界面氢键作用助力隔膜吸附氢氟酸稳定高镍正极

Shijie Zhong, Liwei Dong, Botao Yuan, Yueyao Dong, Qun Li, Yuanpeng Ji, Yuanpeng Liu, Jiecai Han, Weidong He

工程(英文) ›› 2024, Vol. 39 ›› Issue (8) : 117-126.

PDF(3655 KB)
PDF(3655 KB)
工程(英文) ›› 2024, Vol. 39 ›› Issue (8) : 117-126. DOI: 10.1016/j.eng.2023.09.025
研究论文
Article

界面氢键作用助力隔膜吸附氢氟酸稳定高镍正极

作者信息 +

Stabilizing High-Nickel Cathodes via Interfacial Hydrogen Bonding Effects Using a Hydrofluoric Acid-Scavenging Separator

Author information +
History +

Abstract

Nickel-rich layered Li transition metal oxides are the most promising cathode materials for high-energy-density Li-ion batteries. However, they exhibit rapid capacity degradation induced by transition metal dissolution and structural reconstruction, which are associated with hydrofluoric acid (HF) generation from lithium hexafluorophosphate decomposition. The potential for thermal runaway during the working process poses another challenge. Separators are promising components to alleviate the aforementioned obstacles. Herein, an ultrathin double-layered separator with a 10 μ m polyimide (PI) basement and a 2 μ m polyvinylidene difluoride (PVDF) coating layer is designed and fabricated by combining a nonsolvent induced phase inversion process and coating method. The PI skeleton provides good stability against potential thermal shrinkage, and the strong PI-PVDF bonding endows the composite separator with robust structural integrity; these characteristics jointly contribute to the extraordinary mechanical tolerance of the separator at elevated temperatures. Additionally, unique HF-scavenging effects are achieved with the formation of - C O H - F hydrogen bonds for the abundant H F coordination sites provided by the imide ring; hence, the layered Ni-rich cathodes are protected from HF attack, which ultimately reduces transition metal dissolution and facilitates long-term cyclability of the Ni-rich cathodes. Li||NCM811 batteries (where "NCM" indicates L i N i x C o y M n 1 - x - y O 2) with the proposed composite separator exhibit a 90.6 % capacity retention after 400 cycles at room temperature and remain sustainable at 60 C with a 91.4 % capacity retention after 200 cycles. By adopting a new perspective on separators, this study presents a feasible and promising strategy for suppressing capacity degradation and enabling the safe operation of Ni-rich cathode materials.

Keywords

Nickel-rich cathodes / Composite separator / HF scavenging / Transition metal dissolution / Long-term cyclability

引用本文

导出引用
Shijie Zhong, Liwei Dong, Botao Yuan. 使用氢氟酸清除分离器通过界面氢键效应稳定高镍阴极. Engineering. 2024, 39(8): 117-126 https://doi.org/10.1016/j.eng.2023.09.025

