[1] |
W. Steffen, P.J. Crutzen, J.R. McNeill. The Anthropocene: are humans now overwhelming the great forces of nature. Ambio J Hum Environ Res Manage, 36 (8) (2007), pp. 614-621.
|
[2] |
E. Elhacham, L. Ben-Uri, J. Grozovski, Y.M. Bar-On, R. Milo. Global human-made mass exceeds all living biomass. Nature, 588 (7838) (2020), pp. 442-444.
|
[3] |
R. Caddell. International environmental governance and the final frontier: the protection of vulnerable marine ecosystems in deep-sea areas beyond national jurisdiction. Yearbook Int Environ Law, 27 (2016), pp. 28-63.
|
[4] |
Z. Da Ros, A. Dell’Anno, T. Morato, A.K. Sweetman, M. Carreiro-Silva, C.J. Smith, et al. The deep sea: the new frontier for ecological restoration. Mar Policy, 108 (2019), 103642.
|
[5] |
J.M. Roberts, A. Wheeler, A. Freiwald. Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science, 312 (5773) (2006), pp. 543-547.
|
[6] |
M. Maldonado, R. Aguilar, R.J. Bannister, J.J. Bell, K.W. Conway, P.K. Dayton, et al. Sponge grounds as key marine habitats:a synthetic review of types, structure, functional roles, and conservation concerns. S. Rossi, L. Bramanti, A. Gori, C. Orejas (Eds.), Marine animal forests: the ecology of benthic biodiversity hotspots, Springer Cham, Switzerland (2017), pp. 145-183.
|
[7] |
P. Puig, M. Canals, J.B. Company, J. Martín, D. Amblas, G. Lastras, et al. Ploughing the deep-sea floor. Nature, 489 (7415) (2012), pp. 286-289.
|
[8] |
F.C. De Leo, A.F. Bernardino, P.Y.G. Sumida. Continental slope and submarine canyons: benthic biodiversity and human impacts. P.Y.G. Sumida, A.F. Bernardino, F.C. De Leo (Eds.), Brazilian deep-sea biodiversity, Springer, Berlin (2020), pp. 37-72.
|
[9] |
R. Danovaro, J. Aguzzi, E. Fanelli, D. Billet, K. Gjerde, A. Jamieson, et al. An ecosystem-based deep-ocean strategy. Science, 355 (6324) (2017), pp. 452-454.
|
[10] |
T. Morato, J.M. Gonzalez-Irusta, C. Dominguez-Carrio, C.L. Wei, A. Davies, A.K. Sweetman, et al. Climate-induced changes in the suitable habitat of cold-water corals and commercially important deep-sea fishes in the North Atlantic. Glob Change Biol, 26 (4) (2020), pp. 2181-2202.
|
[11] |
C. Van Dover, J. Ardron, E. Escobar, M. Gianni, K.M. Gjerde, A. Jaeckel, et al. Biodiversity loss from deep-sea mining. Nat Geosci, 10 (7) (2017), pp. 464-465.
|
[12] |
B.N. Orcutt, J.A. Bradley, W.J. Brazelton, E.R. Estes, J.M. Goordial, J.A. Huber, et al. Impacts of deep-sea mining on microbial ecosystem services. Limnol Oceanogr, 65 (7) (2020), pp. 1489-1510.
|
[13] |
C. Mora, C.L. Wei, A. Rollo, T. Amaro, A.R. Baco, D. Billett, et al. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biol, 11 (10) (2013), e1001682.
|
[14] |
E. Gissi, E. Manea, A.D. Mazaris, S. Fraschetti, V. Almpanidou, S. Bevilacqua, et al. A review of the combined effects of climate change and other local human stressors on the marine environment. Sci Total Environ, 755 (2021), 142564.
|
[15] |
L.A. Levin, N. Le Bris. The deep ocean under climate change. Science, 350 (6262) (2015), pp. 766-768.
|
[16] |
G. Epstein, J.J. Middelburg, J.P. Hawkins, C.R. Norris, C.M. Roberts. The impact of mobile demersal fishing on carbon storage in seabed sediments. Glob Change Biol, 28 (9) (2022), pp. 2875-2894.
|
[17] |
R. Danovaro, C. Gambi, A. Dell’Anno, C. Corinaldesi, S. Fraschetti, A. Vanreusel, et al. Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Curr Biol, 18 (1) (2008), pp. 1-8.
|
[18] |
L. Buhl-Mortensen, A. Vanreusel, A.J. Gooday, L.A. Levin, I.G. Priede, P. Buhl-Mortensen, et al. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar Ecol, 31 (1) (2010), pp. 21-50.
|
[19] |
A.R. Thurber, A.K. Sweetman, B.E. Narayanaswamy, D.O. Jones, J. Ingels, R.L. Hansman. Ecosystem function and services provided by the deep sea. Biogeosciences, 11 (14) (2014), pp. 3941-3963.
|
[20] |
G. Mavrommati, S. Rogers, R.B. Howarth, M.E. Borsuk. Representing future generations in the deliberative valuation of ecosystem services. Elem Sci Anth, 8 (2020), p. 22.
|
[21] |
T. Dailianis, C.J. Smith, N. Papadopoulou, V. Gerovasileiou, K. Sevastou, T. Bekkby, et al. Human activities and resultant pressures on key European marine habitats: an analysis of mapped resources. Mar Policy, 98 (2018), pp. 1-10.
