[1] |
Z. Li. Research on scenario prediction of carbon emissions in China, the United States and India in Chinese [dissertation]. North China Electric Power University, Beijing ( 2021)
|
[2] |
E.D. Okoffo, E. Donner, S.P. McGrath, B.J. Tscharke. Plastics in biosolids from 1950 to 2016: a function of global plastic production and consumption. Water Res, 201 ( 2021), Article 117367
|
[3] |
China Plastics Industry Yearbook. Report.[Composite film product]. Beijing: China Plastics Processing Industry Association; 2021. Chinese.
|
[4] |
China Plastics Industry Yearbook. [National Development and Reform Commission Opinions of the Ministry of Ecology and Environment on further strengthening plastic pollution control:policies and regulations]. Report. Beijing: China Plastics Processing Industry Association; 2021. Chinese.
|
[5] |
J. Di, B.K. Reck, A. Miatto, T.E. Graedel. United States plastics: large flows, short lifetimes, and negligible recycling. Resour Conserv Recycling, 167 ( 2021), Article 105440
|
[6] |
F. Bauer, G. Fontenit. Plastic dinosaurs—digging deep into the accelerating carbon lock-in of plastics. Energy Policy, 156 ( 2021), Article 112418
|
[7] |
R. Geyer, J.R. Jambeck, K.L. Law. Production, use, and fate of all plastics ever made. Sci Adv, 3 (7) ( 2017), Article 1700782
|
[8] |
N. Simon, K. Raubenheimer, N. Urho. A binding global agreement to address the life cycle of plastics to eliminate plastic pollution, a holistic approach is needed. Science, 373 (6550) ( 2021), pp. 43-47
|
[9] |
B. Wang, Y. Li. Plastic bag usage and the policies: a case study of China. Waste Manag, 126 ( 2021), pp. 163-169
|
[10] |
L. Sun, H. Cui, Q. Ge. Will China achieve its 2060 carbon neutral commitment from the provincial perspective?. Adv Clim Chang Res, 13 (2) ( 2022), pp. 169-178
|
[11] |
X. Zhao, X. Ma, B. Chen, Y. Shang, M. Song. Challenges toward carbon neutrality in China: strategies and countermeasures. Resour Conserv Recycl, 176 ( 2022), Article 105959
|
[12] |
T.D. Moshood, G. Nawanir, F. Mahmud, F. Mohamad. Biodegradable plastic applications towards sustainability: a recent innovations in the green product. Cleaner Eng Technol, 6 ( 2022), Article 100404
|
[13] |
J.G. Rosenboom, R. Langer, G. Traverso. Bioplastics for a circular economy. Nat Rev Mater, 7 (2) ( 2022), pp. 117-137
|
[14] |
J.S.C. Viera, M.R.C. Marques, M.C. Nazareth, P.C. Jimenez, C. Sanz-Lázaro, Í.B. Castro. Are biodegradable plastics an environmental rip off?. J Hazard Mater, 416 ( 2021), Article 125957
|
[15] |
Zhu J, Wang C. Biodegradable plastics: green hope or greenwashing? Mar Pollut Bull 2020;161(B):11774.
|
[16] |
P. Stegmann, V. Daioglou, M. Londo, D.P. van Vuuren, M. Junginger. Plastic futures and their CO2 emissions. Nature, 612 ( 2022), pp. 272-276
|
[17] |
S.D. Gisia, G. Gadaletaa, G. Gorrasi. The role of (bio)degradability on the management of petrochemical and bio-based plastic waste. J Environ Manag, 310 (16) ( 2022), Article 114769
|
[18] |
S. Chu, B. Zhang, X. Zhao, H.S. Soo.Photocatalytic conversion of plastic waste: from photodegradation to photosynthesis. Adv Energy Mater, 12 (22) ( 2022), p. 23
|
[19] |
T. Narancic, F. Cerrone, N. Beagan, K.E. O’Connor. Recent advances in bioplastics: application and biodegradation. Polymers, 12 (4) ( 2020), p. 920
|
[20] |
Environmental impact assessment of degradable plastics and policy support research project. Report. Beijing: Tsinghua University, China Petroleum and Chemical Corporation; 2022. Chinese.
