[1] |
W. Liu, P. Oh, X. Liu, M.J. Lee, W. Cho, S. Chae, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew Chem Int Ed, 54 (15) (2015), pp. 4440-4457.
|
[2] |
Mao M, Huang BH, Li QD, Wang CC, He YB, Kang FY. In-situ construction of hierarchical cathode electrolyte interphase for high performance LiNi0.8Co0.1Mn0.1O2/Li metal battery. Nano Energy 2020;78:105282.
|
[3] |
L. Dong, S. Zhong, B. Yuan, Y. Li, J. Liu, Y. Ji, et al. Reconstruction of solid electrolyte interphase with SrI2 reactivates dead Li for durable anode-free Li-metal batteries. Angew Chem Int Ed, 62 (23) (2023), p. e202301073.
|
[4] |
J. Xiao, Q.Y. Li, Y.J. Bi, M. Cai, B. Dunn, T. Glossmann, et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat Energy, 5 (8) (2020), pp. 561-568.
|
[5] |
J. Liu, Z.N. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough, P. Khalifah, et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat Energy, 4 (3) (2019), pp. 180-186.
|
[6] |
D.W. Wang, R.H. Kou, Y. Ren, C.J. Sun, H. Zhao, M.J. Zhang, et al. Synthetic control of kinetic reaction pathway and cationic ordering in high-Ni layered oxide cathodes. Adv Mater, 29 (39) (2017), p. 1606715.
|
[7] |
M. Li, J. Lu, Z.W. Chen, K. Amine. 30 years of lithium-ion batteries. Adv Mater, 30 (33) (2018), p. 1800561.
|
[8] |
S.T. Myung, F. Maglia, K.J. Park, C.S. Yoon, P. Lamp, S.J. Kim, et al. Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett, 2 (1) (2017), pp. 196-223.
|
[9] |
X. Yu, R. Chen, L. Gan, H. Li, L. Chen. Battery safety: from lithium-ion to solid-state batteries. Engineering, 21 (2023), pp. 9-14.
|
[10] |
S. Klein, J.M. Wrogemann, S. van Wickeren, P. Harte, P. Barmann, B. Heidrich, et al. Graphite lithium ion cells. Adv Energy Mater, 12 (2) (2022), p. 2102599.
|
[11] |
J.A. Gilbert, I.A. Shkrob, D.P. Abraham. Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in lithium-ion full cells. J Electrochem Soc, 164 (2) (2017), pp. A389-A399.
|
[12] |
S. Klein, P. Barmann, T. Beuse, K. Borzutzki, J.E. Frerichs, J. Kasnatscheew, et al. Graphite lithium-ion full cells operated at high voltage. ChemSusChem, 14 (2) (2021), pp. 595-613.
|
[13] |
H.J. Guo, Y.P. Sun, Y. Zhao, G.X. Liu, Y.X. Song, J. Wan, et al. Surface degradation of single-crystalline Ni-rich cathode and regulation mechanism by atomic layer deposition in solid-state lithium batteries. Angew Chem Int Ed, 61 (48) (2022), p. e202211626.
|
[14] |
C. Zhan, J. Lu, A.J. Jeremy Kropf, T.P. Wu, A.N. Jansen, Y.K. Sun, et al. Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate-carbon systems. Nat Commun, 4 (1) (2013), p. 2437.
|
[15] |
C. Wang, L.D. Xing, J. Vatamanu, Z. Chen, G.Y. Lan, W.S. Li, et al. Overlooked electrolyte destabilization by manganese(II) in lithium-ion batteries. Nat Commun, 10 (1) (2019), p. 3423.
|
[16] |
W.D. Li, X.M. Liu, Q. Xie, Y. You, M.F. Chi, A. Manthiram. Long-term cyclability of NCM-811 at high voltages in lithium-ion batteries: an in-depth diagnostic study. Chem Mater, 32 (18) (2020), pp. 7796-7804.
|
[17] |
K. Kim, D. Hwang, S. Kim, S.O. Park, H. Cha, Y.S. Lee, et al. Cyclic aminosilane-based additive ensuring stable electrode-electrolyte interfaces in Li-ion batteries. Adv Energy Mater, 10 (15) (2020), p. 2000012.
|
[18] |
I.A. Shkrob, A.J. Kropf, T.W. Marin, Y. Li, O.G. Poluektov, J. Niklas, et al. Manganese in graphite anode and capacity fade in Li ion batteries. J Phys Chem C, 118 (42) (2014), pp. 24335-24348.
|
[19] |
D. Guyomard, J.M. Tarascon. Li metal-free rechargeable LiMn2O4/carbon cells: their understanding and optimization. J Electrochem Soc, 139 (4) (1992), pp. 937-948.
