确保受约束的智能网联汽车在对抗拜占庭攻击下的编队安全——一种分布式模型预测控制框架

Henglai Wei, Hui Zhang, Kamal AI-Haddad, Yang Shi

工程(英文) ›› 2024, Vol. 33 ›› Issue (2) : 35-46.

PDF(1959 KB)
PDF(1959 KB)
工程(英文) ›› 2024, Vol. 33 ›› Issue (2) : 35-46. DOI: 10.1016/j.eng.2023.10.007
研究论文
Article

确保受约束的智能网联汽车在对抗拜占庭攻击下的编队安全——一种分布式模型预测控制框架

作者信息 +

Ensuring Secure Platooning of Constrained Intelligent and Connected Vehicles Against Byzantine Attacks: A Distributed MPC Framework

Author information +
History +

Abstract

This study investigates resilient platoon control for constrained intelligent and connected vehicles (ICVs) against F-local Byzantine attacks. We introduce a resilient distributed model-predictive platooning control framework for such ICVs. This framework seamlessly integrates the predesigned optimal control with distributed model predictive control (DMPC) optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles. Notably, our strategy uses previously broadcasted information and a specialized convex set, termed the “resilience set”, to identify unreliable data. This approach significantly eases graph robustness prerequisites, requiring only an (F + 1)-robust graph, in contrast to the established mean sequence reduced algorithms, which require a minimum (2F + 1)-robust graph. Additionally, we introduce a verification algorithm to restore trust in vehicles under minor attacks, further reducing communication network robustness. Our analysis demonstrates the recursive feasibility of the DMPC optimization. Furthermore, the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs, while ensuring constraint compliance and cybersecurity. Simulation results verify the effectiveness of our theoretical findings.

Keywords

Model predictive control / Resilient control / Platoon control / Intelligent and connected vehicle / Byzantine attacks

引用本文

导出引用
Henglai Wei, Hui Zhang, Kamal AI-Haddad. . Engineering. 2024, 33(2): 35-46 https://doi.org/10.1016/j.eng.2023.10.007