|
[21] |
E. Balla, V. Daniilidis, G. Karlioti, T. Kalamas, M. Stefanidou, N.D. Bikiaris, et al.. Poly(lactic acid): a versatile biobased polymer for the future with multifunctional properties—from monomer synthesis, polymerization techniques and molecular weight increase to PLA applications. Polym, 13 (11) ( 2021), p. 1822
|
[22] |
M.O. Rodrigues, N. Abrantes, F.J.M. Gonçalves, H. Nogueira, J.C. Marques, A.M.M. Gonçalves. Impacts of plastic products used in daily life on the environment and human health: what is known?. Environ Toxicol Pharmacol, 72 ( 2019), Article 103239
|
[23] |
A. Abraham, H. Park, O. Choi. Anaerobic co-digestion of bioplastics as a sustainable mode of waste management with improved energy production—a review. Bioresour Technol, 322 ( 2021), Article 124537
|
[24] |
V. Bátori, D. Åkesson, A. Zamani. Anaerobic degradation of bioplastics: a review. Waste Manag, 80 ( 2018), pp. 406-413
|
[25] |
M.C. Nazareth, M.R.C. Marques, L.M. Pinheiro, Í.B. Castro. Key issues for bio-based, biodegradable and compostable plastics governance. J Environ Manage, 322 ( 2022), Article 116074
|
[26] |
J.S.C. Viera, M.R.C. Marques, M.C. Nazareth, P.C. Jimenez, Í.B. Castro. On replacing single-use plastic with so-called biodegradable ones: the case with straws. Environ Sci Policy, 106 ( 2020), pp. 177-181
|
[27] |
R. Vidal, P. Martínez, E. Mulet. Environmental assessment of biodegradable multilayer film derived from carbohydrate polymers. J Polym Environ, 15 (3) ( 2007), pp. 159-168
|
[28] |
M. Zhao, Z. Yang, J. Zhao, Y. Wang. Life cycle assessment of biodegradable polylactic acid (PLA) plastic packaging products—taking Tianjin, China as a case study. J Resour Ecol, 13 (3) ( 2022), pp. 428-441
|
[29] |
P.T. Benavides, U. Lee, O. Zarè-Mehrjerdi. Life cycle greenhouse gas emissions and energy use of polylactic acid, bio-derived polyethylene, and fossil-derived polyethylene. J Clean Prod, 277 ( 2020), Article 124010
|
[30] |
S. Papong, P. Malakul, R. Trungkavashirakun. Comparative assessment of the environmental profile of PLA and PET drinking water bottles from a life cycle perspective. J Clean Prod, 65 ( 2014), pp. 539-550
|
[31] |
ISO 527-2: 2012: Plastics: determination of tensile properties—part 2:test conditions for moulding and extrusion plastics. International standard. Geneva: International Organization for Standardization; 2017.
|
[32] |
ISO/TR 14049: 2012. Environmental management—life cycle assessment—illustrative examples on how to apply ISO 14044 to goal and scope definition and inventory analysis. Geneva: International Organization for Standardization; 2012.
|
[33] |
Li Z, Sang K, inventors. An antibacterial high-strength biodegradable plastic bag and a preparation method. China patent CN202110062753.5. 2022 Mar 29. Chinese.
|
[34] |
T. Leejarkpai, T. Mungcharoen, U. Suwanmanee. Comparative assessment of global warming impact and eco-efficiency of PS (polystyrene), PET (polyethylene terephthalate) and PLA (polylactic acid) boxes. J Clean Prod, 125 ( 2016), pp. 95-107
|
[35] |
E. Abbate, D. Rovelli, M. Andreotti, C. Brondi, A. Ballarino. Plastic packaging substitution in industry: variability of LCA due to manufacturing countries. Procedia CIRP, 105 ( 2022), pp. 392-397
|
[36] |
C. Moretti, L. Hamelin, L.G. Jakobsen, M.H. Junginger, M.M. Steingrimsdottir, L. Høibye, et al.. Cradle-to-grave life cycle assessment of single-use cups made from PLA, PP and PET. Resour Conserv Recycl, 169 ( 2021), Article 105508
|
[37] |
Harst Ed, Potting J. A critical comparison of ten disposable cup LCAs. Environ Impact Assess Rev 2013;43:86-96.