|
[20] |
C. Zhan, T.P. Wu, J. Lu, K. Amine. Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes—a critical review. Energy Environ Sci, 11 (2) (2018), pp. 243-257.
|
[21] |
L. Sheng, K. Yang, J. Chen, D. Zhu, L. Wang, J. Wang, et al. A protophilic MOF enables Ni-rich lithium-battery stable cycling in a high water/acid content. Adv Mater, 35 (25) (2023), p. 2212292.
|
[22] |
B.L.D. Rinkel, J.P. Vivek, N. Garcia-Araez, C.P. Grey. Two electrolyte decomposition pathways at nickel-rich cathode surfaces in lithium-ion batteries. Energy Environ Sci, 15 (8) (2022), pp. 3416-3438.
|
[23] |
X. Lai, C.Y. Jin, W. Yi, X.B. Han, X.N. Feng, Y.J. Zheng, et al. Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: recent advances and perspectives. Energy Storage Mater, 35 (2021), pp. 470-499.
|
[24] |
X. Liu, D.S. Ren, H.J. Hsu, X.N. Feng, G.L. Xu, M.H. Zhuang, et al. Thermal runaway of lithium-ion batteries without internal short circuit. Joule, 2 (10) (2018), pp. 2047-2064.
|
[25] |
X.N. Feng, S.Q. Zheng, X.M. He, L. Wang, Y. Wang, D.S. Ren, et al. Time sequence map for interpreting the thermal runaway mechanism of lithium-ion batteries with LiNixCoyMnzO2 cathode. Front Energy Res, 6 (2018), p. 126.
|
[26] |
Y.Z. Song, X. Liu, D.S. Ren, H.M. Liang, L. Wang, Q. Hu, et al. Simultaneously blocking chemical crosstalk and internal short circuit via gel-stretching derived nanoporous non-shrinkage separator for safe lithium-ion batteries. Adv Mater, 34 (2) (2022), p. 2106335.
|
[27] |
S.U. Woo, B.C. Park, C.S. Yoon, S.T. Myung, J. Prakash, Y.K. Sun. Improvement of electrochemical performances of Li[Ni0.8Co0.1Mn0.1]O2 cathode materials by fluorine substitution. J Electrochem Soc, 154 (7) (2007), pp. A649-A655.
|
[28] |
Jiao LF, Zhang M, Yuan HT, Zhao M, Guo J, Wang W, et al. Effect of Cr doping on the structural, electrochemical properties of Li[Li0.2Ni0.2-x/2Mn0.6-x/2Crx]O2 (x = 0, 0.02, 0.04, 0.06, 0.08) as cathode materials for lithium secondary batteries. J Power Sources 2007 ;167(1):178-84.
|
[29] |
S.W. Woo, S.T. Myung, H. Bang, D.W. Kim, Y.K. Sun. Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al, Mg) substitution. Electrochim Acta, 54 (15) (2009), pp. 3851-3856.
|
[30] |
J. Lu, Y. Lei, K.C. Lau, X.Y. Luo, P. Du, J.G. Wen, et al. A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nat Commun, 4 (1) (2013), p. 2383.
|
[31] |
X.F. Li, J. Liu, M.N. Banis, A. Lushington, R.Y. Li, M. Cai, et al. Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energy Environ Sci, 7 (2) (2014), pp. 768-778.
|
[32] |
X.G. Han, Y.H. Gong, K. Fu, X.F. He, G.T. Hitz, J.Q. Dai, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater, 16 (5) (2017), pp. 572-579.
|
[33] |
P.F. Yan, J.M. Zheng, J. Liu, B.Q. Wang, X.P. Cheng, Y.F. Zhang, et al. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat Energy, 3 (7) (2018), pp. 600-605.
|
[34] |
P. Arora, Z.M. Zhang. Battery separators. Chem Rev, 104 (10) (2004), pp. 4419-4462.
|
[35] |
L.W. Dong, J.P. Liu, D.J. Chen, Y.P. Han, Y.F. Liang, M.Q. Yang, et al. Suppression of polysulfide dissolution and shuttling with glutamate electrolyte for lithium sulfur batteries. ACS Nano, 13 (12) (2019), pp. 14172-14181.
|
[36] |
Y.Z. Song, L. Sheng, L. Wang, H. Xu, X.M. He. From separator to membrane: separators can function more in lithium ion batteries. Electrochem Commun, 124 (2021), Article 106948.
|
[37] |
C. Wang, X. Sun. The promise of solid-state batteries for safe and reliable energy storage. Engineering, 21 (2023), pp. 32-35.