|
[22] |
H.K. Lotze, M. Coll, A.M. Magera, C. Ward-Paige, L. Airoldi. Recovery of marine animal populations and ecosystems. Trends Ecol Evol, 26 (11) (2011), pp. 595-605.
|
[23] |
G. Rilov, S. Fraschetti, E. Gissi, C. Pipitone, F. Badalamenti, L. Tamburello, et al. A fast-moving target: achieving marine conservation goals under shifting climate and policies. Ecol Appl, 30 (1) (2020), p. e02009.
|
[24] |
S. Katsanevakis, M. Coll, S. Fraschetti, S. Giakoumi, D. Goldsborough, V. Mačić, et al. Twelve recommendations for advancing marine conservation in European and contiguous seas. Front Mar Sci, 7 (2020), 565968.
|
[25] |
R. Danovaro, J. Aronson, R. Cimino, C. Gambi, P.V. Snelgrove, C. Van Dover. Marine ecosystem restoration in a changing ocean. Restor Ecol, 29 (S2) (2020), e13432.
|
[26] |
C.L. Van Dover, J. Aronson, L. Pendleton, S. Smith, S. Arnaud-Haond, D. Moreno-Mateos, et al. Ecological restoration in the deep sea: desiderata. Mar Policy, 44 (2014), pp. 98-106.
|
[27] |
European Union. Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community actions in the field of marine environmental policy (Marine Strategy Framework Directive, MSFD). Off J Eur Commun 2008.
|
[28] |
European Environment Agency. Directive 2014/89/EU of the European Parliament and of the Council of 23 July 2014 establishing a framework for Maritime Spatial Planning (MSPD). EC (2014): 135-45.
|
[29] |
R. Danovaro, J. Aronson, R. Cimino, C. Gambi, P.V. Snelgrove, C. Van Dover. Marine ecosystem restoration in a changing ocean. Restor Ecol, 29 (S2) (2021), p. e13432.
|
[30] |
H.P. Jones, P.C. Jones, E.B. Barbier, R.C. Blackburn, J.M. Rey Benayas, K.D. Holl, et al. Restoration, and repair of Earth's damaged ecosystems. P Roy Soc B-Biol Sci, 2018 (285) (1873), 20172577.
|
[31] |
M. Montseny, C. Linares, M. Carreiro-Silva, L.A. Henry, D. Billet, E.E. Cordes, et al. Active ecological restoration of cold-water corals: techniques, challenges, costs and future directions. Front Mar Sci, 8 (2021), 621151.
|
[32] |
W. Chen, P. Wallhead, S. Hynes, R. Groeneveld, E. O’Connor, C. Gambi, et al. Ecosystem service benefits and costs of deep-sea ecosystem restoration. J Environ Manage, 303 (2022), 114127.
|
[33] |
J.D. Wiseman, C.D. Ovey. Definitions of features on the deep-sea floor. Deep Sea Res, 1 (1) (1953), pp. 11-16.
|
[34] |
Ramirez-Llodra DSE. Deep-sea ecosystems:biodiversity and anthropogenic impacts. In: the law of the seabed. Leiden: Brill Nijhoff; 2020. p. 36-60.
|
[35] |
E.B. Barbier, D. Moreno-Mateos, A.D. Rogers, J. Aronson, L. Pendleton, R. Danovaro, et al. Ecology: protect the deep sea. Nature, 505 (7484) (2014), pp. 475-547.
|
[36] |
E. Bayraktarov, M.I. Saunders, S. Abdullah, M. Mills, J. Beher, H.P. Possingham, et al. The cost and feasibility of marine coastal restoration. Ecol Appl, 26 (4) (2016), pp. 1055-1074.
|
[37] |
M.I. Saunders, C. Doropoulos, E. Bayraktarov, R.C. Babcock, D. Gorman, A.M. Eger, et al. Bright spots in coastal marine ecosystem restoration. Curr Biol, 30 (24) (2020), pp. R1500-R1510.
|
[38] |
S. Fraschetti, C. McOwen, L. Papa, N. Papadopoulou, M. Bilan, C. Boström, et al. Where is more important than how in coastal and marine ecosystems restoration. Front Mar Sci, 8 (2021), 626843.
|
[39] |
J. Aguzzi, C. Costa, M. Calisti, V. Funari, S. Stefanni, R. Danovaro, et al. Research trends and future perspectives in marine biomimicking robotics. Sensors, 21 (11) (2021), p. 3778.
|
[40] |
A. Mazzeo, J. Aguzzi, M. Callisti, S. Canese, F. Vecchi, S. Stefanni, et al. Marine robotics for deep-sea specimen collection: a systematic review of underwater grippers. Sensors, 22 (4) (2022), p. 1471.
|
[41] |
J. Liang, J.C. Feng, S. Zhang, Y. Cai, Z. Yang, T. Ni, et al. Role of deep-sea equipment in promoting the forefront of studies on life in extreme environments. iScience, 24 (11) (2021), 103299.
|
[42] |
J. Aguzzi, S. Flögel, S. Marini, L. Thomsen, J. Albiez, P. Weiss, et al. Developing technological synergies between deep-sea and space research. Elementa, 10 (1) (2022), p. 00064.
|
[43] |
D.A. Ford, S. Grossberg, G. Rinaldi, P.P. Menon, M.R. Palmer, J. Skákala, et al. A solution for autonomous, adaptive monitoring of coastal ocean ecosystems: integrating Ocean robots and operational forecasts. Front Mar Sci, 9 (2022), 1067174.