|
[38] |
B. Choi, S. Yoo, S. Park. Carbon footprint of packaging films made from LDPE, PLA, and PLA/PBAT blends in South Korea. Sustainability, 10 (7) ( 2018), p. 2369
|
[39] |
S.M. Sapuan. A knowledge-based system for materials selection in mechanical engineering design. Mater Des, 22 (8) ( 2001), pp. 687-695
|
[40] |
M.F. Ashby.Materials selection in mechanical design. (3rd ed.), MRS Bulletin, Geneva ( 2005)
|
[41] |
U. Suwanmanee, V.V.P. Chaiwutthinan. Life cycle assessment of single use thermoform boxes made from polystyrene (PS), polylactic acid, (PLA), and PLA/starch: cradle to consumer gate. Int J Life Cycle Assess, 18 (2) ( 2013), pp. 401-417
|
[42] |
Intergovernmental Panel on Climate Change. 2019 Refinement to the 2006 IPCC guidelines for national greenhouse gas inventories. Report. IPCC; 2019.
|
[43] |
E.T.H. Vink, S. Davies. Life cycle inventory and impact assessment data for 2014 ingeo™ polylactide production. Ind Biotechnol, 11 (3) ( 2015), pp. 167-180
|
[44] |
D.L. Schrijvers, F. Leroux, V. Verney, M.K. Patel. Ex-ante life cycle assessment of polymer nanocomposites using organo-modified layered double hydroxides for potential application in agricultural films. Green Chem, 16 (12) ( 2014), pp. 4969-4984
|
[45] |
W. Saibuatronga, N. Cheroenneta, U. Suwanmanee. Life cycle assessment focusing on the waste management of conventional and bio-based garbage bags. J Clean Prod, 158 ( 2017), pp. 319-334
|
[46] |
X.Z. Sun, T. Minowa, K. Yamaguchi, Y. Genchi. Evaluation of energy consumption and greenhouse gas emissions from poly(phenyllactic acid) production using sweet sorghum. J Clean Prod, 87 ( 2015), pp. 208-215
|
[47] |
E.T.H. Vink, S. Davies, J.J. Kolstad. Original research: the eco-profile for current Ingeo® polylactide production. Ind Biotechnol, 6 (4) ( 2010), pp. 212-224
|
[48] |
C.C.N. de Oliveira, M.Z. Zotin, P.R.R. Rochedo, A. Szklo. Achieving negative emissions in plastics life cycles through the conversion of biomass feedstock. Biofuels Bioprod Biorefin, 15 (2) ( 2021), pp. 430-453
|
[49] |
D. Maga, M. Hiebel, N. Thonemann. Life cycle assessment of recycling options for polylactic acid. Resour Conserv Recycl, 149 ( 2019), pp. 86-96
|
[50] |
J. Payne, M.D. Jones. The chemical recycling of polyesters for a circular plastics economy: challenges and emerging opportunities. ChemSusChem, 14 (19) ( 2021), pp. 4041-4070
|
[51] |
A.N. Mistry, B. Kachenchart, O. Pinyakong, W. Assavalapsakul, E. Luepromchai. Bioaugmentation with a defined bacterial consortium: a key to degrade high molecular weight polylactic acid during traditional composting. Bioresour Technol, 367 ( 2023), Article 128237
|
[52] |
B.G. Hermann, L. Debeer, B.D. Wilde. To compost or not to compost: carbon and energy footprints of biodegradable materials’ waste treatment. Polym Degrad Stab, 96 (6) ( 2011), pp. 1159-1171
|
[53] |
M. Pradhan, M. Reddy, W. Diebel, L. Erickson, M. Misra, A. Mohanty. Comparative compostability and biodegradation studies of various components of green composites and their blends in simulated aerobic composting bioreactor. Int J Plast Technol, 14 (1) ( 2010), pp. 45-50
|
[54] |
Z. Peng, Z. Wang, Y. Shu, F. Lv, H. Zhang, L. Shao, et al.. Fate of a biobased polymer via high-solid anaerobic co-digestion with food waste and following aerobic treatment: insights on changes of polymer physicochemical properties and the role of microbial and fungal communities. Bioresour Technol, 343 ( 2022), Article 126079
|
[55] |
Narancic T, Verstichel S. Chaganti SR, Morales-Gamez L, Kenny ST, Wilde BD, et al. Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a panacea for plastic pollution. Environ Sci Technol 2018 ;52(18):10441-52.
