[1] |
McMahan B, Moore E, Ramage D, Hampson S, Arcas BA. Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics; 2017 Apr 20-22; Ft. Lauderdale, FL, USA; 2017.
|
[2] |
Y. Jin, H. Zhu, J. Xu, Y. Chen. Federated learning: fundamentals and advances. Springer, Singapore (2022).
|
[3] |
P. Voigt, A. von dem Bussche. The EU General Data Protection Regulation (GDPR): a practical guide. (1st ed.), Springer, Cham (2017).
|
[4] |
Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, H. Yu. Federated learning—synthesis lectures on artificial intelligence and machine learning. Morgan & Claypool Publishers, Kentfield (2019).
|
[5] |
Zhu L, Liu Z, Han S. Deep leakage from gradients. In: Proceedings of the 33rd Conference on Neural Information Processing Systems; 2019 Dec 8-14; Vancouver, BC, Canada; 2019.
|
[6] |
Lyu L, Yu H, Yang Q. Threats to federated learning: a survey. 2020. arXiv:2003.02133.
|
[7] |
C. Dwork. Differential privacy: a survey of results. M. Agrawal, D.Z. Du, Z.H. Duan, A.S. Li (Eds.), Theory and applications of models of computation, Springer, Berlin (2008).
|
[8] |
N. Truong, K. Sun, S. Wang, F. Guitton, Y. Guo. Privacy preservation in federated learning: an insightful survey from the GDPR perspective. Comput Secur, 110 (2021), 102402.
|
[9] |
Y. Jin, H. Wang, C. Sun. Data-driven evolutionary optimization: integrating evolutionary computation, machine learning and data science. Springer, Cham (2021).
|
[10] |
B. Shahriari, K. Swersky, Z. Wang, R.P. Adams, N. De Freitas. Taking the human out of the loop: a review of Bayesian optimization. Proc IEEE, 104 (1) (2015), pp. 148-175.
|
[11] |
Y. Jin. Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm Evol Comput, 1 (2) (2011), pp. 61-70.
|
[12] |
D.R. Jones, M. Schonlau, W.J. Welch. Efficient global optimization of expensive black-box functions. J Glob Optim, 13 (4) (1998), pp. 455-492.
|
[13] |
X. Yu, M. Gen. Introduction to evolutionary algorithms. Springer Science & Business Media, London (2010).
|
[14] |
T. Back. Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, Oxford (1996).
|
[15] |
S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach learn, 3 (1) (2011), pp. 1-122.
|
[16] |
V. Mothukuri, R.M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, G. Srivastava. A survey on security and privacy of federated learning. Future Gener Comput Syst, 115 (2021), pp. 619-640.
|
[17] |
X. Yin, Y. Zhu, J. Hu. A comprehensive survey of privacy-preserving federated learning: a taxonomy, review, and future directions. ACM Comput Surv, 54 (6) (2021), p. 131.
|
[18] |
K. Zhang, X. Song, C. Zhang, S. Yu. Challenges and future directions of secure federated learning: a survey. Front Comput Sci, 16 (2022), 165817.
|
[19] |
Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, et al. A survey on federated learning systems: vision, hype and reality for data privacy and protection. IEEE Trans Knowl Data Eng, 35 (4) (2023), pp. 3347-3366.
|
[20] |
Cao L, Chen H, Fan X, Gama J, Ong YS, Kumar V. Bayesian federated learning: a survey. 2023. arXiv:2304.13267.
|
[21] |
Weeraddana PC, Athanasiou G, Jakobsson M, Fischione C, Baras J. Per-se privacy preserving distributed optimization. 2012. arXiv:1210.3283.
|
[22] |
T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, et al. A survey of distributed optimization. Annu Rev Contr, 47 (2019), pp. 278-305.
|
[23] |
Q. Li, J.S. Gundersen, R. Heusdens, M.G. Christensen. Privacy-preserving distributed processing: metrics, bounds and algorithms. IEEE Trans Inf Forensics Secur, 16 (2021), pp. 2090-2103.
|
[24] |
D.K. Molzahn, F. Dörfler, H. Sandberg, S.H. Low, S. Chakrabarti, R. Baldick, et al. A survey of distributed optimization and control algorithms for electric power systems. IEEE Trans Smart Grid, 8 (6) (2017), pp. 2941-2962.
|
[25] |
Zhao B, Chen WN, Li X, Liu X, Pei Q, Zhang J. When evolutionary computation meets privacy. 2023. arXiv:2304.01205.
|
[26] |
X. Wang, Y. Jin, S. Schmitt, M. Olhofer. Recent advances in Bayesian optimization. ACM Comput Surv, 55 (13s) (2023), p. 287.
|
[27] |
Y. Jin, H. Wang, T. Chugh, D. Guo, K. Miettinen. Data-driven evolutionary optimization: an overview and case studies. IEEE Trans Evol Comput, 23 (3) (2019), pp. 442-458.
|
[28] |
C. Gentry. A fully homomorphic encryption scheme. Stanford University, Palo Alto (2009).
|
[29] |
Yao AC. Protocols for secure computations. In: Proceedings of 23rd Annual Symposium on Foundations of Computer Science (SFCS 1982); 1982 Nov 3-5; Chicago, IL, USA; 1982.