|
[44] |
G.Z. Yang, J. Bellingham, P.E. Dupont, P. Fischer, L. Floridi, R. Full, et al. The grand challenges of science robotics. Sci Robot, 3 (14) (2018), eaar7650.
|
[45] |
L.F. Oliveira, A.P. Moreira, M.F. Silva. Advances in agriculture robotics: a state-of-the-art review and challenges ahead. Robotics, 10 (2) (2021), p. 52.
|
[46] |
Hassan MU, Ullah M, Iqbal J. Towards autonomy in agriculture: design and prototyping of a robotic vehicle with seed selector. In: Proceedings of the 2016 2nd International Conference on Robotics and Artificial Intelligence (ICRAI); 2016 Apr 20-22; Islamabad, Pakistan. 2016. p. 37-44.
|
[47] |
J. Aguzzi, D. Chatzievangelou, S. Marini, E. Fanelli, R. Danovaro, S. Flögel, et al. New high-tech interactive and flexible networks for the future monitoring of deep-sea ecosystems. Environ Sci Technol, 53 (12) (2019), pp. 6616-6631.
|
[48] |
Duckett T, Pearson S, Blackmore S, Grieve B, Chen WH, Cielniak G, et al. Agricultural robotics: the future of robotic agriculture. 2018. arXiv:1806.06762.
|
[49] |
D.C. Slaughter, D.K. Giles, D. Downey. Autonomous robotic weed control systems: a review. Comput Electron Agric, 61 (1) (2008), pp. 63-78.
|
[50] |
C.W. Bac, E.J. Van Henten, J. Hemming, Y. Edan. Harvesting robots for high-value crops: state-of-the-art review and challenges ahead. J Field Robot, 31 (6) (2014), pp. 888-911.
|
[51] |
S. Cubero, N. Aleixos, F. Albert, A. Torregrosa, C. Ortiz, O. García-Navarrete, et al. Optimised computer vision system for automatic pre-grading of citrus fruit in the field using a mobile platform. Precis Agric, 15 (1) (2014), pp. 80-94.
|
[52] |
D. Chatzievangelou, J. Aguzzi, A. Ogston, A. Suárez, L. Thomsen. Visual monitoring of key deep-sea megafauna with an Internet operated crawler as a tool for ecological status assessment. Prog Oceanogr, 184 (2020), 102321.
|
[53] |
S. Krul, C. Pantos, M. Frangulea, J. Valente. Visual SLAM for indoor livestock and farming using a small drone with a monocular camera: a feasibility study. Drones, 5 (2) (2021), p. 41.
|
[54] |
Z. Niu, H. Yang, L. Zhou, M.F. Taha, Y. He, Z. Qiu. Deep learning-based ranging error mitigation method for UWB localization system in greenhouse. Comput Electron Agric, 205 (2023), 107573.
|
[55] |
R.A. Viscarra Rossel, A.B. McBratney, B. Minasny. (Eds.), Proximal soil sensing, Springer Science & Business Media, Beilin (2010).
|
[56] |
V. Adamchuk, R.A. Viscarra Rossel. Special issue on proximal soil sensing. Geoderma, 199 (2013), p. 1.
|
[57] |
N.A. Holme, R.L. Barrett. A sledge with television and photographic cameras for quantitative investigation of the epifauna on the continental shelf. J Mar Biol Assoc U K, 57 (2) (1977), pp. 391-403.
|
[58] |
G. Li, X. Chen, F. Zhou, Y. Liang, Y. Xiao, X. Cao, et al. Self-powered soft robot in the Mariana Trench. Nature, 591 (7848) (2021), pp. 66-71.
|
[59] |
S.H. Patel, S.G. Barco, L.M. Crowe, J.P. Manning, E. Matzen, R.J. Smolowitz, et al. Loggerhead turtles are good ocean-observers in stratified mid-latitude regions. Estuar Coast Shelf Sci, 213 (2018), pp. 128-136.
|
[60] |
I.M.J. Van Den Beld, J.F. Bourillet, S. Arnaud-Haond, L. De Chambure, J.S. Davies, B. Guillaumont, et al. Cold-water coral habitats in submarine canyons of the Bay of Biscay. Front Mar Sci, 4 (2017), p. 118.
|
[61] |
R.B. Wynn, V.A. Huvenne, T.P. Le Bas, B.J. Murton, D.P. Connelly, B.J. Bett, et al. Autonomous underwater vehicles (AUVs): their past, present and future contributions to the advancement of marine geoscience. Mar Geol, 352 (2014), pp. 451-468.
|
[62] |
D.O.B. Jones, A.R. Gates, V.A.I. Huvenne, A.B. Phillips, B.J. Bett. Autonomous marine environmental monitoring: application in decommissioned oil fields. Sci Total Environ, 668 (2019), pp. 835-853.
|
[63] |
S. Marini, N. Gjeci, S. Govindaraj, A. But, B. Sportich, E. Ottaviani, et al. ENDURUNS: an integrated and flexible approach for seabed survey through autonomous mobile vehicles. J Mar Sci Eng, 8 (9) (2020), p. 633.
|
[64] |
N. Bahamon, J. Aguzzi, R. Bernardello, M.A. Ahumada-Sempoal, J. Puigdefabregas, J. Cateura, et al. The new pelagic operational observatory of the Catalan Sea (OOCS) for the multisensor coordinated measurement of atmospheric and oceanographic conditions. Sensors, 11 (12) (2011), pp. 11251-11272.
