of FY-4A/AGRI with other GEO/LEO instruments and its potential and challenges in non-meteorological applications. Front Earth Sci, 6 (2019), p. 224
|
[23] |
Y.J. Kaufman, D. Tanré, L.A. Remer, E.F. Vermote, A. Chu, B.N. Holben. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J Geophys Res Atmos, 102 (D14) (1997), pp. 17051-17067
|
[24] |
N.C. Hsu, S.-C. Tsay, M.D. King, J.R. Herman. Aerosol properties over bright-reflecting source regions. IEEE Trans Geosci Remote Sens, 42 (3) (2004), pp. 557-569
|
[25] |
N.C. Hsu, M.J. Jeong, C. Bettenhausen, A.M. Sayer, R. Hansell, C.S. Seftor, et al. Enhanced Deep Blue aerosol retrieval algorithm: the second generation. J Geophys Res Atmos, 118 (16) (2013), pp. 9296-9315
|
[26] |
N.C.C. Hsu, J. Lee, A.M.M. Sayer, N. Carletta, S.H.H. Chen, C.J.J. Tucker, et al. Retrieving near-global aerosol loading over land and ocean from AVHRR. J Geophys Res Atmos, 122 (18) (2017), pp. 9968-9989
|
[27] |
A. Lyapustin, Y. Wang, I. Laszlo, R. Kahn, S. Korkin, L. Remer, et al. Multiangle implementation of atmospheric correction (MAIAC): 2. aerosol algorithm. J Geophys Res Atmos, 116 (D3) (2011), Article D03211
|
[28] |
Dubovik O, Lapyonok T, Litvinov P, Herman M, Fuertes D, Ducos F, et al. GRASP: a versatile algorithm for characterizing the atmosphere [Internet]. Bellingham: SPIE Newsroom; 2019 Sep 19 [cited 2023 Oct 2]. Available from: https://spie.org/news/5558-grasp-a-versatile-algorithm-for-characterizing-the-atmosphere?SSO=1.
|
[29] |
NOAA NESDIS Center for Satellite Applications and Research STAR. GOES-R Advanced Baseline Imager (ABI) algorithm theoretical basis document for suspended matter/aerosol optical depth and aerosol size parameter. 4th ed. Maryland: NOAA NESDIS Center for Satellite Applications and Research (STAR); 2018.
|
[30] |
M. Yoshida, M. Kikuchi, T.M. Nagao, H. Murakami, T. Nomaki, A. Higurashi. Common retrieval of aerosol properties for imaging satellite sensors. J Meteor Soc Japan, 96B (2018), pp. 193-209
|
[31] |
L. She, H.K. Zhang, Z. Li, G. de Leeuw, B. Huang. Himawari-8 aerosol optical depth (AOD) retrieval using a deep neural network trained using AERONET observations. Remote Sens, 12 (24) (2020), p. 4125
|
[32] |
J.M.M. Yeom, S. Jeong, J.S.S. Ha, K.H.H. Lee, C.S.S. Lee, S. Park. Estimation of the hourly aerosol optical depth from GOCI geostationary satellite data: deep neural network, machine learning, and physical models. IEEE Trans Geosci Remote Sens, 60 (2022), pp. 1-12
|
[33] |
Y. Kang, M. Kim, E. Kang, D. Cho, J. Im. Improved retrievals of aerosol optical depth and fine mode fraction from GOCI geostationary satellite data using machine learning over East Asia. ISPRS J Photogramm Remote Sens, 183 (2022), pp. 253-268
|
[34] |
X. Chen, G. De Leeuw, A. Arola, S. Liu, Y. Liu, Z. Li, et al. Joint retrieval of the aerosol fine mode fraction and optical depth using MODIS spectral reflectance over northern and eastern China: artificial neural network method. Remote Sens Environ, 249 (2020), Article 112006
|
[35] |
X. Jiang, Y. Xue, C. Jin, R. Bai, Y. Sun, S. Wu. A simple Band Ratio Library (BRL) algorithm for retrieval of hourly aerosol optical depth using FY-4A AGRI geostationary satellite data. Remote Sens, 14 (19) (2022), p. 4861