参考文献

[1]
W. Liu, P. Oh, X. Liu, M.J. Lee, W. Cho, S. Chae, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew Chem Int Ed, 54 (15) (2015), pp. 4440-4457.
[2]
Mao M, Huang BH, Li QD, Wang CC, He YB, Kang FY. In-situ construction of hierarchical cathode electrolyte interphase for high performance LiNi0.8Co0.1Mn0.1O2/Li metal battery. Nano Energy 2020;78:105282.
[3]
L. Dong, S. Zhong, B. Yuan, Y. Li, J. Liu, Y. Ji, et al. Reconstruction of solid electrolyte interphase with SrI2 reactivates dead Li for durable anode-free Li-metal batteries. Angew Chem Int Ed, 62 (23) (2023), p. e202301073.
[4]
J. Xiao, Q.Y. Li, Y.J. Bi, M. Cai, B. Dunn, T. Glossmann, et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat Energy, 5 (8) (2020), pp. 561-568.
[5]
J. Liu, Z.N. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough, P. Khalifah, et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat Energy, 4 (3) (2019), pp. 180-186.
[6]
D.W. Wang, R.H. Kou, Y. Ren, C.J. Sun, H. Zhao, M.J. Zhang, et al. Synthetic control of kinetic reaction pathway and cationic ordering in high-Ni layered oxide cathodes. Adv Mater, 29 (39) (2017), p. 1606715.
[7]
M. Li, J. Lu, Z.W. Chen, K. Amine. 30 years of lithium-ion batteries. Adv Mater, 30 (33) (2018), p. 1800561.
[8]
S.T. Myung, F. Maglia, K.J. Park, C.S. Yoon, P. Lamp, S.J. Kim, et al. Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett, 2 (1) (2017), pp. 196-223.
[9]
X. Yu, R. Chen, L. Gan, H. Li, L. Chen. Battery safety: from lithium-ion to solid-state batteries. Engineering, 21 (2023), pp. 9-14.
[10]
S. Klein, J.M. Wrogemann, S. van Wickeren, P. Harte, P. Barmann, B. Heidrich, et al. Graphite lithium ion cells. Adv Energy Mater, 12 (2) (2022), p. 2102599.
[11]
J.A. Gilbert, I.A. Shkrob, D.P. Abraham. Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in lithium-ion full cells. J Electrochem Soc, 164 (2) (2017), pp. A389-A399.
[12]
S. Klein, P. Barmann, T. Beuse, K. Borzutzki, J.E. Frerichs, J. Kasnatscheew, et al. Graphite lithium-ion full cells operated at high voltage. ChemSusChem, 14 (2) (2021), pp. 595-613.
[13]
H.J. Guo, Y.P. Sun, Y. Zhao, G.X. Liu, Y.X. Song, J. Wan, et al. Surface degradation of single-crystalline Ni-rich cathode and regulation mechanism by atomic layer deposition in solid-state lithium batteries. Angew Chem Int Ed, 61 (48) (2022), p. e202211626.
[14]
C. Zhan, J. Lu, A.J. Jeremy Kropf, T.P. Wu, A.N. Jansen, Y.K. Sun, et al. Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate-carbon systems. Nat Commun, 4 (1) (2013), p. 2437.
[15]
C. Wang, L.D. Xing, J. Vatamanu, Z. Chen, G.Y. Lan, W.S. Li, et al. Overlooked electrolyte destabilization by manganese(II) in lithium-ion batteries. Nat Commun, 10 (1) (2019), p. 3423.
[16]
W.D. Li, X.M. Liu, Q. Xie, Y. You, M.F. Chi, A. Manthiram. Long-term cyclability of NCM-811 at high voltages in lithium-ion batteries: an in-depth diagnostic study. Chem Mater, 32 (18) (2020), pp. 7796-7804.
[17]
K. Kim, D. Hwang, S. Kim, S.O. Park, H. Cha, Y.S. Lee, et al. Cyclic aminosilane-based additive ensuring stable electrode-electrolyte interfaces in Li-ion batteries. Adv Energy Mater, 10 (15) (2020), p. 2000012.
[18]
I.A. Shkrob, A.J. Kropf, T.W. Marin, Y. Li, O.G. Poluektov, J. Niklas, et al. Manganese in graphite anode and capacity fade in Li ion batteries. J Phys Chem C, 118 (42) (2014), pp. 24335-24348.
[19]
D. Guyomard, J.M. Tarascon. Li metal-free rechargeable LiMn2O4/carbon cells: their understanding and optimization. J Electrochem Soc, 139 (4) (1992), pp. 937-948.
[20]