|
[65] |
R. Venkatesan, K. Ramesh, A. Kishor, N. Vedachalam, M.A. Atmanand. Best practices for the ocean moored observatories. Front Mar Sci, 5 (2018), p. 469.
|
[66] |
N.J. Robinson, S. Johnsen, A. Brooks, L. Frey, H. Judkins, M. Vecchione, et al. Studying the swift, smart, and shy: unobtrusive camera-platforms for observing large deep-sea squid. Deep Sea Res Part I Oceanogr Res Pap, 172 (2021), 103538.
|
[67] |
R.C. Perez, G.R. Foltz, R. Lumpkin, J. Wei, K.J. Voss, M. Ondrusek. Oceanographic buoys: providing ocean data to assess the accuracy of variables derived from satellite measurements. Nalli (Ed.), Field measurements for passive environmental remote sensing, Elsevier, Amsterdam (2023), pp. 79-100.
|
[68] |
Barnes CR, Best MMR, Bornhold BD, Juniper SK, Pirenne B, Phibbs P. The NEPTUNE Project—a cabled ocean observatory in the NE Pacific:overview, challenges and scientific objectives for the installation and operation of Stage I in Canadian waters. In:Proceedings of 2007 Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies; 2007 Apr 17-20; Tokyo, Japan. Piscataway: IEEE. 2007.
|
[69] |
F.C. De Leo, B. Ogata, A.R. Sastri, M. Heesemann, S. Mihály, M. Galbraith, et al. High-frequency observations from a deep-sea cabled observatory reveal seasonal overwintering of Neocalanus spp. in Barkley Canyon, NE Pacific: insights into particulate organic carbon flux. Prog Oceanogr, 169 (2018), pp. 120-137.
|
[70] |
I.G. Priede, P.M. Bagley. In-situ studies on deep-sea demersal fishes using autonomous unmanned lander platforms. Oceanogr Mar Biol, 38 (2000), pp. 357-392.
|
[71] |
U. Hanz, E.M. Roberts, G. Duineveld, A. Davies, H. Van Haren, H.T. Rapp, et al. Long-term observations reveal environmental conditions and food supply mechanisms at an Arctic deep-sea sponge ground. J Geophys Res Oceans, 126 (3) (2021), e2020JC016776.
|
[72] |
G.C.A. Duineveld, M.S.S. Lavaleye, E.M. Berghuis. Particle flux and food supply to a seamount cold-water coral community (Galicia Bank, NW Spain). Mar Ecol Prog Ser, 277 (2004), pp. 13-23.
|
[73] |
F. Spagnoli, P. Penna, G. Giuliani, L. Masini, V. Martinotti. The AMERIGO Lander and the automatic benthic chamber (CBA): two new instruments to measure benthic fluxes of dissolved chemical species. Sensors, 19 (11) (2019), p. 2632.
|
[74] |
A. Purser, L. Thomsen, M. Hofbauer, M. Menzel, H. Wagner, R. Chapman, et al. Temporal and spatial benthic data collection via Internet operated deep sea crawler. Methods Oceanogr, 5 (2013), pp. 1-18.
|
[75] |
D. Chatzievangelou, L. Thomsen, J. Aguzzi, C. Doya, A. Purser. Transects in the deep: opportunities with tele-operated resident seafloor robots. Front Mar Sci, 9 (2022), 833617.
|
[76] |
Schäfer B, Albiez J, Hellerer M, Knapmeyer M, Meinecke G, Pfannkuche O, et al. Robotic developments for extreme environments—deep sea and earth’s moon [Internet]; 2004. Available from: https://elib.dlr.de/91569/
|
[77] |
K.L. Smith Jr, A.D. Sherman, P.R. McGill, R.G. Henthorn, J. Ferreira, T.P. Connolly, et al. Abyssal benthic rover, an autonomous vehicle for long-term monitoring of deep-ocean processes. Sci Robot, 6 (60) (2021), eabl4925.
|
[78] |
Z. Wang, X. Liu, H. Huang, Y. Chen. Development of an autonomous underwater helicopter with high manoeuvrability. Appl Sci, 9 (19) (2019), p. 4072.
|
[79] |
P. Du, S.H. Huang, W. Yang, Y. Wang, Z. Wang, R. Hu, et al. Design of a disc-shaped autonomous underwater helicopter with stable fins. J Mar Sci Eng, 10 (1) (2022), p. 67.
|
[80] |
J.Y. Kim, B.H. Jun. Design of six-legged walking robot, little crabster for underwater walking and operation. Adv Robot, 28 (2) (2014), pp. 77-89.
|
[81] |
G. Picardi, A. Astolfi, D. Chatzievangelou, J. Aguzzi, M. Calisti. Underwater legged robotics: review and perspectives. Bioinspir Biomim, 18 (3) (2023), 031001.
|
[82] |
R. Harcourt, A.M. Sequeira, X. Zhang, F. Roquet, K. Komatsu, M. Heupel, et al. Animal-borne telemetry: an integral component of the ocean observing toolkit. Front Mar Sci, 6 (2019), p. 326.
|
[83] |
H. Stuart, S. Wang, O. Khatib, M.R. Cutkosky. The ocean one hands: an adaptive design for robust marine manipulation. Int J Robot Res, 36 (2) (2017), pp. 150-166.
