通用最优轨迹规划——基于最小作用量原理实现自动驾驶

Heye Huang, Yicong Liu, Jinxin Liu, Qisong Yang, Jianqiang Wang, David Abbink, Arkady Zgonnikov

工程(英文) ›› 2024, Vol. 33 ›› Issue (2) : 63-76.

PDF(4934 KB)
PDF(4934 KB)
工程(英文) ›› 2024, Vol. 33 ›› Issue (2) : 63-76. DOI: 10.1016/j.eng.2023.10.001
研究论文
Article

通用最优轨迹规划——基于最小作用量原理实现自动驾驶

作者信息 +

General Optimal Trajectory Planning: Enabling Autonomous Vehicles with the Principle of Least Action

Author information +
History +

Abstract

This study presents a general optimal trajectory planning (GOTP) framework for autonomous vehicles (AVs) that can effectively avoid obstacles and guide AVs to complete driving tasks safely and efficiently. Firstly, we employ the fifth-order Bezier curve to generate and smooth the reference path along the road centerline. Cartesian coordinates are then transformed to achieve the curvature continuity of the generated curve. Considering the road constraints and vehicle dynamics, limited polynomial candidate trajectories are generated and smoothed in a curvilinear coordinate system. Furthermore, in selecting the optimal trajectory, we develop a unified and auto-tune objective function based on the principle of least action by employing AVs to simulate drivers’ behavior and summarizing their manipulation characteristics of “seeking benefits and avoiding losses.” Finally, by integrating the idea of receding-horizon optimization, the proposed framework is achieved by considering dynamic multi-performance objectives and selecting trajectories that satisfy feasibility, optimality, and adaptability. Extensive simulations and experiments are performed, and the results demonstrate the framework’s feasibility and effectiveness, which avoids both dynamic and static obstacles and applies to various scenarios with multi-source interactive traffic participants. Moreover, we prove that the proposed method can guarantee real-time planning and safety requirements compared to drivers’ manipulation.

Keywords

Autonomous vehicle / Trajectory planning / Multi-performance objectives / Principle of least action

引用本文

导出引用
Heye Huang, Yicong Liu, Jinxin Liu. . Engineering. 2024, 33(2): 63-76 https://doi.org/10.1016/j.eng.2023.10.001

