[1] |
T. Slaton, C. Hernandez, R. Akhavian. Construction activity recognition with convolutional recurrent networks. Autom Constr, 113 (2020), Article 103138
|
[2] |
A. Kelm, L. Laußat, A. Meins-Becker, D. Platz, M.J. Khazaee, A.M. Costin, et al.. Mobie passive radio frequency identification (RFID) portal for automated and rapid control of personal protective equipment (PPE) on construction sites. Autom Constr, 36 (2013), pp. 38-52
|
[3] |
T. Cheng, J. Teizer, G.C. Migliaccio, U.C. Gatti. Automated task-level activity analysis through fusion of real time location sensors and worker’s thoracic posture data. Autom Constr, 29 (2013), pp. 24-39
|
[4] |
J. Kim, Y. Ham, Y. Chung, S. Chi. Systematic camera placement framework for operation-level visual monitoring on construction jobsites. J Constr Eng Manage, 145 (4) (2019), p. 04019019
|
[5] |
J. Yang, Z. Shi, Z. Wu. Vision-based action recognition of construction workers using dense trajectories. Adv Eng Inf, 30 (3) (2016), pp. 327-336
|
[6] |
A. Khosrowpour, J.C. Niebles, M. Golparvar-Fard. Vision-based workface assessment using depth images for activity analysis of interior construction operations. Autom Constr, 48 (2014), pp. 74-87
|
[7] |
S.U. Han, S.H. Lee. A vision-based motion capture and recognition framework for behavior-based safety management. Autom Constr, 35 (2013), pp. 131-141
|
[8] |
N. Yu, S. Wang. Enhanced autonomous exploration and mapping of an unknown environment with the fusion of dual RGB-D sensors. Engineering, 5 (1) (2019), pp. 164-172
|
[9] |
X. Luo, H. Li, D. Cao, F. Dai, J.O. Seo, S.H. Lee. Recognizing diverse construction activities in site images via relevance networks of construction-related objects detected by convolutional neural networks. J Comput Civ Eng, 32 (3) (2018), p. 04018012
|
[10] |
X. Luo, H. Li, D. Cao, Y. Yu, X. Yang, T. Huang. Towards efficient and objective work sampling: recognizing workers’ activities in site surveillance videos with two-stream convolutional networks. Autom Constr, 94 (2018), pp. 360-370
|
[11] |
N. Pradhananga, J. Teizer. Cell-based construction site simulation model for earthmoving operations using real-time equipment location data. Visualization in Eng, 3 (1) (2015), p. 12
|
[12] |
A. Montaser, O. Moselhi. RFID indoor location identification for construction projects. Autom Constr, 39 (2014), pp. 167-179
|
[13] |
R. Akhavian, A.H. Behzadan. Construction equipment activity recognition for simulation input modeling using mobile sensors and machine learning classifiers. Adv Eng Inf, 29 (4) (2015), pp. 867-877
|
[14] |
J. Zhao, E. Obonyo. Convolutional long short-term memory model for recognizing construction workers’ postures from wearable inertial measurement units. Adv Eng Inf, 46 (2020), Article 101177
|
[15] |
L. Sanhudo, D. Calvetti, J.P. Martins, N.M.M. Ramos, P. Mêda, M.C. Gonçalves, et al.. Activity classification using accelerometers and machine learning for complex construction worker activities. J Build Eng, 35 (2021), Article 102001
|
[16] |
E. Valero, A. Sivanathan, F. Bosché, M. Abdel-Wahab. Musculoskeletal disorders in construction: a review and a novel system for activity tracking with body area network. Appl Ergon, 54 (2016), pp. 120-130
|
[17] |
X. Yan, H. Li, A.R. Li, H. Zhang. Wearable IMU-based real-time motion warning system for construction workers’ musculoskeletal disorders prevention. Autom Constr, 74 (2017), pp. 2-11
|
[18] |
A. Golabchi, S.H. Han, J.O. Seo, S.U. Han, S.H. Lee, M. Al-Hussein. An automated biomechanical simulation approach to ergonomic job analysis for workplace design. J Constr Eng Manage, 141 (8) (2015), p. 04015020
|
[19] |
R. Kanan, O. Elhassan, R. Bensalem. An IoT-based autonomous system for workers’ safety in construction sites with real-time alarming, monitoring, and positioning strategies. Autom Constr, 88 (2018), pp. 73-86
|
[20] |
S. Chi, C.H. Caldas. Automated object identification using optical video cameras on construction sites. Comput Aided Civ Infrastruct Eng, 26 (5) (2011), pp. 368-380
|
[21] |
J.O. Seo, S.H. Lee, J. Seo. Simulation-based assessment of workers’ muscle fatigue and its impact on construction operations. J Constr Eng Manage, 142 (11) (2016), p. 04016063
|
[22] |
Gatt T, Seychell D, Dingli A. Detecting human abnormal behaviour through a video generated model. In:Proceedings of 2019 11th International Symposium on Image and Signal Processing and Analysis; 2019 Sep 23-25; Dubrovnik, Croatia. Piscataway: IEEE; 2019. p. 264-70.
