[1] |
N. Kalra, S.M. Paddock. Driving to safety: how many miles of driving would it take to demonstrate autonomous vehicle reliability?. Transp Res Part A Policy Pract, 94 (2016), pp. 182-193
|
[2] |
S. Lefèvre, D. Vasquez, C. Laugier. A survey on motion prediction and risk assessment for intelligent vehicles. ROBOMECH J, 1 (1) (2014), pp. 1-14
|
[3] |
A. Mukhtar, L. Xia, T.B. Tang. Vehicle detection techniques for collision avoidance systems: a review. IEEE T Intell Transp, 16 (5) (2015), pp. 2318-2338
|
[4] |
C. Pek, S. Manzinger, M. Koschi, M. Althoff. Using online verification to prevent autonomous vehicles from causing accidents. Nat Mach Intell, 2 (9) (2020), pp. 518-528
|
[5] |
P. Falcone, M. Ali, J. Sjoberg. Predictive threat assessment via reachability analysis and set invariance theory. IEEE T Intell Transp, 12 (4) (2011), pp. 1352-1361
|
[6] |
M. Althoff, J.M. Dolan. Online verification of automated road vehicles using reachability analysis. IEEE Trans Robot, 30 (4) (2014), pp. 903-918
|
[7] |
M. Althoff, G. Frehse, A. Girard. Set propagation techniques for reachability analysis. Annu Rev Contr Robot, 4 (1) (2021), pp. 369-395
|
[8] |
K. Leung, E. Schmerling, M. Zhang, M. Chen, J. Talbot, J.C. Gerdes, et al.. On infusing reachability-based safety assurance within planning frameworks for human-robot vehicle interactions. Int J Robot Res, 39 (10-11) (2020), pp. 1326-1345
|
[9] |
M.P. Chapman, R. Bonalli, K.M. Smith, I. Yang, M. Pavone, C.J. Tomlin. Risk-sensitive safety analysis using conditional value-at-risk. IEEE T Automat Contr, 67 (12) (2021), pp. 6521-6536
|
[10] |
D.N. Lee. A theory of visual control of braking based on information about time-to-collision. Perception, 5 (4) (1976), pp. 437-459
|
[11] |
M.M. Minderhoud, P.H. Bovy. Extended time-to-collision measures for road traffic safety assessment. Accident Anal Prev, 33 (1) (2001), pp. 89-97
|
[12] |
K. Vogel. A comparison of headway and time to collision as safety indicators. Accident Anal Prev, 35 (3) (2003), pp. 427-433
|
[13] |
S. Mammar, S. Glaser, M. Netto. Time to line crossing for lane departure avoidance: a theoretical study and an experimental setting. IEEE T Intell Transp, 7 (2) (2006), pp. 226-241
|
[14] |
N. Saunier, T. Sayed. Probabilistic framework for automated analysis of exposure to road collisions. Transp Res Rec, 2083 (1) (2008), pp. 96-104
|
[15] |
G.A. Davis, J. Hourdos, H. Xiong, I. Chatterjee. Outline for a causal model of traffic conflicts and crashes. Accident Anal Prev, 43 (6) (2011), pp. 1907-1919
|
[16] |
Y. Kuang, X. Qu, S. Wang. A tree-structured crash surrogate measure for freeways. Accident Anal Prev, 77 (2015), pp. 137-148
|
[17] |
F.A. Mullakkal-Babu, M. Wang, X. He, B. van Arem, R. Happee. Probabilistic field approach for motorway driving risk assessment. Transport Res C Emer, 118 (2020), Article 102716
|
[18] |
D. Katare, M. El-Sharkawy. Embedded system enabled vehicle collision detection: an ANN classifier. Proceeding of 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC); 2019 Jan 7-9; Las Vegas, USA, IEEE, Washington, DC (2019), pp. 0284-289
|
[19] |
K. Saleh, M. Hossny, S. Nahavandi. Kangaroo vehicle collision detection using deep semantic segmentation convolutional neural network. Proceeding of 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA); 2016 Nov 30-Dec 2; Gold Coast, QLD, Australia, IEEE, Washington, DC (2016), pp. 1-7
|
[20] |
C. Laugier, I.E. Paromtchik, M. Perrollaz, M.Y. Yong, J. Yoder, C. Tay, et al.. Probabilistic analysis of dynamic scenes and collision risks assessment to improve driving safety. IEEE Intel Transp SY, 3 (4) (2011), pp. 4-19
|
[21] |
S. Annell, A. Gratner, L. Svensson. Probabilistic collision estimation system for autonomous vehicles. Proceeding of 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC); 2016 Nov; Rio de Janeiro, Brazil, IEEE, Washington, DC (2016), pp. 473-478
|
[22] |
J. Kim, D. Kum. Collision risk assessment algorithm via lane-based probabilistic motion prediction of surrounding vehicles. IEEE T Intell Transp, 19 (9) (2018), pp. 2965-2976