参考文献

[1]
S. Feng, Y. Zhang, S.E. Li, Z. Cao, H.X. Liu, L. Li. String stability for vehicular platoon control: definitions and analysis methods. Annu Rev Control, 47 (2019), pp. 81-97
[2]
Z. Ju, H. Zhang, X. Li, X. Chen, J. Han, M. Yang. A survey on attack detection and resilience for connected and automated vehicles: from vehicle dynamics and control perspective. IEEE Trans Intell Veh, 7 (4) (2022), pp. 815-837
[3]
T. Limbasiya, K.Z. Teng, S. Chattopadhyay, J. Zhou. A systematic survey of attack detection and prevention in connected and autonomous vehicles. Veh Commun, 37 (2022), Article 100515
[4]
X. Sun, F.R. Yu, P. Zhang. A survey on cyber-security of connected and autonomous vehicles (CAVs). IEEE Trans Intell Transp Syst, 23 (7) (2022), pp. 6240-6259
[5]
H. Sandberg, V. Gupta, K.H. Johansson. Secure networked control systems. Annu Rev Control Robot Auton Syst, 5 (1) (2022), pp. 445-464
[6]
D. Zhang, G. Feng, Y. Shi, D. Srinivasan. Physical safety and cyber security analysis of multi-agent systems: a survey of recent advances. IEEE/CAA J Autom Sin, 8 (2) (2021), pp. 319-333
[7]
J. Chen, Y. Shi. Stochastic model predictive control framework for resilient cyber-physical systems: review and perspectives. Phil Trans R Soc A, 379 (2207) (2021), Article 20200371
[8]
C. Zhou, B. Hu, Y. Shi, Y.C. Tian, X. Li, Y. Zhao. A unified architectural approach for cyberattack-resilient industrial control systems. Proc IEEE, 109 (4) (2021), pp. 517-541
[9]
Z. Abdollahi Biron, S. Dey, P. Pisu. Real-time detection and estimation of denial of service attack in connected vehicle systems. IEEE Trans Intell Transp Syst, 19 (12) (2018), pp. 3893-3902
[10]
R. Merco, F. Ferrante, P. Pisu. A hybrid controller for DOS-resilient string-stable vehicle platoons. IEEE Trans Intell Transp Syst, 22 (3) (2021), pp. 1697-1707
[11]
S. Xiao, X. Ge, Q.L. Han, Y. Zhang. Secure distributed adaptive platooning control of automated vehicles over vehicular ad-hoc networks under denial-of-service attacks. IEEE Trans Cybern, 52 (11) (2022), pp. 12003-12015
[12]
D. Zhang, Y.P. Shen, S.Q. Zhou, X.W. Dong, L. Yu. Distributed secure platoon control of connected vehicles subject to DoS attack: theory and application. IEEE Trans Syst Man Cybern Syst, 51 (11) (2021), pp. 7269-7278
[13]
Y. Zhao, Z. Liu, W.S. Wong. Resilient platoon control of vehicular cyber physical systems under DoS attacks and multiple disturbances. IEEE Trans Intell Transp Syst, 23 (8) (2022), pp. 10945-10956
[14]
X. Xu, X. Li, P. Dong, Y. Liu, H. Zhang. Robust reset speed synchronization control for an integrated motor-transmission powertrain system of a connected vehicle under a replay attack. IEEE Trans Veh Technol, 70 (6) (2021), pp. 5524-5536
[15]
C. Zhao, J.S. Gill, P. Pisu, G. Comert. Detection of false data injection attack in connected and automated vehicles via cloud-based sandboxing. IEEE Trans Intell Transp Syst, 23 (7) (2022), pp. 9078-9088
[16]
R.A. Biroon, Z.A. Biron, P. Pisu. False data injection attack in a platoon of CACC: real-time detection and isolation with a PDE approach. IEEE Trans Intell Transp Syst, 23 (7) (2022), pp. 8692-8703
[17]
Z. Ju, H. Zhang, Y. Tan. Distributed deception attack detection in platoon-based connected vehicle systems. IEEE Trans Veh Technol, 69 (5) (2020), pp. 4609-4620
[18]
S. Ghane, A. Jolfaei, L. Kulik, K. Ramamohanarao, D. Puthal. Preserving privacy in the internet of connected vehicles. IEEE Trans Intell Transp Syst, 22 (8) (2021), pp. 5018-5027
[19]
M.N. Aladwan, F.M. Awaysheh, S. Alawadi, M. Alazab, T.F. Pena, J.C. Cabaleiro. TrustE-VC: trustworthy evaluation framework for industrial connected vehicles in the cloud. IEEE Trans Ind Inform, 16 (9) (2020), pp. 6203-6213
[20]
S.M. Dibaji, H. Ishii. Resilient consensus of second-order agent networks: asynchronous update rules with delays. Automatica, 81 (2017), pp. 123-132
[21]
M. Ruan, H. Gao, Y. Wang. Secure and privacy-preserving consensus. IEEE Trans Autom Control, 64 (10) (2019), pp. 4035-4049
[22]
C.N. Hadjicostis, A.D. Domínguez-García. Privacy-preserving distributed averaging via homomorphically encrypted ratio consensus. IEEE Trans Autom Control, 65 (9) (2020), pp. 3887-3894
[23]
W. Fang, M. Zamani, Z. Chen. Secure and privacy preserving consensus for second-order systems based on Paillier encryption. Syst Control Lett, 148 (2021), Article 104869
[24]
A. Mitra, S. Sundaram. Byzantine-resilient distributed observers for LTI systems. Automatica, 108 (2019), Article 108487
[25]
H.J. LeBlanc, H. Zhang, X. Koutsoukos, S. Sundaram. Resilient asymptotic consensus in robust networks. IEEE J Sel Areas Commun, 31 (4) (2013), pp. 766-781