|
[38] |
D. Chen, Y. Liu, C. Xia, Y. Han, Q. Sun, X. Wang, et al. Polybenzimidazole functionalized electrolyte with Li-wetting and self-fluorination functionalities for practical Li metal batteries. InfoMat, 4 (5) (2022), p. e12247.
|
[39] |
H.J. Zhao, N.P. Deng, G. Wang, H.R. Ren, W.M. Kang, B.W. Cheng. A core@sheath nanofiber separator with combined hardness and softness for lithium-metal batteries. Chem Eng J, 404 (2021), Article 126542.
|
[40] |
C.Q. Zhu, J.X. Zhang, J. Xu, X.Z. Yin, J. Wu, S.H. Chen, et al. Facile fabrication of cellulose/polyphenylene sulfide composite separator for lithium-ion batteries. Carbohydr Polym, 248 (2020), Article 116753.
|
[41] |
Y.F. Yang, W.K. Wang, J.P. Zhang. A waterborne superLEphilic and thermostable separator based on natural clay nanorods for high-voltage lithium-ion batteries. Mater Today Energy, 16 (2020), Article 100420.
|
[42] |
J. Nunes-Pereira, C.M. Costa, S. Lanceros-Mendez. Polymer composites and blends for battery separators: state of the art, challenges and future trends. J Power Sources, 281 (2015), pp. 378-398.
|
[43] |
M.H. Ryou, D.J. Lee, J.N. Lee, Y.M. Lee, J.K. Park, J.W. Choi. Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators. Adv Energy Mater, 2 (6) (2012), pp. 645-650.
|
[44] |
R. Gonçalves, T. Marques-Almeida, D. Miranda, M.M. Silva, V.F. Cardoso, C.M. Costa, et al. Enhanced performance of fluorinated separator membranes for lithium ion batteries through surface micropatterning. Energy Storage Mater, 21 (2019), pp. 124-135.
|
[45] |
R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, D. Aurbach. A review of advanced and practical lithium battery materials. J Mater Chem, 21 (27) (2011), pp. 9938-9954.
|
[46] |
J.B. Goodenough, Y. Kim. Challenges for rechargeable Li batteries. Chem Mater, 22 (3) (2010), pp. 587-603.
|
[47] |
A. Banerjee, B. Ziv, Y. Shilina, S. Luski, D. Aurbach, I.C. Halalay. Acid-scavenging separators: a novel route for improving Li-ion batteries’ durability. ACS Energy Lett, 2 (10) (2017), pp. 2388-2393.
|
[48] |
S. Luiso, J.J. Henry, B. Pourdeyhimi, P.S. Fedkiw. Fabrication and characterization of meltblown poly(vinylidene difluoride) membranes. ACS Appl Polym Mater, 2 (7) (2020), pp. 2849-2857.
|
[49] |
S. Zhong, B. Yuan, Z. Guang, D. Chen, Q. Li, Y. Dong, et al. Recent progress in thin separators for upgraded lithium ion batteries. Engergy Stor Mater, 41 (2021), pp. 805-841.
|
[50] |
W. Ye, J. Zhu, X.J. Liao, S.H. Jiang, Y.H. Li, H. Fang, et al. Hierarchical three-dimensional micro/nano-architecture of polyaniline nanowires wrapped-on polyimide nanofibers for high performance lithium-ion battery separators. J Power Sources, 299 (2015), pp. 417-424.
|
[51] |
H. Zhang, C.E. Lin, M.Y. Zhou, A.E. John, B.K. Zhu. High thermal resistance polyimide separators prepared via soluble precusor and non-solvent induced phase separation process for lithium ion batteries. Electrochim Acta, 187 (1) (2016), pp. 125-133.
|
[52] |
J.L. Shi, H.S. Hu, Y.G. Xia, Y.Z. Liu, Z.P. Liu. Polyimide matrix-enhanced cross-linked gel separator with three-dimensional heat-resistance skeleton for high-safety and high-power lithium ion batteries. J Mater Chem A, 2 (24) (2014), pp. 9134-9141.
|
[53] |
C.E. Lin, H. Zhang, Y.Z. Song, Y. Zhang, J.J. Yuan, B.K. Zhu. Carboxylated polyimide separator with excellent lithium ion transport properties for a high-power density lithium-ion battery. J Mater Chem A, 6 (3) (2018), pp. 991-998.
|
[54] |
W. Jiang, Z.H. Liu, Q.S. Kong, J.H. Yao, C.J. Zhang, P.X. Han, et al. A high temperature operating nanofibrous polyimide separator in Li-ion battery. Solid State Ion, 232 (2013), pp. 44-48.
|
[55] |
Y.L. Li, X. Wang, J.Y. Liang, K. Wu, L. Xu, J. Wang. Design of a high performance zeolite/polyimide composite separator for lithium-ion batteries. Polymers, 12 (4) (2020), p. 764.