|
[56] |
Y. Li, S.Y. Park, J. Zhu. Solid-state anaerobic digestion for methane production from organic waste. Renew Sustain Energy Rev, 15 (1) ( 2011), pp. 821-826
|
[57] |
A. Abraham, H. Park, O. Choi, B.I. Sang. Anaerobic co-digestion of bioplastics as a sustainable mode of waste management with improved energy production—a review. Bioresour Technol, 322 ( 2021), Article 124537
|
[58] |
R. Götze, K. Pivnenko, A. Boldrin, C. Scheutz, T.F. Astrup. Physico-chemical characterization of material fractions in residual and source-segregated household waste in Denmark. Waste Manag, 54 ( 2016), pp. 13-26
|
[59] |
C. Zhou, W. Fang, W. Xu, A. Cao, R. Wang. Characteristics and the recovery potential of plastic wastes obtained from landfill mining. J Clean Prod, 80 ( 2014), pp. 80-86
|
[60] |
K. Saeaung, N. Phusunti, W. Phetwarotai, S. Assabumrungrat, B. Cheirsilp. Catalytic pyrolysis of petroleum-based and biodegradable plastic waste to obtain high-value chemicals. Waste Manag, 127 ( 2021), pp. 101-111
|
[61] |
B. Young, T.R. Hawkins, C. Chiquelin, P. Sun, U.R. Gracida-Alvarez, A. Elgowainy. Environmental life cycle assessment of olefins and by-product hydrogen from steam cracking of natural gas liquids, naphtha, and gas oil. J Cleaner Prod, 359 ( 2022), Article 131884
|
[62] |
J. Chu, Y. Zhou, Y. Cai, X. Wang. Life-cycle greenhouse gas emissions and the associated carbon-peak strategies for PS, PVC, and ABS plastics in China. Resour Conserv Recycl, 182 ( 2022), Article 106295
|
[63] |
J. An, F. Wu, D. Wang, J. You. Estimated material metabolism and life cycle greenhouse gas emission of major plastics in China: a commercial sector-scale perspective. Resour Conserv Recycl, 180 ( 2022), Article 106161
|
[64] |
J.F. Zhang, X. Li, Y. He, Y.F. Xie. Physiological mechanism on drought tolerance enhanced by exogenous glucose in C4-pepc rice. Acta Agron Sin, 44 (1) ( 2018), pp. 82-94
|
[65] |
Y. Fu, G. Wu, X. Bian, J. Zeng, Y. Weng. Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend in freshwater with sediment. Molecules, 25 (17) ( 2020), p. 3946
|
[66] |
G. Cazaudehore, R. Guyoneaud, P. Evon, L. Martin-Closas, A.M. Pelacho, C. Raynaud, et al.. Can anaerobic digestion be a suitable end-of-life scenario for biodegradable plastics? A critical review of the current situation, hurdles, and challenges. Biotechnol Adv, 56 ( 2022), Article 107916
|
[67] |
Zhao Y. Environmental impact analysis of ethylene production based on life cycle method [dissertation]. Dalian: Dalian University of Technology; 2021. Chinese.
|
[68] |
E. Castro-Aguirrea, F. Iñiguez-Francoa, H. Samsudin, X. Fang, R. Auras. Poly(lactic acid)—mass production, processing, industrial applications, and end of life. Adv Drug Delivery Rev, 107 ( 2016), pp. 333-366
|
[69] |
M. Macleod, H.P.H. Arp, M.B. Tekman. The global threat from plastic pollution. Science, 373 (6550) ( 2021), pp. 61-65
|
[70] |
X.H. An, P. Liu, Q. Meng, C.G. Su, S. Zhao. Research on life cycle environmental property of biomass biodegradable packaging material. Appl Mech Mater, 3558 ( 2014), pp. 670-671
|
[71] |
R.D.D. Kleine, G.A. Keoleian, S.A. Miller. Impact of updated material production data in the GREET life cycle model. J Ind Ecol, 18 (3) ( 2014), pp. 356-365
|
[72] |
Wang M. GREET:greenhouse gases, regulated emissions, and energy use in technologies. Report. Lemont: Argonne National Laboratory; 2019.
