深海环境海洋生态系统监测与恢复新技术

Jacopo Aguzzi, Laurenz Thomsen, Sascha Flögel, Nathan J. Robinson, Giacomo Picardi, Damianos Chatzievangelou, Nixon Bahamon, Sergio Stefanni, Jordi Grinyó, Emanuela Fanelli, Cinzia Corinaldesi, Joaquin Del Rio Fernandez, Marcello Calisti, Furu Mienis, Elias Chatzidouros, Corrado Costa, Simona Violino, Michael Tangherlini, Roberto Danovaro

工程(英文) ›› 2024, Vol. 34 ›› Issue (3) : 195-211.

PDF(2534 KB)
PDF(2534 KB)
工程(英文) ›› 2024, Vol. 34 ›› Issue (3) : 195-211. DOI: 10.1016/j.eng.2023.10.012
研究论文
Review

深海环境海洋生态系统监测与恢复新技术

作者信息 +

New Technologies for Monitoring and Upscaling Marine Ecosystem Restoration in Deep-Sea Environments

Author information +
History +

Highlight

・Marine deep-sea restoration should be based on landers with docked crawlers and AUVs, allowing in situ autonomous interventions, battery recharging, and remote data transmission.

・Crawlers with robotic arms should be used for active restoration.

・Innovative combinations of HD, multi-beam imaging, active acoustics, omics and environmental (oceanographic and biogeochemical) sensors should be used to enable restoration monitoring.

・We describe three potential case-studies for robotic-mediated restoration in deep-sea iconic environments.

Abstract

The United Nations (UN)’s call for a decade of “ecosystem restoration” was prompted by the need to address the extensive impact of anthropogenic activities on natural ecosystems. Marine ecosystem restoration is increasingly necessary due to increasing habitat degredation in deep waters (>200 m depth). At these depths, which are far beyond those accessible by divers, only established and emerging robotic platforms such as remotely operated vehicles (ROVs), autonomous underwater vehicles (AUVs), landers, and crawlers can operate through manipulators and multiparametric sensor arrays (e.g., optoacoustic imaging, omics, and environmental probes). The use of advanced technologies for deep-sea ecosystem restoration can provide: ① high-resolution three-dimensional (3D) imaging and acoustic mapping of substrates and key taxa, ② physical manipulation of substrates and key taxa, ③ real-time supervision of remote operations and long-term ecological monitoring, and ④ the potential to work autonomously. Here, we describe how robotic platforms with in situ manipulation capabilities and payloads of innovative sensors could autonomously conduct active restoration and monitoring across large spatial scales. We expect that these devices will be particularly useful in deep-sea habitats, such as ① reef-building cold-water corals, ② soft-bottom bamboo corals, and ③ soft-bottom fishery resources that have already been damaged by offshore industries (i.e., fishing and oil/gas).

Keywords

Ecosystem restoration / Robotic manipulation / Acoustic tracking / Fishery resources / Artificial reefs

引用本文

导出引用
Jacopo Aguzzi, Laurenz Thomsen, Sascha Flögel. . Engineering. 2024, 34(3): 195-211 https://doi.org/10.1016/j.eng.2023.10.012