|
[84] |
D.F. Gruber, R.J. Wood. Advances and future outlooks in soft robotics for minimally invasive marine biology. Sci Robot, 7 (66) (2022), eabm6807.
|
[85] |
M. Cianchetti, M. Calisti, L. Margheri, M. Kuba, C. Laschi. Bioinspired locomotion and grasping in water: the soft eight-arm OCTOPUS robot. Bioinspir Biomim, 10 (3) (2015), 035003.
|
[86] |
Flögel S, Ahrns I, Nuber C, Hildebrandt M, Duda A, Schwendner J, et al. A new deep-sea crawler system-MANSIO-VIATOR. In: 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO); 2018 May 28-31; Kobe, Japan. Piscataway: IEEE. 2018.
|
[87] |
Nakatani T, Li S, Ura T, Bodenmann A, Sakamaki T. 3D visual modeling of hydrothermal chimneys using a rotary laser scanning system. In:Proceedings of 2011 IEEE Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies; 2011 Apr 5-8; Tokyo, Japan. Piscataway: IEEE. 2011.
|
[88] |
W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu. Edge computing: vision and challenges. IEEE Internet Things J, 3 (5) (2016), pp. 637-646.
|
[89] |
Wehde H, Thomsen L, Pfannkuche O, Albiez J, Flögel S, Godø OR, et al. A flexible autonomous bottom resident infrastructure for bentho-pelagic monitoring. In:Proceedings of 2019 IMEKO TC-19 International Workshop on Metrology for the Sea (METROSea); 2019 Oct 3-5;Genoa, Italy 2019.
|
[90] |
J. Aguzzi, J. Albiez, S. Flögel, O. Rune Godø, E. Grimsbø, S. Marini, et al. A flexible autonomous robotic observatory infrastructure for bentho-pelagic monitoring. Sensors, 20 (6) (2020), p. 1614.
|
[91] |
Carandell M, Thoma DM, Martínez E, Nogueras M, Aguzzi J, Del Río J. Expanding the underwater communication capabilities of seafloor ecosystem monitoring stand-alone platforms using pop-up buoys. Ireland: IEEE 2023. p. 1-7.
|
[92] |
S. Marini, L. Corgnati, C. Manotovani, M. Bastianini, E. Ottaviani, E. Fanelli, et al. Automated estimate of fish abundance through the autonomous imaging device GUARD1. Measurement, 126 (2018), pp. 72-75.
|
[93] |
R. Sanchez-Iborra, I. Liaño, C. Simoes, E. Couñago, A.F. Skarmeta. Tracking and monitoring system based on lora technology for lightweight boats. Electronics, 8 (1) (2019), p. 15.
|
[94] |
Robocean. Subsea robotics for innovative ecosystem engineering [Internet]. Edinburgh: the University of Edinburgh [cited 2023 Dec 27]. Available from: https://www.robocean.io/
|
[95] |
K.C. Galloway, K.P. Becker, B. Philips, J. Kirby, S. Litcht, D. Tchernov, et al. Soft robotic grippers for biological sampling on deep reefs. Soft Robot, 3 (1) (2016), pp. 23-33.
|
[96] |
Y.R. Petillot, G. Antonelli, G. Casalino, F. Ferreira. Underwater robots: from remotely operated vehicles to intervention-autonomous underwater vehicles. Robot Autom Mag, 26 (2) (2019), pp. 94-101.
|
[97] |
G. Picardi, C. Mrudul, S. Iacoponi, S. Stefanni, C. Laschi, M. Calisti. Bioinspired underwater legged robot for seabed exploration with low environmental disturbance. Sci Robot, 5 (42) (2020), eaaz1012.
|
[98] |
C. Corinaldesi, S. Varrella, M. Tangherlini, A. Dell’Anno, S. Canensi, C. Cerrano, et al. Changes in coral forest microbiomes predict the impact of marine heatwaves on habitat-forming species down to mesophotic depths. Sci Total Environ, 823 (2022), 153701.
|
[99] |
M.R. Cutkosky. On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Robot Autom Mag, 5 (3) (1989), pp. 269-279.
|
[100] |
S. Backus, R. Onishi, A. Bocklund, A. Berg, E. Contreras, A. Parness. Design and testing of the JPL-nautilus gripper for deep-ocean geological sampling. J Field Robot, 37 (6) (2020), pp. 972-986.
|
[101] |
Kumamoto H, Shirakura N, Takamatsu J, Ogasawara T. Underwater suction gripper for object manipulation with an underwater robot. In:Proceedings of IEEE International Conference on Mechatronics (ICM) 2021 Mar 7-9; Kashiwa, Japan. Piscataway: IEEE; 2021.
|
[102] |
Z.E. Teoh, B.T. Phillips, K.P. Becker, G. Whittredge, J.C. Weaver, C. Hoberman, et al. Rotary-actuated folding polyhedrons for midwater investigation of delicate marine organisms. Sci Robot, 3 (20) (2018), eaat5276.
|
[103] |
N. Palomeras, A. Penalver, M. Massot-Campos, P.L. Negre, J.J. Fernàndez, P. Ridao, et al. I-AUV docking and panel intervention at sea. Sensors, 16 (10) (2016), p. 1673.
|
[104] |
O. Khatib, X. Yeh, G. Brantner, B. Soe, B. Kim, S. Ganguly, et al. Ocean one: a robotic avatar for oceanic discovery. IEEE Robot Autom Mag, 23 (4) (2016), pp. 20-29.
