[1] |
D. Cao, X. Wang, L. Li, C. Lv, X. Na, Y. Xing, et al.. Future directions of intelligent vehicles: potentials, possibilities, and perspectives. IEEE Trans Intell Veh, 7 (2022), pp. 7-10
|
[2] |
J. Guo, U. Kurup, M. Shah. Is it safe to drive? An overview of factors, metrics, and datasets for driveability assessment in autonomous driving. IEEE Trans Intell Transp Syst, 21 (2020), pp. 3135-3151
|
[3] |
J. Wang, H. Huang, K. Li, J. Li. Towards the unified principles for level 5 autonomous vehicles. Engineering, 7 (2021), pp. 1313-1325
|
[4] |
S. Dixit, S. Fallah, U. Montanaro, M. Dianati, A. Stevens, F. Mccullough, et al.. Trajectory planning and tracking for autonomous overtaking: state-of-the-art and future prospects. Annu Rev Control, 45 (2018), pp. 76-86
|
[5] |
O. Sharma, N.C. Sahoo, N.B. Puhan. Recent advances in motion and behavior planning techniques for software architecture of autonomous vehicles: a state-of-the-art survey. Eng Appl Artif Intell, 101 (2021), Article 104211
|
[6] |
Tong K, Ajanovic Z, Stettinger G. Overview of tools supporting planning for automated driving. 2020. arXiv:200304081.
|
[7] |
Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, J.P. How, G. Fiore. Real-time motion planning with applications to autonomous urban driving. IEEE Trans Control Syst Technol, 17 (2009), pp. 1105-1118
|
[8] |
M.G. Mohanan, A. Salgoankar. A survey of robotic motion planning in dynamic environments. Robot Auton Syst, 100 (2018), pp. 171-185
|
[9] |
S. Erke, D. Bin, N. Yiming, Z. Qi, X. Liang, Z. Dawei. An improved A-Star based path planning algorithm for autonomous land vehicles. Int J Adv Robot Syst, 17 (2020), Article 172988142096226
|
[10] |
T. Hongqing, W. Jianqiang, H. Heye, D. Feng. Probabilistic roadmap method for path planning of intelligent vehicle based on artificial potential field model in off-road environment. Acta Armamentarii, 42 (2021), p. 1496
|
[11] |
T. Ju, S. Liu, J. Yang, D. Sun. Rapidly exploring random tree algorithm-based path planning for robot-aided optical manipulation of biological cells. IEEE Trans Autom Sci Eng, 11 (2014), pp. 649-657
|
[12] |
Fan H, Zhu F, Liu C, Zhang L, Zhuang L, Li D, et al. Baidu Apollo EM Motion Planner. 2018. arXiv180708048.
|
[13] |
McNaughton M, Urmson C, Dolan JM, Lee JW. Motion planning for autonomous driving with a conformal spatiotemporal lattice. In:Proceedings of the 2011 IEEE International Conference on Robotics and Automation; 2011 May 9- 13 ; Shanghai, China. Los Alamitos: IEEE; 2011. p. 4889-95.
|
[14] |
J. Wang, J. Wu, Y. Li. The driving safety field based on driver-vehicle-road interactions. IEEE Trans Intell Transp Syst, 16 (2015), pp. 2203-2214
|
[15] |
Y. Huang, H. Ding, Y. Zhang, H. Wang, D. Cao, N. Xu, et al.. A motion planning and tracking framework for autonomous vehicles based on artificial potential field-elaborated resistance network approach. IEEE Trans Ind Electron, 67 (2) (2020), pp. 1376-1386
|
[16] |
H. Huang, J. Wang, C. Fei, X. Zheng, Y. Yang, J. Liu, et al.. A probabilistic risk assessment framework considering lane-changing behavior interaction. Sci China Inf Sci, 63 (2020), Article 190203
|
[17] |
M. Guerra, D. Efimov, G. Zheng, W. Perruquetti. Avoiding local minima in the potential field method using input-to-state stability. Control Eng Pract, 55 (2016), pp. 174-184
|
[18] |
Bounini F, Gingras D, Pollart H, Gruyer D. Modified artificial potential field method for online path planning applications. In: Proceedings of the 2017 IEEE Intelligent Vehicles Symposium; 2017 Jun 11-14; Los Angeles, CA, USA. Los Alamitos: IEEE; 2017. p. 180-5.
|
[19] |
A. Tampuu, M. Semikin, N. Muhammad, D. Fishman, T. Matiisen. A survey of end-to-end driving: architectures and training methods. IEEE Trans Neural Netw Learn Syst, 33 (2022), pp. 1364-1384
|
[20] |
Bojarski M, Testa DD, Dworakowski D, Firner B, Zieba K. End to end learning for self-driving cars. 2016. arXiv:1604.07316.