[26]
J. Usevitch, D. Panagou. Resilient leader-follower consensus to arbitrary reference values in time-varying graphs. IEEE Trans Autom Control, 65 (4) (2020), pp. 1755-1762
[27]
D. Fiore, G. Russo. Resilient consensus for multi-agent systems subject to differential privacy requirements. Automatica, 106 (2019), pp. 18-26
[28]
H. Wei, K. Zhang, Y. Shi. Self-triggered min-max DMPC for asynchronous multiagent systems with communication delays. IEEE Trans Ind Inform, 18 (10) (2022), pp. 6809-6817
[29]
Y. Shi, K. Zhang. Advanced model predictive control framework for autonomous intelligent mechatronic systems: a tutorial overview and perspectives. Annu Rev Control, 52 (2021), pp. 170-196
[30]
W.B. Dunbar, R.M. Murray. Distributed receding horizon control for multi-vehicle formation stabilization. Automatica, 42 (4) (2006), pp. 549-558
[31]
H. Li, Y. Shi, W. Yan, F. Liu. Receding horizon consensus of general linear multi-agent systems with input constraints: an inverse optimality approach. Automatica, 91 (2018), pp. 10-16
[32]
Q. Wang, Z. Duan, Y. Lv, Q. Wang, G. Chen. Linear quadratic optimal consensus of discrete-time multi-agent systems with optimal steady state: a distributed model predictive control approach. Automatica, 127 (2021), Article 109505
[33]
H. Ishii, Q. Zhu. Security and resilience of control systems: theory and applications. Springer, Cham (2022)
[34]
Y. Zheng, S. Li, J. Wang, D. Cao, K. Li. Stability and scalability of homogeneous vehicular platoon: study on the influence of information flow topologies. IEEE Trans Intell Transp Syst, 17 (1) (2016), pp. 14-26
[35]
C. Deng, D. Zhang, G. Feng. Resilient practical cooperative output regulation for MASs with unknown switching exosystem dynamics under DoS attacks. Automatica, 139 (2022), Article 110172
[36]
A.Y. Lu, G.H. Yang. Input-to-state stabilizing control for cyber-physical systems with multiple transmission channels under denial of service. IEEE Trans Autom Control, 63 (6) (2018), pp. 1813-1820
[37]
M.A. Müller, M. Reble, F. Allgöwer. Cooperative control of dynamically decoupled systems via distributed model predictive control. Int J Robust Nonlinear Control, 22 (12) (2012), pp. 1376-1397
[38]
Z. Wang, C.J. Ong. Distributed model predictive control of linear discrete-time systems with local and global constraints. Automatica, 81 (2017), pp. 184-195
[39]
A. Mustafa, H. Modares, R. Moghadam. Resilient synchronization of distributed multi-agent systems under attacks. Automatica, 115 (2020), Article 108869
[40]
S.M. Dibaji, H. Ishii, R. Tempo. Resilient randomized quantized consensus. IEEE Trans Autom Control, 63 (8) (2018), pp. 2508-2522
[41]
J. Usevitch, D. Panagou. Determining r- and (r, s)-robustness of digraphs using mixed integer linear programming. Automatica, 111 (2020), Article 108586
[42]
L. Chisci, J.A. Rossiter, G. Zappa. Systems with persistent disturbances: predictive control with restricted constraints. Automatica, 37 (7) (2001), pp. 1019-1028
[43]
K. You, L. Xie. Network topology and communication data rate for consensusability of discrete-time multi-agent systems. IEEE Trans Autom Control, 56 (10) (2011), pp. 2262-2275
[44]
K.H. Movric, F.L. Lewis. Cooperative optimal control for multi-agent systems on directed graph topologies. IEEE Trans Autom Control, 59 (3) (2014), pp. 769-774
[45]
A. Boccia, L. Grüne, K. Worthmann. Stability and feasibility of state constrained MPC without stabilizing terminal constraints. Syst Control Lett, 72 (2014), pp. 14-21
[46]
T.H. Chang, A. Nedić, A. Scaglione. Distributed constrained optimization by consensus-based primal-dual perturbation method. IEEE Trans Autom Control, 59 (6) (2014), pp. 1524-1538
[47]
Wei H, Liu C, Shi Y. A robust distributed model predictive control framework for consensus of multi-agent systems with input constraints and varying delays. 2022. arXiv:2209.08785.
[48]
H. Wei, Q. Sun, J. Chen, Y. Shi. Robust distributed model predictive platooning control for heterogeneous autonomous surface vehicles. Control Eng Pract, 107 (2021), Article 104655
[49]
P. Liu, A. Kurt, U. Ozguner. Distributed model predictive control for cooperative and flexible vehicle platooning. IEEE Trans Control Syst Technol, 27 (3) (2019), pp. 1115-1128
[50]
Y. Wang, Y. Liu, Z. Shen. Revisiting item promotion in GNN-based collaborative filtering: a masked targeted topological attack perspective. Proc AAAI Conf Artif Intell, 37 (12) (2023), pp. 15206-15214
PDF(1959 KB)

Accesses

Citation

Detail

段落导航
相关文章

/