C. Zhan, T.P. Wu, J. Lu, K. Amine. Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes—a critical review. Energy Environ Sci, 11 (2) (2018), pp. 243-257.
[21]
L. Sheng, K. Yang, J. Chen, D. Zhu, L. Wang, J. Wang, et al. A protophilic MOF enables Ni-rich lithium-battery stable cycling in a high water/acid content. Adv Mater, 35 (25) (2023), p. 2212292.
[22]
B.L.D. Rinkel, J.P. Vivek, N. Garcia-Araez, C.P. Grey. Two electrolyte decomposition pathways at nickel-rich cathode surfaces in lithium-ion batteries. Energy Environ Sci, 15 (8) (2022), pp. 3416-3438.
[23]
X. Lai, C.Y. Jin, W. Yi, X.B. Han, X.N. Feng, Y.J. Zheng, et al. Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: recent advances and perspectives. Energy Storage Mater, 35 (2021), pp. 470-499.
[24]
X. Liu, D.S. Ren, H.J. Hsu, X.N. Feng, G.L. Xu, M.H. Zhuang, et al. Thermal runaway of lithium-ion batteries without internal short circuit. Joule, 2 (10) (2018), pp. 2047-2064.
[25]
X.N. Feng, S.Q. Zheng, X.M. He, L. Wang, Y. Wang, D.S. Ren, et al. Time sequence map for interpreting the thermal runaway mechanism of lithium-ion batteries with LiNixCoyMnzO2 cathode. Front Energy Res, 6 (2018), p. 126.
[26]
Y.Z. Song, X. Liu, D.S. Ren, H.M. Liang, L. Wang, Q. Hu, et al. Simultaneously blocking chemical crosstalk and internal short circuit via gel-stretching derived nanoporous non-shrinkage separator for safe lithium-ion batteries. Adv Mater, 34 (2) (2022), p. 2106335.
[27]
S.U. Woo, B.C. Park, C.S. Yoon, S.T. Myung, J. Prakash, Y.K. Sun. Improvement of electrochemical performances of Li[Ni0.8Co0.1Mn0.1]O2 cathode materials by fluorine substitution. J Electrochem Soc, 154 (7) (2007), pp. A649-A655.
[28]
Jiao LF, Zhang M, Yuan HT, Zhao M, Guo J, Wang W, et al. Effect of Cr doping on the structural, electrochemical properties of Li[Li0.2Ni0.2-x/2Mn0.6-x/2Crx]O2 (x = 0, 0.02, 0.04, 0.06, 0.08) as cathode materials for lithium secondary batteries. J Power Sources 2007 ;167(1):178-84.
[29]
S.W. Woo, S.T. Myung, H. Bang, D.W. Kim, Y.K. Sun. Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al, Mg) substitution. Electrochim Acta, 54 (15) (2009), pp. 3851-3856.
[30]
J. Lu, Y. Lei, K.C. Lau, X.Y. Luo, P. Du, J.G. Wen, et al. A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nat Commun, 4 (1) (2013), p. 2383.
[31]
X.F. Li, J. Liu, M.N. Banis, A. Lushington, R.Y. Li, M. Cai, et al. Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energy Environ Sci, 7 (2) (2014), pp. 768-778.
[32]
X.G. Han, Y.H. Gong, K. Fu, X.F. He, G.T. Hitz, J.Q. Dai, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater, 16 (5) (2017), pp. 572-579.
[33]
P.F. Yan, J.M. Zheng, J. Liu, B.Q. Wang, X.P. Cheng, Y.F. Zhang, et al. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat Energy, 3 (7) (2018), pp. 600-605.
[34]
P. Arora, Z.M. Zhang. Battery separators. Chem Rev, 104 (10) (2004), pp. 4419-4462.
[35]
L.W. Dong, J.P. Liu, D.J. Chen, Y.P. Han, Y.F. Liang, M.Q. Yang, et al. Suppression of polysulfide dissolution and shuttling with glutamate electrolyte for lithium sulfur batteries. ACS Nano, 13 (12) (2019), pp. 14172-14181.
[36]
Y.Z. Song, L. Sheng, L. Wang, H. Xu, X.M. He. From separator to membrane: separators can function more in lithium ion batteries. Electrochem Commun, 124 (2021), Article 106948.
[37]
C. Wang, X. Sun. The promise of solid-state batteries for safe and reliable energy storage. Engineering, 21 (2023), pp. 32-35.
[38]
D. Chen, Y. Liu, C. Xia, Y. Han, Q. Sun, X. Wang, et al. Polybenzimidazole functionalized electrolyte with Li-wetting and self-fluorination functionalities for practical Li metal batteries. InfoMat, 4 (5) (2022), p. e12247.