|
[105] |
Antonelli G. Encyclopedia of systems and control. In: underwater robots; Switzerland: Springer International Publishing; 2021. p. 2384-8.
|
[106] |
J. Liu, S. Iacoponi, C. Laschi, L. Wen, M. Calisti. Underwater mobile manipulation: a soft arm on a benthic legged robot. IEEE Robot Autom Mag, 27 (4) (2020), pp. 12-26.
|
[107] |
Donato E, Picardi G, Calisti M. Statics optimization of a hexapedal robot modelled as a Stewart platform. In: Proceedings of Towards Autonomous Robotic Systems 22nd Annual Conference; 2021 Sep 8-10; Berlin: Springer International Publishing. 2021.
|
[108] |
J.D. Gage, P.A. Tyler. Deep-sea biology:a natural history of organisms at the deep-sea floor. Cambridge University Press, Southampton (1991).
|
[109] |
N. Levin, S. Kark, R. Danovaro. Adding the third dimension to marine conservation. Conserv Lett, 11 (3) (2018), p. e12408.
|
[110] |
R.J. Milligan, E.M. Scott, D.O. Jones, B.J. Bett, A.J. Jamieson, R. O’brien, et al. Evidence for seasonal cycles in deep-sea fish abundances: a great migration in the deep SE Atlantic?. J Anim Ecol, 89 (7) (2020), pp. 1593-1603.
|
[111] |
M. Lavaleye, G. Duineveld, M. Bergman, I. Van Den Beld. Long-term baited lander experiments at a cold-water coral community on Galway Mound (Belgica Mound Province, NE Atlantic). Deep Sea Res Part II Top Stud Oceanogr, 145 (2017), pp. 22-32.
|
[112] |
Z. Wang, K.M. Leung, Y.H. Sung, D. Dudgeon, J.W. Qiu. Recovery of tropical marine benthos after a trawl ban demonstrates linkage between abiotic and biotic changes. Commun Biol, 4 (1) (2021), p. 212.
|
[113] |
J. Grinyo, J. Aguzzi, E. Kenchington, C. Costa, U. Hanz, F. Mienis. Occurrence and behavioral rhythms of the endangered Acadian redfish (Sebastes fasciatus) in the Sambro Bank (Scotian Shelf). Front Mar Sci, 10 (2023), 1158283.
|
[114] |
K.L. Howell, A. Hilário, A.L. Allcock, D.M. Bailey, M. Baker, M.R. Clark, et al. A blueprint for an inclusive, global deep-sea ocean decade field program. Front Mar Sci, 7 (999) (2020), 584861.
|
[115] |
A. Botta, P. Cavallone, L. Baglieri, G. Colucci, L. Tagliavini, G. Quaglia. A review of robots, perception, and tasks in precision agriculture. Appl Mech, 3 (3) (2022), pp. 830-854.
|
[116] |
G.C. Hays, L.C. Ferreira, A.M. Sequeira, M.G. Meekan, C.M. Duarte, H. Bailey, et al. Key questions in marine megafauna movement ecology. Trends Ecol Evol, 31 (6) (2016), pp. 463-475.
|
[117] |
D. Chatzievangelou, N. Bahamon, S. Martini, J. del Rio, G. Riccobene, M. Tangherlini, et al. Integrating diel vertical migrations of bioluminescent deep scattering layers into monitoring programs. Front Mar Sci, 8 (2021), 661809.
|
[118] |
A.M. Queirós, S.N.R. Birchenough, J. Bremner, J.A. Godbold, R.E. Parker, A. Romero-Ramirez, et al. A bioturbation classification of European marine infaunal invertebrates. Ecol Evol, 3 (11) (2013), pp. 3958-3985.
|
[119] |
I. Schulze, D. Wilken, M.L. Zettler, M. Gogina, M. Schönke, P. Feldens. Laboratory measurements to image endobenthos and bioturbation with a high-frequency 3D seismic lander. Geosciences, 11 (12) (2021), p. 508.
|
[120] |
V.A.I. Huvenne, P.A. Tyler, D.G. Masson, E.H. Fisher, C. Hauton, V. Huehnerbach, et al. A picture on the wall: innovative mapping reveals cold-water coral refuge in submarine canyon. PLoS One, 6 (12) (2011), p. e28755.
|
[121] |
A.B. Bugnot, K.A. Dafforn, R.A. Coleman, M. Ramsdale, J.T. Gibbeson, K. Erickson, et al. Linking habitat interactions and biodiversity within seascapes. Ecosphere, 13 (4) (2022), p. e4021.
|
[122] |
R. Danovaro, E. Fanelli, J. Aguzzi, D. Billett, L. Carugati, C. Corinaldesi, et al. Ecological variables for developing a global deep-ocean monitoring and conservation strategy. Nat Ecol Evol, 4 (2) (2020), pp. 181-192.
|
[123] |
L. Lins, D. Zeppilli, L. Menot, L.N. Michel, P. Bonifácio, M. Brandt, et al. Toward a reliable assessment of potential ecological impacts of deep-sea polymetallic nodule mining on abyssal infauna. Limnol Oceanogr Methods, 19 (9) (2021), pp. 626-650.
|
[124] |
J. Pawlowski, K. Bruce, K. Panksep, F.I. Aguirre, S. Amalfitano, L. Apothéloz-Perret-Gentil, et al. Environmental DNA metabarcoding for benthic monitoring: a review of sediment sampling and DNA extraction methods. Sci Total Environ, 818 (2022), 151783.