|
[30] |
A. Shamir. How to share a secret. Commun ACM, 22 (11) (1979), pp. 612-613.
|
[31] |
D. Gollmann. Computer security. Wiley Interdiscip Rev Comput Stat, 2 (5) (2010), pp. 544-554.
|
[32] |
L. Sweeney. k-anonymity: a model for protecting privacy. Int J Uncertain Fuzziness Knowl Based Syst, 10 (05) (2002), pp. 557-570.
|
[33] |
A. Machanavajjhala, D. Kifer, J. Gehrke, M. Venkitasubramaniam. L-diversity: privacy beyond k-anonymity. ACM Trans Knowl Discov Data, 1 (1) (2007), p. 3.
|
[34] |
Li N, Li T, Venkatasubramanian S. t-closeness: privacy beyond k-anonymity and l-diversity. In:Proceedings of 2007 IEEE 23rd International Conference on Data Engineering; 2007 Apr 15-20; Istanbul, Turkey; 2007.
|
[35] |
R.L. Rivest, L. Adleman, M.L. Dertouzos. On data banks and privacy homomorphisms. Found Secur Comput, 4 (1978), pp. 169-180.
|
[36] |
Su H, Chen H. Experiments on parallel training of deep neural network using model averaging. 2015. arXiv:1507.01239.
|
[37] |
J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, et al. Large scale distributed deep networks. Proceedings of the 26th Annual Conference on Neural Information Processing Systems; 2012 Dec 3-6, Lake Tahoe, NV, USA (2012).
|
[38] |
K. Chang, N. Balachandar, C. Lam, D. Yi, J. Brown, A. Beers, et al. Distributed deep learning networks among institutions for medical imaging. J Am Med Inform Assoc, 25 (8) (2018), pp. 945-954.
|
[39] |
Sheller MJ, Reina GA, Edwards B, Martin J, Bakas S. Multi-institutional deep learning modeling without sharing patient data:a feasibility study on brain tumor segmentation. In: Proceedings of International MICCAI Brainlesion Workshop; 2022 Sep 18; Singapore; 2018.
|
[40] |
O. Gupta, R. Raskar. Distributed learning of deep neural network over multiple agents. J Netw Comput Appl, 116 (2018), pp. 1-8.
|
[41] |
B. Custers, A.M. Sears, F. Dechesne, I. Georgieva, T. Tani, S. Van der Hof. EU personal data protection in policy and practice. Springer, Hague (2019).
|
[42] |
M.A. Rahman, T. Rahman, R. Laganière, N. Mohammed, Y. Wang. Membership inference attack against differentially private deep learning model. Trans Data Priv, 11 (2018), pp. 61-79.
|
[43] |
Zhang X, Zhu X, Lessard L. Online data poisoning attacks. In:Proceedings of the 2nd Conference on Learning for Dynamics and Control; 2020 Jun 11-12; Berkeley, CA, USA; 2020.
|
[44] |
Du W, Atallah MJ. Secure multi-party computation problems and their applications: a review and open problems. In: Proceedings of the 2001 Workshop on New Security Paradigms; 2001 Sep 10-13; Cloudcroft, NM, USA;; 2001. p. 13-22.
|
[45] |
Shokri R, Shmatikov V. Privacy-preserving deep learning. In:Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security; 2015 Oct 12-16; Denver, CO, USA; 2015. p. 1310-21.
|
[46] |
Abadi M, Chu A, Goodfellow I, McMahan HB, Mironov I, Talwar K, et al. Deep learning with differential privacy. In:Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security; 2016 Oct 24-28;Vienna, Austria; 2016.
|
[47] |
Bonawitz K, Ivanov V, Kreuter B, Marcedone A, McMahan HB, Patel S, et al. Practical secure aggregation for privacy-preserving machine learning. In:Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security; 2017 Oct 30-Nov 3; Dallas, TX, USA; 2017.
|
[48] |
Choudhury O, Gkoulalas-Divanis A, Salonidis T, Sylla I, Park Y, Hsu G, et al. Anonymizing data for privacy-preserving federated learning. 2020. arXiv:2002.09096.
|
[49] |
J. Song, W. Wang, T.R. Gadekallu, J. Cao, Y. Liu. EPPDA: an efficient privacy-preserving data aggregation federated learning scheme. IEEE Trans Netw Sci Eng, 10 (5) (2023), pp. 3047-3057.
|
[50] |
Truex S, Baracaldo N, Anwar A, Steinke T, Ludwig H, Zhang R, et al. A hybrid approach to privacy-preserving federated learning. In:Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security; 2019 Nov 15; London, UK; 2012.
|
[51] |
Xu R, Baracaldo N, Zhou Y, Anwar A, Ludwig H. Hybrid Alpha: an efficient approach for privacy-preserving federated learning. In:Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security; 2019 Nov 15; London, UK; 2019. p. 13-23.
|
[52] |
H. Zhu, R. Wang, Y. Jin, K. Liang. PIVODL: privacy-preserving vertical federated learning over distributed labels. IEEE Trans Artif Intell, 4 (5) (2023), pp. 988-1001.
|
[53] |
Z. Lian, Q. Yang, W. Wang, Q. Zeng, M. Alazab, H. Zhao, et al. DEEP-FEL: decentralized, efficient and privacy-enhanced federated edge learning for healthcare cyber physical systems. IEEE Trans Netw Sci Eng, 9 (5) (2022), pp. 3558-3569.