参考文献

[1]
W. Steffen, P.J. Crutzen, J.R. McNeill. The Anthropocene: are humans now overwhelming the great forces of nature. Ambio J Hum Environ Res Manage, 36 (8) (2007), pp. 614-621.
[2]
E. Elhacham, L. Ben-Uri, J. Grozovski, Y.M. Bar-On, R. Milo. Global human-made mass exceeds all living biomass. Nature, 588 (7838) (2020), pp. 442-444.
[3]
R. Caddell. International environmental governance and the final frontier: the protection of vulnerable marine ecosystems in deep-sea areas beyond national jurisdiction. Yearbook Int Environ Law, 27 (2016), pp. 28-63.
[4]
Z. Da Ros, A. Dell’Anno, T. Morato, A.K. Sweetman, M. Carreiro-Silva, C.J. Smith, et al. The deep sea: the new frontier for ecological restoration. Mar Policy, 108 (2019), 103642.
[5]
J.M. Roberts, A. Wheeler, A. Freiwald. Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science, 312 (5773) (2006), pp. 543-547.
[6]
M. Maldonado, R. Aguilar, R.J. Bannister, J.J. Bell, K.W. Conway, P.K. Dayton, et al. Sponge grounds as key marine habitats:a synthetic review of types, structure, functional roles, and conservation concerns. S. Rossi, L. Bramanti, A. Gori, C. Orejas (Eds.), Marine animal forests: the ecology of benthic biodiversity hotspots, Springer Cham, Switzerland (2017), pp. 145-183.
[7]
P. Puig, M. Canals, J.B. Company, J. Martín, D. Amblas, G. Lastras, et al. Ploughing the deep-sea floor. Nature, 489 (7415) (2012), pp. 286-289.
[8]
F.C. De Leo, A.F. Bernardino, P.Y.G. Sumida. Continental slope and submarine canyons: benthic biodiversity and human impacts. P.Y.G. Sumida, A.F. Bernardino, F.C. De Leo (Eds.), Brazilian deep-sea biodiversity, Springer, Berlin (2020), pp. 37-72.
[9]
R. Danovaro, J. Aguzzi, E. Fanelli, D. Billet, K. Gjerde, A. Jamieson, et al. An ecosystem-based deep-ocean strategy. Science, 355 (6324) (2017), pp. 452-454.
[10]
T. Morato, J.M. Gonzalez-Irusta, C. Dominguez-Carrio, C.L. Wei, A. Davies, A.K. Sweetman, et al. Climate-induced changes in the suitable habitat of cold-water corals and commercially important deep-sea fishes in the North Atlantic. Glob Change Biol, 26 (4) (2020), pp. 2181-2202.
[11]
C. Van Dover, J. Ardron, E. Escobar, M. Gianni, K.M. Gjerde, A. Jaeckel, et al. Biodiversity loss from deep-sea mining. Nat Geosci, 10 (7) (2017), pp. 464-465.
[12]
B.N. Orcutt, J.A. Bradley, W.J. Brazelton, E.R. Estes, J.M. Goordial, J.A. Huber, et al. Impacts of deep-sea mining on microbial ecosystem services. Limnol Oceanogr, 65 (7) (2020), pp. 1489-1510.
[13]
C. Mora, C.L. Wei, A. Rollo, T. Amaro, A.R. Baco, D. Billett, et al. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biol, 11 (10) (2013), e1001682.
[14]
E. Gissi, E. Manea, A.D. Mazaris, S. Fraschetti, V. Almpanidou, S. Bevilacqua, et al. A review of the combined effects of climate change and other local human stressors on the marine environment. Sci Total Environ, 755 (2021), 142564.
[15]
L.A. Levin, N. Le Bris. The deep ocean under climate change. Science, 350 (6262) (2015), pp. 766-768.
[16]
G. Epstein, J.J. Middelburg, J.P. Hawkins, C.R. Norris, C.M. Roberts. The impact of mobile demersal fishing on carbon storage in seabed sediments. Glob Change Biol, 28 (9) (2022), pp. 2875-2894.
[17]
R. Danovaro, C. Gambi, A. Dell’Anno, C. Corinaldesi, S. Fraschetti, A. Vanreusel, et al. Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Curr Biol, 18 (1) (2008), pp. 1-8.