|
[21] |
C.J. Hoel, K. Driggs-Campbell, K. Wolff, L. Laine, M.J. Kochenderfer. Combining planning and deep reinforcement learning in tactical decision making for autonomous driving. IEEE Trans Intell Veh, 5 (2020), pp. 294-305
|
[22] |
Vazquez JL, Liniger A, Schwarting W, Rus D, Van Gool L. Deep interactive motion prediction and planning: playing games with motion prediction models. 2022. arXiv:2204.02392.
|
[23] |
M. Werling, S. Kammel, J. Ziegler, L. Gröll. Optimal trajectories for time-critical street scenarios using discretized terminal manifolds. Int J Robot Res, 31 (2012), pp. 346-359
|
[24] |
Li J, Dai B, Li X, Li C, Di Y. A real-time and predictive trajectory-generation motion planner for autonomous ground vehicles. In:Proceedings of the 2017 9th International Conference on Intelligent Human-Machine Systems and Cybernetics; 2017 Aug 26-27; Hangzhou, China. Los Alamitos: IEEE; 2017. p. 108-13.
|
[25] |
X. Li, Z. Sun, D. Cao, Z. He, Q. Zhu. Real-time trajectory planning for autonomous urban driving: framework, algorithms, and verifications. IEEEASME Trans Mechatron, 21 (2016), pp. 740-753
|
[26] |
N.B.A. Latip, R. Omar. Feasible path generation using bezier curves for car-like vehicle. IOP Conf Ser Mater Sci Eng, 226 (2017), Article 012133
|
[27] |
Choi J, Curry RE, Elkaim GH. Curvature-continuous trajectory generation with corridor constraint for autonomous ground vehicles. In:Proceedings of the 49th IEEE Conference on Decision and Control; 2010 Dec 15- 17 ; Atlanta, GA, USA. Los Alamitos: IEEE; 2010. p. 7166-71.
|
[28] |
J. Wang, X. Zheng, H. Huang. Decision-making mechanism of the drivers following the principle of least action. China J Highw Transp, 33 (2020), p. 155
|
[29] |
Qian X, Navarro I, de La Fortelle A, Moutarde F. Motion planning for urban autonomous driving using Bézier curves and MPC. In:Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems; 2016 Nov 1- 4; Rio de Janeiro, Brazil. Los Alamitos: IEEE; 2016. p. 826-33.
|
[30] |
K. Chu, M. Lee, M. Sunwoo. Local path planning for off-road autonomous driving with avoidance of static obstacles. IEEE Trans Intell Transp Syst, 13 (2012), pp. 1599-1616
|
[31] |
C. Zhang, D. Chu, S. Liu, Z. Deng, C. Wu, X. Su. Trajectory planning and tracking for autonomous vehicle based on state lattice and model predictive control. IEEE Intell Transp Syst Mag, 11 (2019), pp. 29-40
|
[32] |
L. Aarts, I. van Schagen. Driving speed and the risk of road crashes: a review. Accid Anal Prev, 38 (2006), pp. 215-224
|
[33] |
X. Wang, Q. Zhou, M. Quddus, T. Fan, S. Fang. Speed, speed variation and crash relationships for urban arterials. Accid Anal Prev, 113 (2018), pp. 236-243
|
[34] |
R. Elvik. Speed and road safety: synthesis of evidence from evaluation studies. Transp Res Rec, 1908 (2005), pp. 59-69
|
[35] |
D.D. Salvucci, E.R. Boer, A. Liu. Toward an integrated model of driver behavior in cognitive architecture. Transp Res Rec, 1779 (2001), pp. 9-16
|
[36] |
Kuwata Y, Richards A, Schouwenaars T, How JP. Decentralized robust receding horizon control for multi-vehicle guidance. In: Proceedings of the 2006 American Control Conference; 2006 Jun 14-16; Minneapolis, MN, USA. Los Alamitos: IEEE; 2006. p. 6.
|
[37] |
Yin G, Fan H, Jin X, Xu L, Zhang N. A stair-like generalized predictive control based on multiple models switching for four-wheel-drive electric vehicle. In: Proceedings of the 2017 36th Chinese Control Conference; 2017 Jul 26; Dalian, China; 2017. p. 9578-83.
|
[38] |
J. Wang, J. Wu, X. Zheng, D. Ni, K. Li. Driving safety field theory modeling and its application in pre-collision warning system. Transp Res Part C Emerg Technol, 72 (2016), pp. 306-324
|
[39] |
D. Helbing, J. Keltsch, P. Molnár. Modelling the evolution of human trail systems. Nature, 388 (1997), pp. 47-50
|
[40] |
P.G. Gipps. A behavioural car-following model for computer simulation. Transp Res Part B Methodol, 15 (1981), pp. 105-111
|
[41] |
A. Kesting, M. Treiber, D. Helbing. General lane-changing model MOBIL for car-following models. Transp Res Rec, 1999 (2007), pp. 86-94
|