|
[54] |
Zhang S, Choromanska AE, LeCun Y. Deep learning with elastic averaging SGD. In:Proceedings of the 29th Annual Conference on Neural Information Processing Systems (NIPS 2015); 2015 Dec 11-12;Montreal, QC, Canada; 2015.
|
[55] |
Kingma DP, Ba J. Adam: a method for stochastic optimization. 2014. arXiv:1412.6980.
|
[56] |
Q. Li, R. Heusdens, M.G. Christensen. Privacy-preserving distributed optimization via subspace perturbation: a general framework. IEEE Trans Signal Process, 68 (2020), pp. 5983-5996.
|
[57] |
O. Kramer. Genetic algorithms. O. Kramer (Ed.), Genetic algorithm essentials, Springer, Cham (2017).
|
[58] |
K. Deb, A. Pratap, S. Agarwal, T. Meyarivan. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput, 6 (2) (2002), pp. 182-197.
|
[59] |
R. Cheng, Y. Jin, M. Olhofer, B. Sendhoff. A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput, 20 (5) (2016), pp. 773-791.
|
[60] |
P. Auer. Using confidence bounds for exploitation-exploration trade-offs. J Mach Learn Res, 3 (2002), pp. 397-422.
|
[61] |
Wang Z, Jegelka S. Max-value entropy search for efficient Bayesian optimization. In:Proceedings of the 34th International Conference on Machine Learning; 2017 Aug 6-11; Sydney, NSW, Australia; 2017.
|
[62] |
T. Rodemann. A many-objective configuration optimization for building energy management. Rio de Janeiro, Brazil (2018).
|
[63] |
X. Ye, B. Chen, P. Li, L. Jing, G. Zeng. A simulation-based multi-agent particle swarm optimization approach for supporting dynamic decision making in marine oil spill responses. Ocean Coast Manage, 172 (2019), pp. 128-136.
|
[64] |
T. Schmitt, M. Hoffmann, T. Rodemann, J. Adamy. Incorporating human preferences in decision making for dynamic multi-objective optimization in model predictive control. Inventions, 7 (3) (2022), p. 46.
|
[65] |
H. Abdi, L.J. Williams. Principal component analysis. Wiley Interdiscip Rev Comput Stat, 2 (4) (2010), pp. 433-459.
|
[66] |
A.C. Belkina, C.O. Ciccolella, R. Anno, R. Halpert, J. Spidlen, J.E. Snyder-Cappione. Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets. Nat Commun, 10 (2019), p. 5415.
|
[67] |
F. Ntelemis, Y. Jin, S.A. Thomas. Image clustering using an augmented generative adversarial network and information maximization. IEEE Trans Neural Netw Learn Syst, 33 (12) (2022), pp. 7461-7474.
|
[68] |
F. Ntelemis, Y. Jin, S.A. Thomas. Information maximization clustering via multi-view self-labelling. Knowl Base Syst, 250 (2022), 109042.
|
[69] |
K. He, X. Zhang, S. Ren, J. Sun. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016 Jun 26-Jul 1, Las Vegas, NV, USA (2016).
|
[70] |
S.K. Gaikwad, B.W. Gawali, P. Yannawar. A review on speech recognition technique. Int J Comput Appl, 10 (2010), pp. 16-24.
|
[71] |
D. Yu, L. Deng. Automatic speech recognition. Springer, Cham (2015).
|
[72] |
K.R. Chowdhary. Natural language processing. K.R. Chowdhary (Ed.), Fundamentals of artificial intelligence, Springer, Cham (2020).
|
[73] |
J.E. Van Engelen, H.H. Hoos. A survey on semi-supervised learning. Mach Learn, 109 (2) (2020), pp. 373-440.
|
[74] |
F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, et al. A comprehensive survey on transfer learning. Proc IEEE, 109 (1) (2020), pp. 43-76.
|
[75] |
A. Jaiswal, A.R. Babu, M.Z. Zadeh, D. Banerjee, F. Makedon. A survey on contrastive self-supervised learning. Technologies, 9 (1) (2020), p. 2.
|
[76] |
S. Sun, Z. Cao, H. Zhu, J. Zhao. A survey of optimization methods from a machine learning perspective. IEEE Trans Cybern, 50 (8) (2019), pp. 3668-3681.
|
[77] |
T. Bäck, H.P. Schwefel. An overview of evolutionary algorithms for parameter optimization. Evol Comput, 1 (1) (1993), pp. 1-23.
|
[78] |
P.J. Van Laarhoven, E.H. Aarts. Simulated annealing: theory and applications. Springer, Cham (1987).
|
[79] |
Y. Yuan, H. Xu, B. Wang, X. Yao. A new dominance relation-based evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput, 20 (1) (2016), pp. 16-37.
|
[80] |
Q. Zhang, H. Li. MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput, 11 (6) (2007), pp. 712-731.
|
[81] |
Liu Q, Jin Y, Heiderich M, Rodemann T. Adaptation of reference vectors for evolutionary many-objective optimization of problems with irregular Pareto fronts. In:Proceedings of 2019 IEEE Congress on Evolutionary Computation (CEC); 2019 Jun 10-13;Wellington, New Zealand ; 2019.