|
[23] |
C. Pek, P. Zahn, M. Althoff. Verifying the safety of lane change maneuvers of self-driving vehicles based on formalized traffic rules. Proceeding of 2017 IEEE Intelligent Vehicles Symposium (IV); 2017 Jun 11-14;Las Vegas, NV, USA, IEEE, Washington, DC (2017)
|
[24] |
J. Törnblom, S. Nadjm-Tehrani. An abstraction-refinement approach to formal verification of tree ensembles. J. Guiochet, S. Tonetta, E. Schoitsch, M. Roy, F. Bitsch (Eds.), SAFECOMP 2019 Workshops, ASSURE, DECSoS, SASSUR, STRIVE, and WAISE; 2019 Sep 10; Turku, Finland, Springer, Berlin (2019)
|
[25] |
M. Althoff, O. Stursberg, M. Buss. Model-based probabilistic collision detection in autonomous driving. IEEE T Intell Transp, 10 (2) (2009), pp. 299-310
|
[26] |
S. Bansal, M. Chen, S. Herbert, C.J. Tomlin. Hamilton-Jacobi reachability: a brief overview and recent advances. 2017 IEEE 56th Annual Conference on Decision and Control (CDC); Proceeding of 2017 Dec 12-15; Melbourne, VIC, Australia, IEEE, Washington, DC (2017)
|
[27] |
D. Fridovich-Keil, A. Bajcsy, J.F. Fisac, S.L. Herbert, S. Wang, A.D. Dragan, et al.. Confidence-aware motion prediction for real-time collision avoidance1. Int J Robot Res, 39 (2-3) (2020), pp. 250-265
|
[28] |
X. Wang, Z. Li, J. Alonso-Mora, M. Wang. Prediction-based reachability analysis for collision risk assessment on highways. Proceeding of 2022 IEEE Intelligent Vehicles Symposium (IV); 2022 Jun 5-9; Aachen, Germany, IEEE, Washington, DC (2022), pp. 504-510
|
[29] |
N. Deo, M.M. Trivedi. Convolutional social pooling for vehicle trajectory prediction. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops; 2018 Jun 18-23; Salt Lake, UT, USA, IEEE, Washington, DC (2018)
|
[30] |
X. Wang, J. Alonso-Mora, M. Wang. Probabilistic risk metric for highway driving leveraging multi-modal trajectory predictions. IEEE T Intell Transp, 23 (10) (2022), pp. 19399-19412
|
[31] |
M. Zhou, X. Qu, X. Li. A recurrent neural network based microscopic car following model to predict traffic oscillation. Transport Res C Emer, 84 (2017), pp. 245-264
|
[32] |
A. Li, L. Sun, W. Zhan, M. Tomizuka, M. Chen. Prediction-based reachability for collision avoidance in autonomous driving. Procceding of 2021 IEEE International Conference on Robotics and Automation (ICRA); 2021 May 30-Jun 5; Xi’an, China, IEEE, Washington, DC (2021)
|
[33] |
J. Su, P.A. Beling, R. Guo, K. Han. Graph convolution networks for probabilistic modeling of driving acceleration. Proceeding of 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC); 2020 Sep 20-23; Rhodes, Greece, IEEE, Washington, DC (2020)
|
[34] |
R. Krajewski, J. Bock, L. Kloeker, L. Eckstein. The highD dataset: a drone dataset of naturalistic vehicle trajectories on German highways for validation of highly automated driving systems. Proceeding of 2018 21st International Conference on Intelligent Transportation Systems (ITSC); 2022 Sep 18-Oct 12; Macao, China, IEEE, Washington, DC (2018)
|
[35] |
D. Turner, D. Andresen, K. Hutson, A. Tygart. Application performance on the newest processors and GPUs. Proceedings of the Practice and Experience on Advanced Research Computing; 2018 Jul 22-26; Pittsburgh, PA, USA, Association for Computing Machinery, New York City (2018)
|
[36] |
C. Goutte, E. Gaussier. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. Advances in Information Retrieval: 27th European Conference on IR Research, ECIR 2005; 2005 Mar 21-23; Santiago de Compostela, Spain, Springer, Berlin (2005)
|
[37] |
F.A. Mullakkal-Babu, M. Wang, B. van Arem, B. Shyrokau, R. Happee. A hybrid submicroscopic-microscopic traffic flow simulation framework. IEEE T Intell Transp, 22 (6) (2020), pp. 3430-3443
|
[38] |
V. Kurtc. Studying car-following dynamics on the basis of the highD dataset. Transp Res Rec, 2674 (8) (2020), pp. 813-822
|
[39] |
S. Mittal, J.S. Vetter. A survey of methods for analyzing and improving GPU energy efficiency. ACM Comput Surv, 47 (2) (2014), pp. 1-23
|