|
[125] |
C.L. Jerde, E.A. Wilson, T.L. Dressler. Measuring global fish species richness with eDNA metabarcoding. Mol Ecol Resour, 19 (1) (2019), pp. 19-22.
|
[126] |
M.I. Brandt, B. Trouche, N. Henry, C. Liautard-Haag, L. Maignien, C. de Vargas, et al. An assessment of environmental metabarcoding protocols aiming at favoring contemporary biodiversity in inventories of deep-sea communities. Front Mar Sci, 7 (2020), p. 234.
|
[127] |
C.S. Goldberg, C.R. Turner, K. Deiner, K.E. Klymus, P.F. Thomsen, M.A. Murphy, et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol Evol, 7 (11) (2016), pp. 1299-1307.
|
[128] |
E. Aylagas, A. Borja, X. Pochon, A. Zaiko, N. Keeley, K. Bruce, et al. Translational molecular ecology in practice: linking DNA-based methods to actionable marine environmental management. Sci Total Environ, 744 (2020), 140780.
|
[129] |
S. Duarte, P.E. Vieira, F.O. Costa. Assessment of species gaps in DNA barcode libraries of non-indigenous species (NIS) occurring in European coastal regions. Metabarcoding Metagenomics, 4 (2020), p. 55162.
|
[130] |
J.A. Darling, X. Pochon, C.L. Abbott, G.J. Inglis, A. Zaiko. The risks of using molecular biodiversity data for incidental detection of species of concern. Divers Distrib, 26 (9) (2020), pp. 1116-1121.
|
[131] |
K.C. Beng, R.T. Corlett. Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. Biodivers Conserv, 29 (7) (2020), pp. 2089-2121.
|
[132] |
J. Pawlowski, A. Bonin, F. Boyer, T. Cordier, P. Taberlet. Environmental DNA for biomonitoring. Mol Ecol, 30 (13) (2021), pp. 2931-2936.
|
[133] |
S. Stefanni, L. Mirimin, D. Stanković, D. Chatzievangelou, L. Bongiorni, S. Marini, et al. Framing cutting-edge integrative taxonomy in deep-sea biodiversity monitoring via eDNA and optoacoustic augmented observatories. Front Mar Sci, 8 (2022), 797140.
|
[134] |
A. Duhamet, C. Albouy, V. Marques, S. Manel, D. Mouillot. The global depth range of marine fishes and their genetic coverage for environmental DNA metabarcoding. Ecol Evol, 13 (1) (2023), p. e9672.
|
[135] |
H.Y. Zhang, G.G. Rong, S.M. Bian, M. Sawan. Lab-on-chip microsystems for ex vivo network of neurons studies: a review. Front Bioeng Biotechnol, 10 (2022), 841389.
|
[136] |
C.A. Scholin, J. Birch, S. Jensen, R. Marin III, E. Massion, D. Pargett, et al. The quest to develop ecogenomic sensors: a 25-year history of the environmental sample processor (ESP) as a case study. Oceanogr, 30 (4) (2017), pp. 100-113.
|
[137] |
F.P. Chavez, M. Min, K. Pitz, N. Truelove, J. Baker, D. LaScala-Grunewald, et al. Observing life in the sea using environmental DNA. Oceanogr, 34 (2) (2021), pp. 102-119.
|
[138] |
M. Vigo, J. Navarro, I. Masmitja, J. Aguzzi, J.A. García, G. Rotllant, et al. Spatial ecology of Norway lobster Nephrops norvegicus in Mediterranean deep-water environments: implications for designing no-take marine reserves. Mar Ecol Prog Ser, 674 (2021), pp. 173-188.
|
[139] |
N.J. Robinson, S.J. Morreale, R. Nel, F.V. Paladino. Coastal leatherback turtles reveal conservation hotspot. Sci Rep, 6 (1) (2016), p. 37851.
|
[140] |
E.L. Hazen, B. Abrahms, S. Brodie, G. Carroll, M.G. Jacox, M.S. Savoca, et al. Marine top predators as climate and ecosystem sentinels. Front Ecol Environ, 17 (10) (2019), pp. 565-574.
|
[141] |
S. Fossette, V.J. Hobson, C. Girard, B. Calmettes, P. Gaspar, J.Y. Georges, et al. Spatio-temporal foraging patterns of a giant zooplanktivore, the leatherback turtle. J Mar Syst, 81 (3) (2010), pp. 225-234.
|
[142] |
K.J. Parton, P.D. Doherty, M. Parrish, P. Shearer, K. Myrick, O.N. Shipley, et al. Opportunistic camera surveys provide insight into discrete foraging behaviours in nurse sharks (Ginglymostoma cirratum). Environ Biol Fishes, 106 (1) (2023), pp. 19-30.
|
[143] |
A.M. Addamo, A. Vertino, J. Stolarski, R. García-Jiménez, M. Taviani, A. Machordom. Merging scleractinian genera: the overwhelming genetic similarity between solitary Desmophyllum and colonial Lophelia. BMC Evol Biol, 16 (2016), p. 149.
|
[144] |
M.P. Dahl, R.T. Pereyra, T. Lundälv, C. André. Fine-scale spatial genetic structure and clonal distribution of the cold-water coral Lophelia pertusa. Coral Reefs, 31 (4) (2012), pp. 1135-1148.