|
[82] |
Q. Liu, Y. Jin, M. Heiderich, T. Rodemann, G. Yu. An adaptive reference vector guided evolutionary algorithm using growing neural gas for many-objective optimization of irregular problems. IEEE Trans Cybern, 52 (5) (2020), pp. 2698-2711.
|
[83] |
Y. Sun, G.G. Yen, Z. Yi. IGD indicator-based evolutionary algorithm for many-objective optimization problems. IEEE Trans Evol Comput, 23 (2) (2018), pp. 173-187.
|
[84] |
J. Bader, E. Zitzler, E. Hyp. An algorithm for fast hypervolume-based many-objective optimization. Evol Comput, 19 (1) (2011), pp. 45-76.
|
[85] |
Y. Zhou, M. Zhu, J. Wang, Z. Zhang, Y. Xiang, J. Zhang. Tri-goal evolution framework for constrained many-objective optimization. IEEE Trans Syst Man Cybern Syst, 50 (2020), pp. 3086-3099.
|
[86] |
G. Yu, L. Ma, Y. Jin, W. Du, Q. Liu, H. Zhang. A survey on knee-oriented multi-objective evolutionary optimization. IEEE Trans Evol Comput, 26 (6) (2022), pp. 1452-1472.
|
[87] |
L.B. Said, S. Bechikh, K. Ghédira. The r-dominance: a new dominance relation for interactive evolutionary multicriteria decision making. IEEE Trans Evol Comput, 14 (5) (2010), pp. 801-818.
|
[88] |
K. Deb, A. Sinha, P.J. Korhonen, J. Wallenius. An interactive evolutionary multiobjective optimization method based on progressively approximated value functions. IEEE Trans Evol Comput, 14 (5) (2010), pp. 723-739.
|
[89] |
C.A.C. Coello, S.G. Brambila, J.F. Gamboa, M.G.C. Tapia, R.H. Gómez. Evolutionary multiobjective optimization: open research areas and some challenges lying ahead. Complex Intell Syst, 6 (2) (2020), pp. 221-236.
|
[90] |
Sakuma J, Kobayashi S. A genetic algorithm for privacy preserving combinatorial optimization. In:Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation; 2007 Jul 7-11;London, UK; 2007.
|
[91] |
Han S, Ng WK. Privacy-preserving genetic algorithms for rule discovery. In:Proceedings of International Conference on Data Warehousing and Knowledge Discovery; 2007 Sep 3-7; Regensburg, Germany; 2007.
|
[92] |
Goethals B, Laur S, Lipmaa H, Mielikäinen T. On private scalar product computation for privacy-preserving data mining. In:Proceedings of International Conference on Information Security and Cryptology; 2004 Dec 2-3: Seoul, Republic of Korea; 2004. p. 104-20.
|
[93] |
Hong Y, Vaidya J, Lu H. Securely solving the distributed graph coloring problem. 2018. arXiv:1803.05606.
|
[94] |
Bogunovic I, Scarlett J, Jegelka S, Cevher V. Adversarially robust optimization with Gaussian processes. In: Proceedings of Advances in Neural Information Processing Systems; 2018 Dec 3-8; Montréal QC, Canada; 2018.
|
[95] |
Cai X, Scarlett J. On lower bounds for standard and robust Gaussian process bandit optimization. In:Proceedings of International Conference on Machine Learning; 2021 Jul 18-24; online; 2021. p. 1216-26.
|
[96] |
Bogunovic I, Krause A, Scarlett J. Corruption-tolerant Gaussian process bandit optimization. In:Proceedings of International Conference on Artificial Intelligence and Statistics; 2020 Aug 26-28; online; 2020. p. 1071-81.
|
[97] |
Han E, Scarlett J. Adversarial attacks on Gaussian process bandits. In:Proceedings of International Conference on Machine Learning; 2022 Jul 17-23; Baltimore, Maryland; 2022. p. 8304-29.
|
[98] |
Zhan ZH, Wu SH, Zhang J. A new evolutionary computation framework for privacy-preserving optimization. In:Proceedings of International Conference on Advanced Computational Intelligence; 2021 May 14-16; Wanzhou, China; 2021. p. 220-6.
|
[99] |
B. Zhao, X. Liu, A. Song, W.N. Chen, K.K. Lai, J. Zhang, et al. PriMPSO: a privacy-preserving multiagent particle swarm optimization algorithm. IEEE Trans Cybern, 53 (11) (2023), pp. 7136-7149.
|
[100] |
Bogdanov D, Emura K, Jagomägis R, Kanaoka A, Matsuo S, Willemson J. A secure genetic algorithm for the subset cover problem and its application to privacy protection. In:Proceedings of International Workshop on Information Security Theory and Practice; 2014 Jun 30-July 2; Crete, Greece; 2014. p. 108-23.
|
[101] |
Yan Y, Han D, Shu T. Privacy preserving optimization of participatory sensing in mobile cloud computing. In:Proceedings of International Conference on Distributed Computing Systems; 2017 Jun 5-8; Atlanta, GA, USA; 2017. p. 1084-93.
|
[102] |
Funke D, Kerschbaum F. Privacy-preserving multi-objective evolutionary algorithms. In:Proceedings of International Conference on Parallel Problem Solving from Nature; 2010 Sep 11-15; Krakow, Poland; 2010. p. 41-50.
|
[103] |
Zhao B, Chen WN, Wei FF, Liu X, Pei Q, Zhang J. Evolution as a service: a privacy-preserving genetic algorithm for combinatorial optimization. 2022. arXiv:2205.13948.