[18]
L. Buhl-Mortensen, A. Vanreusel, A.J. Gooday, L.A. Levin, I.G. Priede, P. Buhl-Mortensen, et al. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar Ecol, 31 (1) (2010), pp. 21-50.
[19]
A.R. Thurber, A.K. Sweetman, B.E. Narayanaswamy, D.O. Jones, J. Ingels, R.L. Hansman. Ecosystem function and services provided by the deep sea. Biogeosciences, 11 (14) (2014), pp. 3941-3963.
[20]
G. Mavrommati, S. Rogers, R.B. Howarth, M.E. Borsuk. Representing future generations in the deliberative valuation of ecosystem services. Elem Sci Anth, 8 (2020), p. 22.
[21]
T. Dailianis, C.J. Smith, N. Papadopoulou, V. Gerovasileiou, K. Sevastou, T. Bekkby, et al. Human activities and resultant pressures on key European marine habitats: an analysis of mapped resources. Mar Policy, 98 (2018), pp. 1-10.
[22]
H.K. Lotze, M. Coll, A.M. Magera, C. Ward-Paige, L. Airoldi. Recovery of marine animal populations and ecosystems. Trends Ecol Evol, 26 (11) (2011), pp. 595-605.
[23]
G. Rilov, S. Fraschetti, E. Gissi, C. Pipitone, F. Badalamenti, L. Tamburello, et al. A fast-moving target: achieving marine conservation goals under shifting climate and policies. Ecol Appl, 30 (1) (2020), p. e02009.
[24]
S. Katsanevakis, M. Coll, S. Fraschetti, S. Giakoumi, D. Goldsborough, V. Mačić, et al. Twelve recommendations for advancing marine conservation in European and contiguous seas. Front Mar Sci, 7 (2020), 565968.
[25]
R. Danovaro, J. Aronson, R. Cimino, C. Gambi, P.V. Snelgrove, C. Van Dover. Marine ecosystem restoration in a changing ocean. Restor Ecol, 29 (S2) (2020), e13432.
[26]
C.L. Van Dover, J. Aronson, L. Pendleton, S. Smith, S. Arnaud-Haond, D. Moreno-Mateos, et al. Ecological restoration in the deep sea: desiderata. Mar Policy, 44 (2014), pp. 98-106.
[27]
European Union. Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community actions in the field of marine environmental policy (Marine Strategy Framework Directive, MSFD). Off J Eur Commun 2008.
[28]
European Environment Agency. Directive 2014/89/EU of the European Parliament and of the Council of 23 July 2014 establishing a framework for Maritime Spatial Planning (MSPD). EC (2014): 135-45.
[29]
R. Danovaro, J. Aronson, R. Cimino, C. Gambi, P.V. Snelgrove, C. Van Dover. Marine ecosystem restoration in a changing ocean. Restor Ecol, 29 (S2) (2021), p. e13432.
[30]
H.P. Jones, P.C. Jones, E.B. Barbier, R.C. Blackburn, J.M. Rey Benayas, K.D. Holl, et al. Restoration, and repair of Earth's damaged ecosystems. P Roy Soc B-Biol Sci, 2018 (285) (1873), 20172577.
[31]
M. Montseny, C. Linares, M. Carreiro-Silva, L.A. Henry, D. Billet, E.E. Cordes, et al. Active ecological restoration of cold-water corals: techniques, challenges, costs and future directions. Front Mar Sci, 8 (2021), 621151.
[32]
W. Chen, P. Wallhead, S. Hynes, R. Groeneveld, E. O’Connor, C. Gambi, et al. Ecosystem service benefits and costs of deep-sea ecosystem restoration. J Environ Manage, 303 (2022), 114127.
[33]
J.D. Wiseman, C.D. Ovey. Definitions of features on the deep-sea floor. Deep Sea Res, 1 (1) (1953), pp. 11-16.
[34]
Ramirez-Llodra DSE. Deep-sea ecosystems:biodiversity and anthropogenic impacts. In: the law of the seabed. Leiden: Brill Nijhoff; 2020. p. 36-60.
[35]
E.B. Barbier, D. Moreno-Mateos, A.D. Rogers, J. Aronson, L. Pendleton, R. Danovaro, et al. Ecology: protect the deep sea. Nature, 505 (7484) (2014), pp. 475-547.