[39]
H.J. Zhao, N.P. Deng, G. Wang, H.R. Ren, W.M. Kang, B.W. Cheng. A core@sheath nanofiber separator with combined hardness and softness for lithium-metal batteries. Chem Eng J, 404 (2021), Article 126542.
[40]
C.Q. Zhu, J.X. Zhang, J. Xu, X.Z. Yin, J. Wu, S.H. Chen, et al. Facile fabrication of cellulose/polyphenylene sulfide composite separator for lithium-ion batteries. Carbohydr Polym, 248 (2020), Article 116753.
[41]
Y.F. Yang, W.K. Wang, J.P. Zhang. A waterborne superLEphilic and thermostable separator based on natural clay nanorods for high-voltage lithium-ion batteries. Mater Today Energy, 16 (2020), Article 100420.
[42]
J. Nunes-Pereira, C.M. Costa, S. Lanceros-Mendez. Polymer composites and blends for battery separators: state of the art, challenges and future trends. J Power Sources, 281 (2015), pp. 378-398.
[43]
M.H. Ryou, D.J. Lee, J.N. Lee, Y.M. Lee, J.K. Park, J.W. Choi. Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators. Adv Energy Mater, 2 (6) (2012), pp. 645-650.
[44]
R. Gonçalves, T. Marques-Almeida, D. Miranda, M.M. Silva, V.F. Cardoso, C.M. Costa, et al. Enhanced performance of fluorinated separator membranes for lithium ion batteries through surface micropatterning. Energy Storage Mater, 21 (2019), pp. 124-135.
[45]
R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, D. Aurbach. A review of advanced and practical lithium battery materials. J Mater Chem, 21 (27) (2011), pp. 9938-9954.
[46]
J.B. Goodenough, Y. Kim. Challenges for rechargeable Li batteries. Chem Mater, 22 (3) (2010), pp. 587-603.
[47]
A. Banerjee, B. Ziv, Y. Shilina, S. Luski, D. Aurbach, I.C. Halalay. Acid-scavenging separators: a novel route for improving Li-ion batteries’ durability. ACS Energy Lett, 2 (10) (2017), pp. 2388-2393.
[48]
S. Luiso, J.J. Henry, B. Pourdeyhimi, P.S. Fedkiw. Fabrication and characterization of meltblown poly(vinylidene difluoride) membranes. ACS Appl Polym Mater, 2 (7) (2020), pp. 2849-2857.
[49]
S. Zhong, B. Yuan, Z. Guang, D. Chen, Q. Li, Y. Dong, et al. Recent progress in thin separators for upgraded lithium ion batteries. Engergy Stor Mater, 41 (2021), pp. 805-841.
[50]
W. Ye, J. Zhu, X.J. Liao, S.H. Jiang, Y.H. Li, H. Fang, et al. Hierarchical three-dimensional micro/nano-architecture of polyaniline nanowires wrapped-on polyimide nanofibers for high performance lithium-ion battery separators. J Power Sources, 299 (2015), pp. 417-424.
[51]
H. Zhang, C.E. Lin, M.Y. Zhou, A.E. John, B.K. Zhu. High thermal resistance polyimide separators prepared via soluble precusor and non-solvent induced phase separation process for lithium ion batteries. Electrochim Acta, 187 (1) (2016), pp. 125-133.
[52]
J.L. Shi, H.S. Hu, Y.G. Xia, Y.Z. Liu, Z.P. Liu. Polyimide matrix-enhanced cross-linked gel separator with three-dimensional heat-resistance skeleton for high-safety and high-power lithium ion batteries. J Mater Chem A, 2 (24) (2014), pp. 9134-9141.
[53]
C.E. Lin, H. Zhang, Y.Z. Song, Y. Zhang, J.J. Yuan, B.K. Zhu. Carboxylated polyimide separator with excellent lithium ion transport properties for a high-power density lithium-ion battery. J Mater Chem A, 6 (3) (2018), pp. 991-998.
[54]
W. Jiang, Z.H. Liu, Q.S. Kong, J.H. Yao, C.J. Zhang, P.X. Han, et al. A high temperature operating nanofibrous polyimide separator in Li-ion battery. Solid State Ion, 232 (2013), pp. 44-48.
[55]
Y.L. Li, X. Wang, J.Y. Liang, K. Wu, L. Xu, J. Wang. Design of a high performance zeolite/polyimide composite separator for lithium-ion batteries. Polymers, 12 (4) (2020), p. 764.