|
[23] |
D. Wang, W. Li, X. Liu, N. Li, C. Zhang. UAV environmental perception and autonomous obstacle avoidance: a deep learning and depth camera combined solution. Comput Electron Agric, 175 (2020), Article 105523
|
[24] |
A. Krizhevsky, I. Sutskever, G.E. Hinton. ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst, 25 (2012), pp. 1097-1105
|
[25] |
S. Ren, K. He, R. Girshick, J. Sun. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell, 39 (6) (2017), pp. 1137-1149
|
[26] |
Donahue J, Hendricks LA, Guadarrama S, Rohrbach M, Venugopalan S, Darrell T, et al. Long-term recurrent convolutional networks for visual recognition and description. In: Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition; 2015 Jun 7-12; Boston, MA, USA. Piscataway: IEEE; 2015. p. 2625-34.
|
[27] |
W. Fang, L. Ding, B. Zhong, P.E.D. Love, H. Luo. Automated detection of workers and heavy equipment on construction sites: a convolutional neural network approach. Adv Eng Inf, 37 (2018), pp. 139-149
|
[28] |
H. Kim, S. Bang, H. Jeong, Y. Ham, H. Kim. Analyzing context and productivity of tunnel earthmoving processes using imaging and simulation. Autom Constr, 92 (2018), pp. 188-198
|
[29] |
Q. Fang, H. Li, X. Luo, L. Ding, H. Luo, T.M. Rose, et al.. Detecting non-hardhat-use by a deep learning method from far-field surveillance videos. Autom Constr, 85 (2018), pp. 1-9
|
[30] |
Q. Zhang, K. Barri, S.K. Babanajad, A.H. Alavi. Real-time detection of cracks on concrete bridge decks using deep learning in the frequency domain. Engineering, 7 (12) (2021), pp. 1786-1796
|
[31] |
L. Ding, W. Fang, H. Luo, P.E.D. Love, B. Zhong, X. Ouyang. A deep hybrid learning model to detect unsafe behavior: integrating convolution neural networks and long short-term memory. Autom Constr, 86 (2018), pp. 118-124
|
[32] |
S. Hochreiter, J. Schmidhuber. Long short-term memory. Neural Comput, 9 (8) (1997), pp. 1735-1780
|
[33] |
X. Luo, H. Li, X. Yang, Y. Yu, D. Cao. Capturing and understanding workers’ activities in far-field surveillance videos with deep action recognition and Bayesian nonparametric learning. Comput Aided Civ Infrastruct Eng, 34 (4) (2019), pp. 333-351
|
[34] |
L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, et al.. Temporal segment networks for action recognition in videos. IEEE Trans Pattern Anal Mach Intell, 41 (11) (2018), pp. 2740-2755
|
[35] |
C. Chen, Z. Zhu, A. Hammad. Automated excavators activity recognition and productivity analysis from construction site surveillance videos. Autom Constr, 110 (2020), Article 103045
|
[36] |
V. Silva, F. Soares, C.P. Leão, J.S. Esteves, G. Vercelli. Skeleton driven action recognition using an image-based spatial-temporal representation and convolution neural network. Sensors, 21 (13) (2021), p. 4342
|
[37] |
Toshev A, Szegedy C. DeepPose:human pose estimation via deep neural networks. In:Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition; 2014 Jun 23-28 ; Columbus, OH, USA. Piscataway: IEEE; 2014. p. 1653-60.
|
[38] |
D. Roberts, W.T. Calderon, S. Tang, M. Golparvar-Fard. Vision-based construction worker activity analysis informed by body posture. J Comput Civ Eng, 34 (4) (2020), p. 04020017
|
[39] |
Cao Z, Simon T, Wei SE, Sheikh Y. Realtime multi-person 2D pose estimation using part affinity fields. In:Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition; 2017 Jul 21- 26 ; Honolulu, HI, USA. Piscataway: IEEE; 2017. p. 1302-10.
|
[40] |
B. Chen, C. Hua, D. Li, Y. He, J. Han. Intelligent human-UAV interaction system with joint cross-validation over action-gesture recognition and scene understanding. Appl Sci, 9 (16) (2019), p. 3277
|
[41] |
Okumura T, Urabe S, Inoue K, Yoshioka M. Cooking activities recognition in egocentric videos using hand shape feature with OpenPose. In: CEA/MADiMa'18: Proceedings of the Joint Workshop on Multimedia for Cooking and Eating Activities and Multimedia Assisted Dietary Management; 2018 Jul 15; Stockholm, Sweden. New York: Association for Computing Machinery; 2018. p. 42-5.
|
[42] |
S. Chen, K. Demachi. Towards on-site hazards identification of improper use of personal protective equipment using deep learning-based geometric relationships and hierarchical scene graph. Autom Constr, 125 (2021), Article 103619
|
[43] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014. arXiv:1409.1556.
|
[44] |
Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2:inverted residuals and linear bottlenecks. In:Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2018 Jun 18- 23; Salt Lake City, UT, USA. Piscataway: IEEE; 2018. p. 4510-20.
|
[45] |
Chollet F. Xception:Deep learning with depthwise separable convolutions. In:Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition; 2017 Jul 21-26 ; Honolulu, HI, USA. Piscataway: IEEE; 2017. p. 1800-7.
|
[46] |
Wojke N, Bewley A, Paulus D. Simple online and realtime tracking with a deep association metric. In:Proceedings of 2017 IEEE International Conference on Image Processing; 2017 Sep 17-20: Beijing, China. Piscataway: IEEE; 2017. p. 3645-9.
|
[47] |
Z. Wang, Q. Zhang, B. Yang, T. Wu, K. Lei, B. Zhang, et al.. Vision-based framework for automatic progress monitoring of precast walls by using surveillance videos during the construction phase. J Comput Civ Eng, 35 (1) (2021), p. 04020056
|