|
[145] |
A.I. Larsson, J. Jarnegren, S.M. Stromberg, M.P. Dahl, T. Lundalv, S. Brooke. Embryogenesis and larval biology of the cold-water coral Lophelia pertusa. PLoS One, 9 (7) (2014), e102222.
|
[146] |
E.A. Larcom, D.L. McKean, J.M. Brooks, C.R. Fisher. Growth rates, densities, and distribution of Lophelia pertusa on artificial structures in the Gulf of Mexico. Deep Sea Res Part I Oceanogr Res Pap, 85 (2014), pp. 101-109.
|
[147] |
V.F. Chamberland, D. Petersen, J.R. Guest, U. Petersen, M. Brittsan, M.J. Vermeij. New seeding approach reduces costs and time to outplant sexually propagated corals for reef restoration. Sci Rep, 7 (2017), p. 18076.
|
[148] |
A.B. Paxton, K.W. Shertzer, N.M. Bacheler, G.T. Kellison, K.L. Riley, J.C. Taylor. Meta-analysis reveals artificial reefs can be effective tools for fish community enhancement but are not one-size-fits-all. Front Mar Sci, 7 (2020), p. 282.
|
[149] |
reefdesignlab.com. © 2023 [cited 2023 Dec 27]. Mentone: Reef design lab. Available from: http://www.reefdesignlab.com/
|
[150] |
M. Montseny, C. Linares, N. Viladrich, P. Capdevila, S. Ambroso, D. Diaz, et al. A new large-scale and cost-effective restoration method for cold-water coral gardens. Aquat Conserv, 30 (5) (2020), pp. 977-987.
|
[151] |
Grinyó J, Montseny M, Baena P, Ambroso S, Santín A, Biel Cabanelas M, et al. Restoration of deep ecosystems on the Catalan margin. In: the ocean we want: inclusive and transformative ocean science. Madrid: Consejo Superior de Investigaciones Científicas; 2022. p. 74-6.
|
[152] |
I. Masmitja, J. Navarro, S. Gomariz, J. Aguzzi, B. Kieft, T. O’Reilly, et al. Mobile robotic platforms for the acoustic tracking of deep-water demersal fishery resources. Sci Robot, 5 (48) (2020), eabc3701.
|
[153] |
Dunbabin M, Manley J, Harrison PL. Uncrewed maritime systems for coral reef conservation. In: Proceeding of Global Oceans 2020: Singapore-US Gulf Coast 2020 Oct 5-30; Biloxi, MS, USA. Singapore: IEEE. 2020. p. 1-6.
|
[154] |
C. Pennesi, R. Danovaro. Assessing marine environmental status through microphytobenthos assemblages colonizing the autonomous reef monitoring structures (ARMS) and their potential in coastal marine restoration. Mar Pollut Bull, 125 (1-2) (2017), pp. 56-65.
|
[155] |
C. Cerrano, S. Bianchelli, C.G. Di Camillo, F. Torsani, A. Pusceddu. Do colonies of Lytocarpia myriophyllum, L. 1758 (Cnidaria, Hydrozoa) affect the biochemical composition and the meiofaunal diversity of surrounding sediments?. Chem Ecol, 31 (1) (2015), pp. 1-21.
|
[156] |
G. Jordi, M. Francescangeli, A. Santìn, G. Ercilla, F. Estrada, A. Mecho, et al. Megafaunal assemblages in deep-sea ecosystems of the Gulf of Cadiz, northeast Atlantic Ocean. Deep-Sea Res I: Oceanogr Res Pap, 183 (2022), 103738.
|
[157] |
K.P. Sebens, J. Witting, B. Helmuth. Effects of water flow and branch spacing on particle capture by the reef coral Madracis mirabilis (Duchassaing and Michelotti). J Exp Mar Biol Ecol, 211 (1) (1997), pp. 1-28.
|
[158] |
J. Grinyó, A. Gori, S. Ambroso, A. Purroy, C. Calatayud, C. Dominguez-Carrió, et al. Diversity, distribution, and population size structure of deep Mediterranean gorgonian assemblages (Menorca Channel, Western Mediterranean Sea). Prog Oceanogr, 145 (2016), pp. 42-56.
|
[159] |
C. Kanzog. ROBEX-robotic exploration of extreme environments. J Unmanned Syst Technol, 3 (2) (2015), pp. 40-45.
|
[160] |
J. Aguzzi, S. Violino, C. Costa, N. Bahamon, J. Navarro, D. Chatzievangelou, et al. Established and emerging research trends in Norway lobster, Nephrops norvegicus. Biology, 12 (2) (2023), p. 225.
|
[161] |
United-Nations. System of environmental-economic accounting (SEEA). Central framework. New York City: United-Nations; 2014.
|
[162] |
E. Bayraktarov, P.J. Stewart-Sinclair, S. Brisbane, L. Boström-Einarsson, M.I. Saunders, C.E. Lovelock, et al. Motivations, success, and cost of coral reef restoration. Restor Ecol, 27 (5) (2019), pp. 981-991.
|
[163] |
D. Laffoley, J.M. Baxter, D.J. Amon, D.E. Currie, C.A. Downs, J.M. Hall-Spencer, et al. Eight urgent, fundamental and simultaneous steps needed to restore ocean health, and the consequences for humanity and the planet of inaction or delay. Aquat Conserv, 30 (1) (2020), pp. 194-208.
|