|
[104] |
Suo J, Gu L, Yan X, Yang S, Hu X, Wang L. PP-QIGA: a privacy-preserving quantum inspired genetic algorithm for the double digest problem. 2022. reseachsquare:10.21203/rs.3.rs-1941096/v1.
|
[105] |
Hong Y, Vaidya J, Lu H, Wang L. Collaboratively solving the traveling salesman problem with limited disclosure. In:Proceedings of the 4th ACM Conference on Data and Application Security and Privacy; 2014 Mar 3-5; San Antonio, TX, USA; 2014. p. 179-94.
|
[106] |
Y. Hong, J. Vaidya. An inference-proof approach to privacy-preserving horizontally partitioned linear programs. Optim Lett, 8 (1) (2014), pp. 267-277.
|
[107] |
Y. Hong, J. Vaidya, N. Rizzo, Q. Liu. Privacy-preserving linear programming. S. Goel, Y. Hong, J. Giboney, P. Atrey (Eds.), World scientific reference on innovation: volume 4: innovation in information security, World Scientific, Singapore (2018).
|
[108] |
Borden AR, Molzahn DK, Lesieutre BC, Ramanathan P. Power system structure and confidentiality preserving transformation of optimal power flow problem. In:Proceedings of Annual Allerton Conference on Communication, Control, and Computing; 2013 Oct 2-4; Monticello, IL, USA; 2013. p. 1021-8.
|
[109] |
Gupta A, Ligett K, McSherry F, Roth A, Talwar K. Differentially private combinatorial optimization. In:Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms; 2010 Jan 17-19; Austin, TX, USA; 2010. p. 1106-25.
|
[110] |
Kusner M, Gardner J, Garnett R, Weinberger K. Differentially private Bayesian optimization. In:Proceedings of International Conference on Machine Learning; 2015 Jul 6-11; Lille Grand Palais, France; 2015. p. 918-27.
|
[111] |
Fenner P, Pyzer-Knapp E. Privacy-preserving Gaussian process regression—a modular approach to the application of homomorphic encryption. In: Proceedings of Thirty-Fourth AAAI Conference on Artificial Intelligence; 2020 Feb 7-12; New York City, NY, USA; 2020. p. 3866-73.
|
[112] |
Luo J, Zhang Y, Zhang J, Qin S, Wang H, Yu Y, et al. Practical privacy-preserving Gaussian process regression via secret sharing. 2023. arXiv:2306.14498.
|
[113] |
Nguyen TD, Gupta S, Rana S, Venkatesh S. A privacy preserving Bayesian optimization with high efficiency. In:Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining; 2018 Jun 3-6; Melbourne, VIC, Australia; 2018. p. 543-55.
|
[114] |
Xiong Z, Li L, Yan J, Wang H, He H, Jin Y. Differential privacy with variant-noise for Gaussian processes classification. In:Proceedings of Pacific Rim International Conference on Artificial Intelligence; 2019 Aug 26-30; Yanuca Island, Fuji; 2019. p. 107-19.
|
[115] |
Kharkovskii D, Dai Z, Low BKH. Private outsourced Bayesian optimization. In:Proceedings of International Conference on Machine Learning; 2020 Jul 12-18; Vienna, Austria; 2020. p. 5231-42.
|
[116] |
C. Zhang, M. Ahmad, Y. Wang. ADMM based privacy-preserving decentralized optimization. IEEE Trans Inf Forensics Secur, 14 (3) (2018), pp. 565-580.
|
[117] |
C. Zhang, Y. Wang. Enabling privacy-preservation in decentralized optimization. IEEE Trans Control Netw Syst, 6 (2) (2018), pp. 679-689.
|
[118] |
Ruan M, Ahmad M, Wang Y. Secure and privacy-preserving average consensus. In:Proceedings of the 2017 Workshop on Cyber-Physical Systems Security and Privacy; 2017 Nov 3; Dallas, TX, USA; 2017. p. 123-9.
|
[119] |
Gao H, Zhang C, Ahmad M, Wang Y. Privacy-preserving average consensus on directed graphs using push-sum. In:Proceedings of the 6th Annual IEEE Conference on Communications and Network Security (CNS); 2018 May 30-Jun 1; Beijing, China; 2018.
|
[120] |
Tian N, Guo Q, Sun H, Zhou X. Fully privacy-preserving distributed optimization based on secret sharing. 2021. TechRxiv.
|
[121] |
Li Q, Cascudo I, Christensen MG. Privacy-preserving distributed average consensus based on additive secret sharing. In: Proceedings of the 27th European Signal Processing Conference; 2019 Sep 2-6; A Coruña, Spain; 2019.
|
[122] |
T. Zhang, Q. Zhu. Dynamic differential privacy for ADMM-based distributed classification learning. IEEE Trans Inf Forensics Secur, 12 (1) (2016), pp. 172-187.
|
[123] |
Z. Huang, R. Hu, Y. Guo, E. Chan-Tin, Y. Gong. DP-ADMM: ADMM-based distributed learning with differential privacy. IEEE Trans Inf Forensics Secur, 15 (2019), pp. 1002-1012.
