[1] |
S. Feng, Y. Zhang, S.E. Li, Z. Cao, H.X. Liu, L. Li. String stability for vehicular platoon control: definitions and analysis methods. Annu Rev Control, 47 (2019), pp. 81-97
|
[2] |
Z. Ju, H. Zhang, X. Li, X. Chen, J. Han, M. Yang. A survey on attack detection and resilience for connected and automated vehicles: from vehicle dynamics and control perspective. IEEE Trans Intell Veh, 7 (4) (2022), pp. 815-837
|
[3] |
T. Limbasiya, K.Z. Teng, S. Chattopadhyay, J. Zhou. A systematic survey of attack detection and prevention in connected and autonomous vehicles. Veh Commun, 37 (2022), Article 100515
|
[4] |
X. Sun, F.R. Yu, P. Zhang. A survey on cyber-security of connected and autonomous vehicles (CAVs). IEEE Trans Intell Transp Syst, 23 (7) (2022), pp. 6240-6259
|
[5] |
H. Sandberg, V. Gupta, K.H. Johansson. Secure networked control systems. Annu Rev Control Robot Auton Syst, 5 (1) (2022), pp. 445-464
|
[6] |
D. Zhang, G. Feng, Y. Shi, D. Srinivasan. Physical safety and cyber security analysis of multi-agent systems: a survey of recent advances. IEEE/CAA J Autom Sin, 8 (2) (2021), pp. 319-333
|
[7] |
J. Chen, Y. Shi. Stochastic model predictive control framework for resilient cyber-physical systems: review and perspectives. Phil Trans R Soc A, 379 (2207) (2021), Article 20200371
|
[8] |
C. Zhou, B. Hu, Y. Shi, Y.C. Tian, X. Li, Y. Zhao. A unified architectural approach for cyberattack-resilient industrial control systems. Proc IEEE, 109 (4) (2021), pp. 517-541
|
[9] |
Z. Abdollahi Biron, S. Dey, P. Pisu. Real-time detection and estimation of denial of service attack in connected vehicle systems. IEEE Trans Intell Transp Syst, 19 (12) (2018), pp. 3893-3902
|
[10] |
R. Merco, F. Ferrante, P. Pisu. A hybrid controller for DOS-resilient string-stable vehicle platoons. IEEE Trans Intell Transp Syst, 22 (3) (2021), pp. 1697-1707
|
[11] |
S. Xiao, X. Ge, Q.L. Han, Y. Zhang. Secure distributed adaptive platooning control of automated vehicles over vehicular ad-hoc networks under denial-of-service attacks. IEEE Trans Cybern, 52 (11) (2022), pp. 12003-12015
|
[12] |
D. Zhang, Y.P. Shen, S.Q. Zhou, X.W. Dong, L. Yu. Distributed secure platoon control of connected vehicles subject to DoS attack: theory and application. IEEE Trans Syst Man Cybern Syst, 51 (11) (2021), pp. 7269-7278
|
[13] |
Y. Zhao, Z. Liu, W.S. Wong. Resilient platoon control of vehicular cyber physical systems under DoS attacks and multiple disturbances. IEEE Trans Intell Transp Syst, 23 (8) (2022), pp. 10945-10956
|
[14] |
X. Xu, X. Li, P. Dong, Y. Liu, H. Zhang. Robust reset speed synchronization control for an integrated motor-transmission powertrain system of a connected vehicle under a replay attack. IEEE Trans Veh Technol, 70 (6) (2021), pp. 5524-5536
|
[15] |
C. Zhao, J.S. Gill, P. Pisu, G. Comert. Detection of false data injection attack in connected and automated vehicles via cloud-based sandboxing. IEEE Trans Intell Transp Syst, 23 (7) (2022), pp. 9078-9088
|
[16] |
R.A. Biroon, Z.A. Biron, P. Pisu. False data injection attack in a platoon of CACC: real-time detection and isolation with a PDE approach. IEEE Trans Intell Transp Syst, 23 (7) (2022), pp. 8692-8703
|
[17] |
Z. Ju, H. Zhang, Y. Tan. Distributed deception attack detection in platoon-based connected vehicle systems. IEEE Trans Veh Technol, 69 (5) (2020), pp. 4609-4620
|
[18] |
S. Ghane, A. Jolfaei, L. Kulik, K. Ramamohanarao, D. Puthal. Preserving privacy in the internet of connected vehicles. IEEE Trans Intell Transp Syst, 22 (8) (2021), pp. 5018-5027
|
[19] |
M.N. Aladwan, F.M. Awaysheh, S. Alawadi, M. Alazab, T.F. Pena, J.C. Cabaleiro. TrustE-VC: trustworthy evaluation framework for industrial connected vehicles in the cloud. IEEE Trans Ind Inform, 16 (9) (2020), pp. 6203-6213
|
[20] |
S.M. Dibaji, H. Ishii. Resilient consensus of second-order agent networks: asynchronous update rules with delays. Automatica, 81 (2017), pp. 123-132
|
[21] |
M. Ruan, H. Gao, Y. Wang. Secure and privacy-preserving consensus. IEEE Trans Autom Control, 64 (10) (2019), pp. 4035-4049
|
[22] |
C.N. Hadjicostis, A.D. Domínguez-García. Privacy-preserving distributed averaging via homomorphically encrypted ratio consensus. IEEE Trans Autom Control, 65 (9) (2020), pp. 3887-3894
|
[23] |
W. Fang, M. Zamani, Z. Chen. Secure and privacy preserving consensus for second-order systems based on Paillier encryption. Syst Control Lett, 148 (2021), Article 104869
|
[24] |
A. Mitra, S. Sundaram. Byzantine-resilient distributed observers for LTI systems. Automatica, 108 (2019), Article 108487
|
[25] |