|
[73] |
Ballerstedt H, Tiso T, Wierckx N, Wei R, Averous L, Bornscheuer, et al. MIXed plastics biodegradation and UPcycling using microbial communities: EU Horizon 2020 project MIX-UP started January 2020. Environ Sci Eur 2021 ;33(1):99.
|
[74] |
R. Narayan. Carbon footprint of bioplastics using biocarbon content analysis and life-cycle assessment. MRS Bull, 36 (9) ( 2011), pp. 716-721
|
[75] |
L. Peng, R. Ma, S. Jiang. Co-composting of kitchen waste with agriculture and forestry residues and characteristics of compost with different particle size: an industrial scale case study. Waste Manag, 149 ( 2022), pp. 313-322
|
[76] |
Z.S. Mazhandu, E. Muzenda, T.A. Mamvura, M. Belaid, T. Nhubu. Integrated and consolidated review of plastic waste management and bio-based biodegradable plastics: challenges and opportunities. Sustainability, 12 (20) ( 2020), p. 8360
|
[77] |
S. Vardar, B. Demirel, T.T. Onay. Degradability of bioplastics in anaerobic digestion systems and their effects on biogas production: a review. Rev Environ Sci Biotechnol, 21 (1) ( 2022), pp. 205-223
|
[78] |
Vella K.Biodegradability of plastics in the open environment. Report. Berlin:European Union; 2020.
|
[79] |
M. Nofarab, D. Sacligilb, P.J. Carreau. Poly(lactic acid) blends: processing, properties and applications. Int J Biol Macromol, 125 ( 2019), pp. 307-360
|
[80] |
T.A. Hottle, M.M. Bilec, A.E. Landis. Sustainability assessments of bio-based polymers. Polym Degrad Stabil, 98 (9) ( 2013), pp. 1898-1907
|
[81] |
Y. Zhang, Z. Wen. Mapping the environmental impacts and policy effectiveness of takeaway food industry in China. Sci Total Environ, 808 (2022), Article 152023
|
[82] |
S. Kubowicz, A.M. Booth. Biodegradability of plastics: challenges and misconceptions. Environ Sci Technol, 51 (21) ( 2017), pp. 12058-12060
|
[83] |
I.V. Gursel, C. Moretti, L. Hamelin, L.G. Jakobsen, M.M. Steingrimsdottir, M. Junginger, et al.. Comparative cradle-to-grave life cycle assessment of bio-based and petrochemical PET bottles. Sci Total Environ, 793 ( 2021), Article 148642
|
[84] |
COWI A/S; Utrecht University. Environmental impact assessments of innovative bio-based product. Report. Brussels: European Commission; 2019.
|
[85] |
M. Anshassi, T. Smallwood, T.G. Townsend.Life cycle GHG emissions of MSW landfilling versus Incineration: expected outcomes based on US landfill gas collection regulations. Waste Manag, 142 ( 2022), pp. 44-54
|
[86] |
P. Rai, S. Mehrotra, S. Priya, E. Gnansounou, S.K. Sharma. Recent advances in the sustainable design and applications of biodegradable polymers. Bioresour Technol, 325 ( 2021), Article 124739
|
[87] |
W. Saibuatrong, N. Cheroennet, U. Suwanmanee. Life cycle assessment focusing on the waste management of conventional and bio-based garbage bags. J Clean Prod, 158 ( 2017), pp. 319-334
|
[88] |
M.L.M. Broeren, L. Kuling, E. Worrell, L. Shen. Environmental impact assessment of six starch plastics focusing on wastewater-derived starch and additives. Resour Conserv Recycl, 127 ( 2017), pp. 246-255
|
[89] |
K. Ragaert, L. Delva, K.V. Geem. Mechanical and chemical recycling of solid plastic waste. Waste Manag, 69 ( 2017), pp. 24-58
|
[90] |
M. Nazareth, M.R.C. Marques, M.C.A. Leite, Í.B. Castro. Commercial plastics claiming biodegradable status: is this also accurate for marine environments?. J Hazard Mater, 366 ( 2019), pp. 714-722
|
[91] |
Chen Q. Study of Preparation and properties of starch-based biodegradable plastics [dissertation]. Zhengzhou: Zhengzhou University; 2019. Chinese.
|
[92] |
Lin Y. Development and application of biodegradable plastics. Sinopec Group 2019 ;48(07):759-62. Chinese.
|