|
[124] |
Zhang X, Khalili MM, Liu M. Improving the privacy and accuracy of ADMM-based distributed algorithms. In:Proceedings of International Conference on Machine Learning; 2018 Jul 10-15; Stockholmsmässan, Sweden; 2018. p. 5796-805.
|
[125] |
Huang Z, Mitra S, Vaidya N. Differentially private distributed optimization. In:Proceedings of the 16th International Conference on Distributed Computing and Networking; 2015 Jan 4-7;Goa, India; 2015.
|
[126] |
Gauthier F, Gratton C, Venkategowda NK, Werner S. Privacy-preserving distributed learning with nonsmooth objective functions. In:Proceedings of the 54th Asilomar Conference on Signals, Systems, and Computers; 2020 Nov 1-4; online; 2020. p. 42-6.
|
[127] |
T. Ding, S. Zhu, J. He, C. Chen, X. Guan. Differentially private distributed optimization via state and direction perturbation in multiagent systems. IEEE Trans Automat Contr, 67 (2) (2021), pp. 722-737.
|
[128] |
Dai Z, Low BKH, Jaillet P. Federated Bayesian optimization via Thompson sampling. In:Proceedings of the 34th Conference on Neural Information Processing Systems; 2020 Dec 6-12; Vancouver, BC, Canada; 2020. p. 9687-99.
|
[129] |
Dai Z, Low BKH, Jaillet P. Differentially private federated Bayesian optimization with distributed exploration. In:Proceedings of the 35th Conference on Neural Information Processing Systems; 2021 Dec 6-14; online; 2021. p. 9125-39.
|
[130] |
J. Xu, Y. Jin, W. Du, S. Gu. A federated data-driven evolutionary algorithm. Knowl Base Syst, 233 (2021), 107532.
|
[131] |
J. Xu, Y. Jin, W. Du. A federated data-driven evolutionary algorithm for expensive multi-/many-objective optimization. Complex Intell Syst, 7 (6) (2021), pp. 3093-3109.
|
[132] |
X.Q. Guo, W.N. Chen, F.F. Wei, W.T. Mao, X.M. Hu, J. Zhang. Edge-cloud co-evolutionary algorithms for distributed data-driven optimization problems. IEEE Trans Cybern, 53 (10) (2023), pp. 6598-6611.
|
[133] |
V. Torra, E. Galván, G. Navarro-Arribas. Pso+ fl= paaso: particle swarm optimization + federated learning = privacy-aware agent swarm optimization. Int J Inf Secur, 21 (6) (2022), pp. 1349-1359.
|
[134] |
Kathen MJT, Johnson P, Flores IJ, Reina DGE. Aquafel-PSO: a monitoring system for water resources using autonomous surface vehicles based on multimodal PSO and federated learning. 2022. arXiv:2211.15217.
|
[135] |
Cheng A, Wang Z, Li Y, Cheng J. HPN: personalized federated hyperparameter optimization. 2023. arXiv:2304.05195.
|
[136] |
X. Zhang, Z. Yuan, M. Zhu. Byzantine-tolerant federated Gaussian process regression for streaming data. Adv Neural Inf Process Syst, 35 (2022), pp. 13499-13511.
|
[137] |
Salgia S, Vakili S, Zhao Q. Collaborative learning in kernel-based bandits for distributed users. 2023. arXiv:2207.07948.
|
[138] |
Zhu H, Wang X, Jin Y. Federated many-task Bayesian optimization. IEEE Trans Evol Comput. In press.
|
[139] |
Sim RHL, Zhang Y, Low BKH, Jaillet P. Collaborative Bayesian optimization with fair regret. In:Proceedings of International Conference on Machine Learning; 2021 Jul 18-24; online; 2021. p. 9691-701.
|
[140] |
Li T, Sanjabi M, Beirami A, Smith V. Fair resource allocation in federated learning. 2019. arXiv:1905.10497.
|
[141] |
Candelieri A, Ponti A, Archetti F. Fair and green hyperparameter optimization via multi-objective and multiple information source Bayesian optimization. 2022. arXiv:2205.08835.
|
[142] |
Perrone V, Donini M, Zafar MB, Schmucker R, Kenthapadi K, Archambeau C. Fair Bayesian optimization. In:Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society; 2021 May 19-21; online; 2021. p. 854-63.
|
[143] |
Mehrabi N, de Lichy C, McKay J, He C, Campbell W. Towards multi-objective statistically fair federated learning. 2022. arXiv:2201.09917.
|
[144] |
L. Lyu, X. Xu, Q. Wang, H. Yu. Collaborative fairness in federated learning. Q. Yang, L. Fan, H. Yu (Eds.), Federated learning, Springer, Cham (2020).
|
[145] |
Liu C, Fan Z, Zhou Z, Shi Y, Pei J, Chu L, et al. Achieving model fairness in vertical federated learning. 2021. arXiv:2109.08344.
|
[146] |
Zhang C, Gao H, Wang Y. Privacy-preserving decentralized optimization via decomposition. 2018. arXiv:1808.09566.
|
[147] |
Y. Wang. Privacy-preserving average consensus via state decomposition. IEEE Trans Automat Contr, 64 (11) (2019), pp. 4711-4716.
|
[148] |
Liu Q, Yan Y, Ligeti P, Jin Y. A secure federated data-driven evolutionary multi-objective optimization algorithm. IEEE Trans Emerg Top Comput Intell., in press.