|
[56] |
G.Q. Dong, N.X. Dong, B.X. Liu, G.F. Tian, S.L. Qi, D.Z. Wu. Ultrathin inorganic-nanoshell encapsulation: TiO2 coated polyimide nanofiber membrane enabled by layer-by-layer deposition for advanced and safe high-power LIB separator. J Membr Sci, 601 (2020), Article 117884.
|
[57] |
G.Q. Dong, B.X. Liu, G.H. Sun, G.F. Tian, S.L. Qi, D.Z. Wu. TiO2 nanoshell@polyimide nanofiber membrane prepared via a surface-alkaline-etching and in-situ complexation-hydrolysis strategy for advanced and safe LIB separator. J Membr Sci, 577 (1) (2019), pp. 249-257.
|
[58] |
L.Y. Cao, P. An, Z.W. Xu, J.F. Huang. Performance evaluation of electrospun polyimide non-woven separators for high power lithium-ion batteries. J Electroanal Chem, 767 (2016), pp. 34-39.
|
[59] |
S. Park, C.W. Son, S. Lee, D.Y. Kim, C. Park, K.S. Eom, et al. Multicore-shell nanofiber architecture of polyimide/polyvinylidene fluoride blend for thermal and long-term stability of lithium ion battery separator. Sci Rep, 6 (1) (2016), p. 36977.
|
[60] |
M.N. Li, Z.J. Zhang, Y.T. Yin, W.C. Guo, Y.G. Bai, F. Zhang, et al. Novel polyimide separator prepared with two porogens for safe lithium-ion batteries. ACS Appl Mater Interfaces, 12 (3) (2020), pp. 3610-3616.
|
[61] |
Y. Xiao, T.S. Chung. Grafting thermally labile molecules on cross-linkable polyimide to design membrane materials for natural gas purification and CO2 capture. Energy Environ Sci, 4 (2011), pp. 201-208.
|
[62] |
S. Yuan, J. Bai, S. Li, N. Ma, S. Deng, H. Zhu, et al. A multifunctional and selective ionic flexible sensor with high environmental suitability for tactile perception. Adv Funct Mater, 34 (6) (2024), p. 2309626.
|
[63] |
X. Dong, B. Wan, M.S. Zheng, L. Huang, Y. Feng, R. Yao, et al. Dual-effect coupling for superior dielectric and thermal conductivity of polyimide composite films featuring “crystal-like phase” structure. Adv Mater, 36 (7) (2024), p. 2307804.
|
[64] |
Z.M. Dang, T. Zhou, S.H. Yao, J.K. Yuan, J.W. Zha, H.T. Song, et al. Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv Mater, 21 (20) (2009), pp. 2077-2082.
|
[65] |
S. Verdier, L. El Ouatani, R. Dedryvere, F. Bonhomme, P. Biensan, D. Gonbeau. XPS study on Al2O3- and AlPO4-coated LiCoO2 cathode material for high-capacity Li ion batteries. J Electrochem Soc, 154 (12) (2007), pp. A1088-A1099.
|
[66] |
R. Tatara, P. Karayaylali, Y. Yu, Y.R. Zhang, L. Giordano, F. Maglia, et al. The effect of electrode-electrolyte interface on the electrochemical impedance spectra for positive electrode in Li-ion battery. J Electrochem Soc, 166 (3) (2019), pp. A5090-A5098.
|
[67] |
S.F. Liu, X. Ji, J. Yue, S. Hou, P.F. Wang, C.Y. Cui, et al. High interfacial-energy interphase promoting safe lithium metal batteries. J Am Chem Soc, 142 (5) (2020), pp. 2438-2447.
|
[68] |
L.W. Dong, Y.P. Liu, D.J. Chen, Y.P. Han, Y.P. Ji, J.P. Liu, et al. Stabilization of high-voltage lithium metal batteries using a sulfone-based electrolyte with bi-electrode affinity and LiSO2F-rich interphases. Energy Storage Mater, 44 (2022), pp. 527-536.
|
[69] |
L.W. Dong, Y.P. Liu, K.C. Wen, D.J. Chen, D.W. Rao, J.P. Liu, et al. High-polarity fluoroalkyl ether electrolyte enables solvation-free Li+ transfer for high-rate lithium metal batteries. Adv Sci, 9 (5) (2022), p. 2104699.
|
[70] |
H.Y. Huo, M. Jiang, B. Mogwitz, J. Sann, Y. Yusim, T.T. Zuo, et al. Interface design enabling stable polymer/thiophosphate electrolyte separators for dendrite-free lithium metal batteries. Angew Chem Int Ed, 62 (14) (2023), p. e202218044.
|