参考文献

[1]
D. Cao, X. Wang, L. Li, C. Lv, X. Na, Y. Xing, et al.. Future directions of intelligent vehicles: potentials, possibilities, and perspectives. IEEE Trans Intell Veh, 7 (2022), pp. 7-10
[2]
J. Guo, U. Kurup, M. Shah. Is it safe to drive? An overview of factors, metrics, and datasets for driveability assessment in autonomous driving. IEEE Trans Intell Transp Syst, 21 (2020), pp. 3135-3151
[3]
J. Wang, H. Huang, K. Li, J. Li. Towards the unified principles for level 5 autonomous vehicles. Engineering, 7 (2021), pp. 1313-1325
[4]
S. Dixit, S. Fallah, U. Montanaro, M. Dianati, A. Stevens, F. Mccullough, et al.. Trajectory planning and tracking for autonomous overtaking: state-of-the-art and future prospects. Annu Rev Control, 45 (2018), pp. 76-86
[5]
O. Sharma, N.C. Sahoo, N.B. Puhan. Recent advances in motion and behavior planning techniques for software architecture of autonomous vehicles: a state-of-the-art survey. Eng Appl Artif Intell, 101 (2021), Article 104211
[6]
Tong K, Ajanovic Z, Stettinger G. Overview of tools supporting planning for automated driving. 2020. arXiv:200304081.
[7]
Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, J.P. How, G. Fiore. Real-time motion planning with applications to autonomous urban driving. IEEE Trans Control Syst Technol, 17 (2009), pp. 1105-1118
[8]
M.G. Mohanan, A. Salgoankar. A survey of robotic motion planning in dynamic environments. Robot Auton Syst, 100 (2018), pp. 171-185
[9]
S. Erke, D. Bin, N. Yiming, Z. Qi, X. Liang, Z. Dawei. An improved A-Star based path planning algorithm for autonomous land vehicles. Int J Adv Robot Syst, 17 (2020), Article 172988142096226
[10]
T. Hongqing, W. Jianqiang, H. Heye, D. Feng. Probabilistic roadmap method for path planning of intelligent vehicle based on artificial potential field model in off-road environment. Acta Armamentarii, 42 (2021), p. 1496
[11]
T. Ju, S. Liu, J. Yang, D. Sun. Rapidly exploring random tree algorithm-based path planning for robot-aided optical manipulation of biological cells. IEEE Trans Autom Sci Eng, 11 (2014), pp. 649-657
[12]
Fan H, Zhu F, Liu C, Zhang L, Zhuang L, Li D, et al. Baidu Apollo EM Motion Planner. 2018. arXiv180708048.
[13]
McNaughton M, Urmson C, Dolan JM, Lee JW. Motion planning for autonomous driving with a conformal spatiotemporal lattice. In:Proceedings of the 2011 IEEE International Conference on Robotics and Automation; 2011 May 9- 13 ; Shanghai, China. Los Alamitos: IEEE; 2011. p. 4889-95.
[14]
J. Wang, J. Wu, Y. Li. The driving safety field based on driver-vehicle-road interactions. IEEE Trans Intell Transp Syst, 16 (2015), pp. 2203-2214
[15]
Y. Huang, H. Ding, Y. Zhang, H. Wang, D. Cao, N. Xu, et al.. A motion planning and tracking framework for autonomous vehicles based on artificial potential field-elaborated resistance network approach. IEEE Trans Ind Electron, 67 (2) (2020), pp. 1376-1386
[16]
H. Huang, J. Wang, C. Fei, X. Zheng, Y. Yang, J. Liu, et al.. A probabilistic risk assessment framework considering lane-changing behavior interaction. Sci China Inf Sci, 63 (2020), Article 190203
[17]
M. Guerra, D. Efimov, G. Zheng, W. Perruquetti. Avoiding local minima in the potential field method using input-to-state stability. Control Eng Pract, 55 (2016), pp. 174-184
[18]
Bounini F, Gingras D, Pollart H, Gruyer D. Modified artificial potential field method for online path planning applications. In: Proceedings of the 2017 IEEE Intelligent Vehicles Symposium; 2017 Jun 11-14; Los Angeles, CA, USA. Los Alamitos: IEEE; 2017. p. 180-5.
[19]
A. Tampuu, M. Semikin, N. Muhammad, D. Fishman, T. Matiisen. A survey of end-to-end driving: architectures and training methods. IEEE Trans Neural Netw Learn Syst, 33 (2022), pp. 1364-1384
[20]
Bojarski M, Testa DD, Dworakowski D, Firner B, Zieba K. End to end learning for self-driving cars. 2016. arXiv:1604.07316.
[21]