|
[149] |
H. Zhu, J. Xu, S. Liu, Y. Jin. Federated learning on non-IID data: a survey. Neurocomputing, 465 (2021), pp. 371-390.
|
[150] |
Yan Y, Ligeti P. A survey of personalized and incentive mechanisms for federated learning. In:Proceedings of IEEE 2nd Conference on Information Technology and Data Science. 2022 May 16-18; Debrecen, Hungary; 2022. p. 324-9.
|
[151] |
P. Kairouz, H.B. McMahan, B. Avent, A. Bellet, M. Bennis, A.N. Bhagoji, et al. Advances and open problems in federated learning. Found Trends Mach learn, 14 (1-2) (2021), pp. 1-210.
|
[152] |
Chai D, Wang L, Chen K, Yang Q. Fedeval: a benchmark system with a comprehensive evaluation model for federated learning. 2020. arXiv:2011.09655.
|
[153] |
Zhao Y, Li M, Lai L, Suda N, Civin D, Chandra V. Federated learning with non-IID data. 2018. arXiv:1806.00582.
|
[154] |
Z. Lian, Q. Zeng, W. Wang, T.R. Gadekallu, C. Su. Blockchain-based two-stage federated learning with non-IID data in IoMT system. IEEE Trans Comput Soc Syst, 10 (4) (2023), pp. 1701-1710.
|
[155] |
Nishio T, Yonetani R. Client selection for federated learning with heterogeneous resources in mobile edge. In:Proceedings of IEEE International Conference on Communications; 2019 May 20-24;Shanghai, China; 2019.
|
[156] |
Y. Deng, F. Lyu, J. Ren, H. Wu, Y. Zhou, Y. Zhang, et al. Auction: automated and quality-aware client selection framework for efficient federated learning. IEEE Trans Parallel Distrib Syst, 33 (8) (2021), pp. 1996-2009.
|
[157] |
Konecný J, McMahan HB, Yu F, Richtárik P, Suresh AT, Bacon D. Federated learning: Strategies for improving communication efficiency. 2017. arXiv:1610.05492v2.
|
[158] |
F. Sattler, S. Wiedemann, K.R. Müller, W. Samek. Robust and communication-efficient federated learning from non-IID data. IEEE Trans Neural Netw Learn Syst, 31 (9) (2019), pp. 3400-3413.
|
[159] |
J. Xu, W. Du, Y. Jin, W. He, R. Cheng. Ternary compression for communication-efficient federated learning. IEEE Trans Neural Netw Learn Syst, 33 (3) (2022), pp. 1162-1176.
|
[160] |
Y. Chen, X. Sun, Y. Jin. Communication-efficient federated deep learning with layer-wise asynchronous model update and temporally weighted aggregation. IEEE Trans Neural Netw Learn Syst, 31 (10) (2020), pp. 4229-4238.
|
[161] |
Guo Q, Qi Y, Qi S, Wu D, Li Q. FedMCSA: personalized federated learning via model components self-attention. 2022. arXiv:2208.10731.
|
[162] |
H. Zhu, Y. Jin. Multi-objective evolutionary federated learning. IEEE Trans Neural Netw Learn Syst, 31 (4) (2020), pp. 1310-1322
|
[163] |
Liang X, Liu Y, Luo J, He Y, Chen T, Yang Q. Self-supervised cross-silo federated neural architecture search. 2021. arXiv:2101.11896.
|
[164] |
L. Lyu, J. Yu, K. Nandakumar, Y. Li, X. Ma, J. Jin, et al. Towards fair and privacy-preserving federated deep models. IEEE Trans Parallel Distrib Syst, 31 (11) (2020), pp. 2524-2541.
|
[165] |
Shi Y, Yu H, Leung C. A survey of fairness-aware federated learning. 2021. arXiv:2111.01872.
|
[166] |
Zhou P, Fang P, Hui P. Loss tolerant federated learning. 2021. arXiv:2105.03591.
|
[167] |
Chouldechova A, Roth A. The frontiers of fairness in machine learning. 2018. arXiv:1810.08810.
|
[168] |
N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, A. Galstyan. A survey on bias and fairness in machine learning. ACM Comput Surv, 54 (6) (2021), pp. 1-35.
|
[169] |
Yue X, Nouiehed M, Kontar RA. GIFAIR-FL: an approach for group and individual fairness in federated learning. 2021. arXiv:2108.02741.
|
[170] |
M. Cong, H. Yu, X. Weng, S.M. Yiu. A game-theoretic framework for incentive mechanism design in federated learning. Q. Yang, L. Fan, H. Yu (Eds.), Federated learning: privacy and incentive, Springer, Cham (2020).
|
[171] |
Zhang Q, Liu J, Zhang Z, Wen J, Mao B, Yao X. Fairer machine learning through multi-objective evolutionary learning. In:Proceedings of the 30th International Conference on Artificial Neural Networks; 2021 Sep 14-17; Bratislava, Slovakia; 2021. p. 111-23.
|
[172] |
Speicher T, Heidari H, Grgic-Hlaca N, Gummadi KP, Singla A, Weller A, et al. A unified approach to quantifying algorithmic unfairness:Measuring individual & group unfairness via inequality indices. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining; 2018 Aug 19-23; New York City, NY, USA; 2018. p. 2239-48.
|
[173] |
A. Chouldechova. Fair prediction with disparate impact: a study of bias in recidivism prediction instruments. Big Data, 5 (2) (2017), pp. 153-163.