|
[36] |
Y. Xie, Z. Li, J. Guang, W. Hou, A. Salam, Z. Ali, et al. Aerosol optical depth retrieval over South Asia using FY-4A/AGRI data. IEEE Trans Geosci Remote Sens, 60 (2022), pp. 1-14
|
[37] |
H. Ding, L. Zhao, S. Liu, X. Chen, G. de Leeuw, F. Wang, et al. FY-4A/AGRI aerosol optical depth retrieval capability test and validation based on NNAeroG. Remote Sens, 14 (21) (2022), p. 5591
|
[38] |
M. Min, C. Wu, C. Li, H. Liu, N. Xu, X. Wu, et al. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series. J Meteorol Res, 31 (4) (2017), pp. 708-719
|
[39] |
C. Cox, W. Munk. Measurement of the roughness of the sea surface from photographs of the Sun’s glitter. J Opt Soc Am, 44 (11) (1954), pp. 838-850
|
[40] |
H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, et al. The ERA 5 global reanalysis. Q J Roy Meteor Soc, 146 (730) (2020), pp. 1999-2049
|
[41] |
D. Fu, C.A. Gueymard, D. Yang, Y. Zheng, X. Xia, J. Bian. Improving aerosol optical depth retrievals from Himawari-8 with ensemble learning enhancement: validation over Asia. Atmos Res, 284 (2023), Article 106624
|
[42] |
D. Sulla-Menashe, M.A. Friedl. User guide to collection 6 MODIS Land Cover Dynamics (MCD12Q2) product. Missoula: NASA EOSDIS L. Processes DAAC (2018), pp. 1-8
|
[43] |
M. Bilal, J.E. Nichol, M.P. Bleiweiss, D. Dubois. A simplified high resolution MODIS aerosol retrieval algorithm (SARA) for use over mixed surfaces. Remote Sens Environ, 136 (2013), pp. 135-145
|
[44] |
X. Su, L. Wang, M. Zhang, W. Qin, M. Bilal. A High-precision aerosol retrieval algorithm (HiPARA) for Advanced Himawari Imager (AHI) data: development and verification. Remote Sens Environ, 253 (2021), Article 112221
|
[45] |
Y. Chen, M. Fan, M. Li, Z. Li, J. Tao, Z. Wang, et al. Himawari-8/AHI aerosol optical depth detection based on machine learning algorithm. Remote Sens, 14 (13) (2022), p. 2967
|
[46] |
Y. Hu, L. Liu, L. Liu, D. Peng, Q. Jiao, H. Zhang. A landsat-5 atmospheric correction based on MODIS atmosphere products and 6s model. IEEE J Sel Top Appl Earth Obs Remote Sens, 7 (5) (2014), pp. 1609-1615
|
[47] |
Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521 (7553) (2015), pp. 436-444
|
[48] |
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016); 2016 Jun 27-30; Las Vegas, NV, USA. New York City: Institute of Electrical and Electronics Engineers (IEEE); 2016. p. 770-8.
|
[49] |
W. Weng, X. Zhu. U-Net: convolutional networks for biomedical image segmentation. IEEE Access, 9 (2021), pp. 16591-16603
|
[50] |
Drozdzal M, Vorontsov E, Chartrand G, Kadoury S, Pal C. The importance of skip connections in biomedical image segmentation. In:Proceedings of the International Workshop on Deep Learning in Medical Image Analysis (DLMIA 2016); 2016 Oct 21; Athens, Greece. Berlin:Springer; 2016. p. 179-87.
|
[51] |
Kingma DP, Ba JL. Adam: a method for stochastic optimization. arXiv 2014; 1412:6980.
|
[52] |
Ren J, Zhang M, Yu C, Liu Z. Balanced MSE for imbalanced visual regression. In: Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022); 2022 Jun 21-24; New Orleans, LA, USA. New York City: Institute of Electrical and Electronics Engineers (IEEE); 2022. p. 7916-25.