C.J. Hoel, K. Driggs-Campbell, K. Wolff, L. Laine, M.J. Kochenderfer. Combining planning and deep reinforcement learning in tactical decision making for autonomous driving. IEEE Trans Intell Veh, 5 (2020), pp. 294-305
[22]
Vazquez JL, Liniger A, Schwarting W, Rus D, Van Gool L. Deep interactive motion prediction and planning: playing games with motion prediction models. 2022. arXiv:2204.02392.
[23]
M. Werling, S. Kammel, J. Ziegler, L. Gröll. Optimal trajectories for time-critical street scenarios using discretized terminal manifolds. Int J Robot Res, 31 (2012), pp. 346-359
[24]
Li J, Dai B, Li X, Li C, Di Y. A real-time and predictive trajectory-generation motion planner for autonomous ground vehicles. In:Proceedings of the 2017 9th International Conference on Intelligent Human-Machine Systems and Cybernetics; 2017 Aug 26-27; Hangzhou, China. Los Alamitos: IEEE; 2017. p. 108-13.
[25]
X. Li, Z. Sun, D. Cao, Z. He, Q. Zhu. Real-time trajectory planning for autonomous urban driving: framework, algorithms, and verifications. IEEEASME Trans Mechatron, 21 (2016), pp. 740-753
[26]
N.B.A. Latip, R. Omar. Feasible path generation using bezier curves for car-like vehicle. IOP Conf Ser Mater Sci Eng, 226 (2017), Article 012133
[27]
Choi J, Curry RE, Elkaim GH. Curvature-continuous trajectory generation with corridor constraint for autonomous ground vehicles. In:Proceedings of the 49th IEEE Conference on Decision and Control; 2010 Dec 15- 17 ; Atlanta, GA, USA. Los Alamitos: IEEE; 2010. p. 7166-71.
[28]
J. Wang, X. Zheng, H. Huang. Decision-making mechanism of the drivers following the principle of least action. China J Highw Transp, 33 (2020), p. 155
[29]
Qian X, Navarro I, de La Fortelle A, Moutarde F. Motion planning for urban autonomous driving using Bézier curves and MPC. In:Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems; 2016 Nov 1- 4; Rio de Janeiro, Brazil. Los Alamitos: IEEE; 2016. p. 826-33.
[30]
K. Chu, M. Lee, M. Sunwoo. Local path planning for off-road autonomous driving with avoidance of static obstacles. IEEE Trans Intell Transp Syst, 13 (2012), pp. 1599-1616
[31]
C. Zhang, D. Chu, S. Liu, Z. Deng, C. Wu, X. Su. Trajectory planning and tracking for autonomous vehicle based on state lattice and model predictive control. IEEE Intell Transp Syst Mag, 11 (2019), pp. 29-40
[32]
L. Aarts, I. van Schagen. Driving speed and the risk of road crashes: a review. Accid Anal Prev, 38 (2006), pp. 215-224
[33]
X. Wang, Q. Zhou, M. Quddus, T. Fan, S. Fang. Speed, speed variation and crash relationships for urban arterials. Accid Anal Prev, 113 (2018), pp. 236-243
[34]
R. Elvik. Speed and road safety: synthesis of evidence from evaluation studies. Transp Res Rec, 1908 (2005), pp. 59-69
[35]
D.D. Salvucci, E.R. Boer, A. Liu. Toward an integrated model of driver behavior in cognitive architecture. Transp Res Rec, 1779 (2001), pp. 9-16
[36]
Kuwata Y, Richards A, Schouwenaars T, How JP. Decentralized robust receding horizon control for multi-vehicle guidance. In: Proceedings of the 2006 American Control Conference; 2006 Jun 14-16; Minneapolis, MN, USA. Los Alamitos: IEEE; 2006. p. 6.
[37]
Yin G, Fan H, Jin X, Xu L, Zhang N. A stair-like generalized predictive control based on multiple models switching for four-wheel-drive electric vehicle. In: Proceedings of the 2017 36th Chinese Control Conference; 2017 Jul 26; Dalian, China; 2017. p. 9578-83.
[38]
J. Wang, J. Wu, X. Zheng, D. Ni, K. Li. Driving safety field theory modeling and its application in pre-collision warning system. Transp Res Part C Emerg Technol, 72 (2016), pp. 306-324
[39]
D. Helbing, J. Keltsch, P. Molnár. Modelling the evolution of human trail systems. Nature, 388 (1997), pp. 47-50
[40]
P.G. Gipps. A behavioural car-following model for computer simulation. Transp Res Part B Methodol, 15 (1981), pp. 105-111
[41]
A. Kesting, M. Treiber, D. Helbing. General lane-changing model MOBIL for car-following models. Transp Res Rec, 1999 (2007), pp. 86-94
PDF(4934 KB)

Accesses

Citation

Detail

段落导航
相关文章

/