|
[174] |
Yu G, Ma L, Du W, Du W, Jin Y. Towards fairness-aware multi-objective optimization. 2022. arXiv:2207.12138.
|
[175] |
Mushtaq E, He C, Ding J, Avestimehr S. Spider: searching personalized neural architecture for federated learning. 2021. arXiv:2112.13939.
|
[176] |
He C, Annavaram M, Avestimehr S. FedNAS: federated deep learning via neural architecture search. In:Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020 Jun 13-19;Seattle, WA, USA. 2020.
|
[177] |
Garg A, Saha AK, Dutta D. Direct federated neural architecture search. 2020. arXiv:2010.06223.
|
[178] |
Xu M, Zhao Y, Bian K, Huang G, Mei Q, Liu X. Federated neural architecture search. 2020. arXiv:2002.06352.
|
[179] |
C. Zhang, X. Yuan, Q. Zhang, G. Zhu, L. Cheng, N. Zhang. Toward tailored models on private AIoT devices: federated direct neural architecture search. IEEE Internet Things J, 9 (18) (2022), pp. 17309-17322.
|
[180] |
Z. Pan, L. Hu, W. Tang, J. Li, Y. He, Z. Liu. Privacy-preserving multi-granular federated neural architecture search a general framework. IEEE Trans Knowl Data Eng, 35 (2023), pp. 2975-2986.
|
[181] |
H. Cho, A. Mathur, F. Kawsar. FLAME: federated learning across multi-device environments. Proc ACM Interact Mob Wearable Ubiquitous Technol, 6 (3) (2022), p. 107.
|
[182] |
Singh I, Zhou H, Yang K, Ding M, Lin B, Xie P. Differentially-private federated neural architecture search. 2020. arXiv:2006.10559.
|
[183] |
H. Zhu, Y. Jin. Real-time federated evolutionary neural architecture search. IEEE Trans Evol Comput, 26 (2) (2022), pp. 364-378.
|
[184] |
Wang C, Chen B, Li G, Wang H. FL-AGCNS: federated learning framework for automatic graph convolutional network search. 2021. arXiv:2104.04141.
|
[185] |
Gratton C, Venkategowda NK, Arablouei R, Werner S. Privacy-preserving distributed zeroth-order optimization. 2020. arXiv:2008.13468.
|
[186] |
Swersky K, Snoek J, Adams RP. Multi-task Bayesian optimization. In: Proceedings of the 26th International Conference on Neural Information Processing Systems; 2013 Dec 5-10; New York City, NY, USA; 2013.
|
[187] |
Lin X, Zhen HL, Li Z, Zhang QF, Kwong S. Pareto multi-task learning. In:Proceedings of the 32nd International Conference on Neural Information Processing Systems; 2019 Dec 8-14;Vancouver, BC, Canada; 2019.
|
[188] |
Smith V, Chiang CK, Sanjabi M, Talwalkar AS. Federated multi-task learning. In:Proceedings of the 30th International Conference on Neural Information Processing Systems; 2017 Dec 4-9;Long Beach, CA, USA; 2017.
|
[189] |
Zhu L, Deb K, Kulkarni S. Multi-scenario optimization using multi-criterion methods: a case study on byzantine agreement problem. In: Proceedings of IEEE Congress on Evolutionary Computation; 2014 Jul 6-11; Beijing, China; 2014. p. 2601-8.
|
[190] |
Deb K, Zhu L, Kulkarni S. Multi-scenario, multi-objective optimization using evolutionary algorithms: initial results. In: Proceedings of IEEE Congress on Evolutionary Computation; 2015 May 25-28; Sendai, Japan; 2015. p. 1877-84.
|
[191] |
Y. Hua, Q. Liu, K. Hao, Y. Jin. A survey of evolutionary algorithms for multi-objective optimization problems with irregular Pareto fronts. IEEE/CAA J Autom Sin, 8 (2) (2021), pp. 303-318
|
[192] |
F.F. Wei, W.N. Chen, Q. Li, S.W. Jeon, J. Zhang. Distributed and expensive evolutionary constrained optimization with on-demand evaluation. IEEE Trans Evol Comput, 27 (3) (2023), pp. 671-685
|
[193] |
Li Q, Heusdens R, Christensen MG. Convex optimisation-based privacy-preserving distributed average consensus in wireless sensor networks. In:Proceedings of the 45th International Conference on Acoustics, Speech, and Signal Processing; 2020 May 4-8; online; 2020. p. 5895-9.
|
[194] |
Q. Li, R. Heusdens, M.G. Christensen. Communication efficient privacy-preserving distributed optimization using adaptive differential quantization. Signal Process, 194 (2022), 108456
|
[195] |
H. Zhu, R. Wang, Y. Jin, K. Liang, J. Ning. Distributed additive encryption and quantization for privacy preserving federated deep learning. Neurocomputing, 463 (2021), pp. 309-327.
|
[196] |
Alvi AS, Ru B, Calliess J, Roberts SJ, Osborne MA. Asynchronous batch Bayesian optimisation with improved local penalization. 2019. arXiv:1901.10452.
|
[197] |
Garcia-Barcos J, Martinez-Cantin R. Fully distributed Bayesian optimization with stochastic policies. 2019. arXiv:1902.09992.
|