[56]
G.Q. Dong, N.X. Dong, B.X. Liu, G.F. Tian, S.L. Qi, D.Z. Wu. Ultrathin inorganic-nanoshell encapsulation: TiO2 coated polyimide nanofiber membrane enabled by layer-by-layer deposition for advanced and safe high-power LIB separator. J Membr Sci, 601 (2020), Article 117884.
[57]
G.Q. Dong, B.X. Liu, G.H. Sun, G.F. Tian, S.L. Qi, D.Z. Wu. TiO2 nanoshell@polyimide nanofiber membrane prepared via a surface-alkaline-etching and in-situ complexation-hydrolysis strategy for advanced and safe LIB separator. J Membr Sci, 577 (1) (2019), pp. 249-257.
[58]
L.Y. Cao, P. An, Z.W. Xu, J.F. Huang. Performance evaluation of electrospun polyimide non-woven separators for high power lithium-ion batteries. J Electroanal Chem, 767 (2016), pp. 34-39.
[59]
S. Park, C.W. Son, S. Lee, D.Y. Kim, C. Park, K.S. Eom, et al. Multicore-shell nanofiber architecture of polyimide/polyvinylidene fluoride blend for thermal and long-term stability of lithium ion battery separator. Sci Rep, 6 (1) (2016), p. 36977.
[60]
M.N. Li, Z.J. Zhang, Y.T. Yin, W.C. Guo, Y.G. Bai, F. Zhang, et al. Novel polyimide separator prepared with two porogens for safe lithium-ion batteries. ACS Appl Mater Interfaces, 12 (3) (2020), pp. 3610-3616.
[61]
Y. Xiao, T.S. Chung. Grafting thermally labile molecules on cross-linkable polyimide to design membrane materials for natural gas purification and CO2 capture. Energy Environ Sci, 4 (2011), pp. 201-208.
[62]
S. Yuan, J. Bai, S. Li, N. Ma, S. Deng, H. Zhu, et al. A multifunctional and selective ionic flexible sensor with high environmental suitability for tactile perception. Adv Funct Mater, 34 (6) (2024), p. 2309626.
[63]
X. Dong, B. Wan, M.S. Zheng, L. Huang, Y. Feng, R. Yao, et al. Dual-effect coupling for superior dielectric and thermal conductivity of polyimide composite films featuring “crystal-like phase” structure. Adv Mater, 36 (7) (2024), p. 2307804.
[64]
Z.M. Dang, T. Zhou, S.H. Yao, J.K. Yuan, J.W. Zha, H.T. Song, et al. Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv Mater, 21 (20) (2009), pp. 2077-2082.
[65]
S. Verdier, L. El Ouatani, R. Dedryvere, F. Bonhomme, P. Biensan, D. Gonbeau. XPS study on Al2O3- and AlPO4-coated LiCoO2 cathode material for high-capacity Li ion batteries. J Electrochem Soc, 154 (12) (2007), pp. A1088-A1099.
[66]
R. Tatara, P. Karayaylali, Y. Yu, Y.R. Zhang, L. Giordano, F. Maglia, et al. The effect of electrode-electrolyte interface on the electrochemical impedance spectra for positive electrode in Li-ion battery. J Electrochem Soc, 166 (3) (2019), pp. A5090-A5098.
[67]
S.F. Liu, X. Ji, J. Yue, S. Hou, P.F. Wang, C.Y. Cui, et al. High interfacial-energy interphase promoting safe lithium metal batteries. J Am Chem Soc, 142 (5) (2020), pp. 2438-2447.
[68]
L.W. Dong, Y.P. Liu, D.J. Chen, Y.P. Han, Y.P. Ji, J.P. Liu, et al. Stabilization of high-voltage lithium metal batteries using a sulfone-based electrolyte with bi-electrode affinity and LiSO2F-rich interphases. Energy Storage Mater, 44 (2022), pp. 527-536.
[69]
L.W. Dong, Y.P. Liu, K.C. Wen, D.J. Chen, D.W. Rao, J.P. Liu, et al. High-polarity fluoroalkyl ether electrolyte enables solvation-free Li+ transfer for high-rate lithium metal batteries. Adv Sci, 9 (5) (2022), p. 2104699.
[70]
H.Y. Huo, M. Jiang, B. Mogwitz, J. Sann, Y. Yusim, T.T. Zuo, et al. Interface design enabling stable polymer/thiophosphate electrolyte separators for dendrite-free lithium metal batteries. Angew Chem Int Ed, 62 (14) (2023), p. e202218044.
PDF(3655 KB)

Accesses

Citation

Detail

段落导航
相关文章

/