H.J. LeBlanc, H. Zhang, X. Koutsoukos, S. Sundaram. Resilient asymptotic consensus in robust networks. IEEE J Sel Areas Commun, 31 (4) (2013), pp. 766-781
|
[26] |
J. Usevitch, D. Panagou. Resilient leader-follower consensus to arbitrary reference values in time-varying graphs. IEEE Trans Autom Control, 65 (4) (2020), pp. 1755-1762
|
[27] |
D. Fiore, G. Russo. Resilient consensus for multi-agent systems subject to differential privacy requirements. Automatica, 106 (2019), pp. 18-26
|
[28] |
H. Wei, K. Zhang, Y. Shi. Self-triggered min-max DMPC for asynchronous multiagent systems with communication delays. IEEE Trans Ind Inform, 18 (10) (2022), pp. 6809-6817
|
[29] |
Y. Shi, K. Zhang. Advanced model predictive control framework for autonomous intelligent mechatronic systems: a tutorial overview and perspectives. Annu Rev Control, 52 (2021), pp. 170-196
|
[30] |
W.B. Dunbar, R.M. Murray. Distributed receding horizon control for multi-vehicle formation stabilization. Automatica, 42 (4) (2006), pp. 549-558
|
[31] |
H. Li, Y. Shi, W. Yan, F. Liu. Receding horizon consensus of general linear multi-agent systems with input constraints: an inverse optimality approach. Automatica, 91 (2018), pp. 10-16
|
[32] |
Q. Wang, Z. Duan, Y. Lv, Q. Wang, G. Chen. Linear quadratic optimal consensus of discrete-time multi-agent systems with optimal steady state: a distributed model predictive control approach. Automatica, 127 (2021), Article 109505
|
[33] |
H. Ishii, Q. Zhu. Security and resilience of control systems: theory and applications. Springer, Cham (2022)
|
[34] |
Y. Zheng, S. Li, J. Wang, D. Cao, K. Li. Stability and scalability of homogeneous vehicular platoon: study on the influence of information flow topologies. IEEE Trans Intell Transp Syst, 17 (1) (2016), pp. 14-26
|
[35] |
C. Deng, D. Zhang, G. Feng. Resilient practical cooperative output regulation for MASs with unknown switching exosystem dynamics under DoS attacks. Automatica, 139 (2022), Article 110172
|
[36] |
A.Y. Lu, G.H. Yang. Input-to-state stabilizing control for cyber-physical systems with multiple transmission channels under denial of service. IEEE Trans Autom Control, 63 (6) (2018), pp. 1813-1820
|
[37] |
M.A. Müller, M. Reble, F. Allgöwer. Cooperative control of dynamically decoupled systems via distributed model predictive control. Int J Robust Nonlinear Control, 22 (12) (2012), pp. 1376-1397
|
[38] |
Z. Wang, C.J. Ong. Distributed model predictive control of linear discrete-time systems with local and global constraints. Automatica, 81 (2017), pp. 184-195
|
[39] |
A. Mustafa, H. Modares, R. Moghadam. Resilient synchronization of distributed multi-agent systems under attacks. Automatica, 115 (2020), Article 108869
|
[40] |
S.M. Dibaji, H. Ishii, R. Tempo. Resilient randomized quantized consensus. IEEE Trans Autom Control, 63 (8) (2018), pp. 2508-2522
|
[41] |
J. Usevitch, D. Panagou. Determining r- and (r, s)-robustness of digraphs using mixed integer linear programming. Automatica, 111 (2020), Article 108586
|
[42] |
L. Chisci, J.A. Rossiter, G. Zappa. Systems with persistent disturbances: predictive control with restricted constraints. Automatica, 37 (7) (2001), pp. 1019-1028
|
[43] |
K. You, L. Xie. Network topology and communication data rate for consensusability of discrete-time multi-agent systems. IEEE Trans Autom Control, 56 (10) (2011), pp. 2262-2275
|
[44] |
K.H. Movric, F.L. Lewis. Cooperative optimal control for multi-agent systems on directed graph topologies. IEEE Trans Autom Control, 59 (3) (2014), pp. 769-774
|
[45] |
A. Boccia, L. Grüne, K. Worthmann. Stability and feasibility of state constrained MPC without stabilizing terminal constraints. Syst Control Lett, 72 (2014), pp. 14-21
|
[46] |
T.H. Chang, A. Nedić, A. Scaglione. Distributed constrained optimization by consensus-based primal-dual perturbation method. IEEE Trans Autom Control, 59 (6) (2014), pp. 1524-1538
|
[47] |
Wei H, Liu C, Shi Y. A robust distributed model predictive control framework for consensus of multi-agent systems with input constraints and varying delays. 2022. arXiv:2209.08785.
|
[48] |
H. Wei, Q. Sun, J. Chen, Y. Shi. Robust distributed model predictive platooning control for heterogeneous autonomous surface vehicles. Control Eng Pract, 107 (2021), Article 104655
|
[49] |
P. Liu, A. Kurt, U. Ozguner. Distributed model predictive control for cooperative and flexible vehicle platooning. IEEE Trans Control Syst Technol, 27 (3) (2019), pp. 1115-1128
|
[50] |
Y. Wang, Y. Liu, Z. Shen. Revisiting item promotion in GNN-based collaborative filtering: a masked targeted topological attack perspective. Proc AAAI Conf Artif Intell, 37 (12) (2023), pp. 15206-15214
|