|
[53] |
M. Steininger, K. Kobs, P. Davidson, A. Krause, A. Hotho. Density-based weighting for imbalanced regression. Mach Learn, 110 (8) (2021), pp. 2187-2211
|
[54] |
Y. Tan, Q. Wang, Z. Zhang. Assessing spatiotemporal variations of AOD in Japan based on Himawari-8 L3 V31 aerosol products: validations and applications. Atmos Pollut Res, 13 (6) (2022), Article 101439
|
[55] |
L. Feng, X. Su, L. Wang, T. Jiang, M. Zhang, J. Wu, et al. Accuracy and error cause analysis, and recommendations for usage of Himawari-8 aerosol products over Asia and Oceania. Sci Total Environ, 796 (2021), Article 148958
|
[56] |
J. Yosinski, J. Clune, Y. Bengio, H. Lipson. How transferable are features in deep neural networks?. Adv Neural Inf Process Syst, 4 (2014), pp. 3320-3328
|
[57] |
Z. Liu, Q. Yang, J. Shao, G. Wang, H. Liu, X. Tang, et al. Improving daily precipitation estimation in the data scarce area by merging rain gauge and TRMM data with a transfer learning framework. J Hydrol, 613 (2022), Article 128455
|
[58] |
A.M. Sayer, L.A. Munchak, N.C. Hsu, R.C. Levy, C. Bettenhausen, M.J. Jeong. MODIS collection 6 aerosol products: comparison between Aqua’s e-deep blue, dark target, and “merged” data sets, and usage recommendations. J Geophys Res Atmos, 119 (24) (2014), pp. 13965-13989
|
[59] |
R.C. Levy, S. Mattoo, L.A. Munchak, L.A. Remer, A.M. Sayer, F. Patadia, et al. The collection 6 MODIS aerosol products over land and ocean. Atmos Meas Tech, 6 (11) (2013), pp. 2989-3034
|
[60] |
Jiang X, Xue Y, Jin C, Bai R, Li N, Sun Y. Retrieval of aerosol optical depth over land using Fy-4Aagri geostationary satellite data. In: Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS-2021; 2021 Jul 11-16; Brussels, Belgium. New York City: Institute of Electrical and Electronics Engineers (IEEE); 2021. p. 1931-4.
|
[61] |
Z. Song, D. Fu, X. Zhang, Y. Wu, X. Xia, J. He, et al. Diurnal and seasonal variability of PM2.5 and AOD in North China Plain: comparison of MERRA-2 products and ground measurements. Atmos Environ, 191 (2018), pp. 70-78
|
[62] |
P. Wang, Q. Tang, Y. Zhu, K. Zheng, T. Liang, Q. Yu, et al. Validation and analysis of MAIAC AOD aerosol products in East Asia from 2011 to 2020. Remote Sens, 14 (22) (2022), p. 5735
|
[63] |
A. Mhawish, T. Banerjee, M. Sorek-Hamer, A. Lyapustin, D.M. Broday, R. Chatfield. Comparison and evaluation of MODIS multi-angle implementation of atmospheric correction (MAIAC) aerosol product over South Asia. Remote Sens Environ, 224 (2019), pp. 12-28
|
[64] |
W. Qin, H. Fang, L. Wang, J. Wei, M. Zhang, X. Su, et al. MODIS high-resolution MAIAC aerosol product: global validation and analysis. Atmos Environ, 264 (2021), Article 118684
|
[65] |
Lundberg SM, Lee SI. A unified approach to interpreting model predictions. In: Proceedings of the 31st International Conference on Neural Information Processing Systems (NeurIPS 2017); 2017 Dec 4-9; Long Beach, CA, USA. New York City: the Association for Computing Machinery; 2017. p.4768-77.
|
[66] |
B. Chen, Z. Liu. Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of ECMWF and NCEP reanalysis, radiosonde, GPS, and microwave satellite. J Geophys Res Atmos, 121 (19) (2016), p. 238
|
[67] |
S. Wang, T. Xu, W. Nie, C. Jiang, Y. Yang, Z. Fang, et al. Evaluation of precipitable water vapor from five reanalysis products with ground-based GNSS observations. Remote Sens, 12 (11) (2020), p. 1817
|
[68] |
M. Ibrahim, A. Al-Mashaqbah, B. Koch, P. Datta. An evaluation of available digital elevation models (DEMs) for geomorphological feature analysis. Environ Earth Sci, 79 (13) (2020), p. 336
|