[36]
E. Bayraktarov, M.I. Saunders, S. Abdullah, M. Mills, J. Beher, H.P. Possingham, et al. The cost and feasibility of marine coastal restoration. Ecol Appl, 26 (4) (2016), pp. 1055-1074.
[37]
M.I. Saunders, C. Doropoulos, E. Bayraktarov, R.C. Babcock, D. Gorman, A.M. Eger, et al. Bright spots in coastal marine ecosystem restoration. Curr Biol, 30 (24) (2020), pp. R1500-R1510.
[38]
S. Fraschetti, C. McOwen, L. Papa, N. Papadopoulou, M. Bilan, C. Boström, et al. Where is more important than how in coastal and marine ecosystems restoration. Front Mar Sci, 8 (2021), 626843.
[39]
J. Aguzzi, C. Costa, M. Calisti, V. Funari, S. Stefanni, R. Danovaro, et al. Research trends and future perspectives in marine biomimicking robotics. Sensors, 21 (11) (2021), p. 3778.
[40]
A. Mazzeo, J. Aguzzi, M. Callisti, S. Canese, F. Vecchi, S. Stefanni, et al. Marine robotics for deep-sea specimen collection: a systematic review of underwater grippers. Sensors, 22 (4) (2022), p. 1471.
[41]
J. Liang, J.C. Feng, S. Zhang, Y. Cai, Z. Yang, T. Ni, et al. Role of deep-sea equipment in promoting the forefront of studies on life in extreme environments. iScience, 24 (11) (2021), 103299.
[42]
J. Aguzzi, S. Flögel, S. Marini, L. Thomsen, J. Albiez, P. Weiss, et al. Developing technological synergies between deep-sea and space research. Elementa, 10 (1) (2022), p. 00064.
[43]
D.A. Ford, S. Grossberg, G. Rinaldi, P.P. Menon, M.R. Palmer, J. Skákala, et al. A solution for autonomous, adaptive monitoring of coastal ocean ecosystems: integrating Ocean robots and operational forecasts. Front Mar Sci, 9 (2022), 1067174.
[44]
G.Z. Yang, J. Bellingham, P.E. Dupont, P. Fischer, L. Floridi, R. Full, et al. The grand challenges of science robotics. Sci Robot, 3 (14) (2018), eaar7650.
[45]
L.F. Oliveira, A.P. Moreira, M.F. Silva. Advances in agriculture robotics: a state-of-the-art review and challenges ahead. Robotics, 10 (2) (2021), p. 52.
[46]
Hassan MU, Ullah M, Iqbal J. Towards autonomy in agriculture: design and prototyping of a robotic vehicle with seed selector. In: Proceedings of the 2016 2nd International Conference on Robotics and Artificial Intelligence (ICRAI); 2016 Apr 20-22; Islamabad, Pakistan. 2016. p. 37-44.
[47]
J. Aguzzi, D. Chatzievangelou, S. Marini, E. Fanelli, R. Danovaro, S. Flögel, et al. New high-tech interactive and flexible networks for the future monitoring of deep-sea ecosystems. Environ Sci Technol, 53 (12) (2019), pp. 6616-6631.
[48]
Duckett T, Pearson S, Blackmore S, Grieve B, Chen WH, Cielniak G, et al. Agricultural robotics: the future of robotic agriculture. 2018. arXiv:1806.06762.
[49]
D.C. Slaughter, D.K. Giles, D. Downey. Autonomous robotic weed control systems: a review. Comput Electron Agric, 61 (1) (2008), pp. 63-78.
[50]
C.W. Bac, E.J. Van Henten, J. Hemming, Y. Edan. Harvesting robots for high-value crops: state-of-the-art review and challenges ahead. J Field Robot, 31 (6) (2014), pp. 888-911.
[51]
S. Cubero, N. Aleixos, F. Albert, A. Torregrosa, C. Ortiz, O. García-Navarrete, et al. Optimised computer vision system for automatic pre-grading of citrus fruit in the field using a mobile platform. Precis Agric, 15 (1) (2014), pp. 80-94.
[52]
D. Chatzievangelou, J. Aguzzi, A. Ogston, A. Suárez, L. Thomsen. Visual monitoring of key deep-sea megafauna with an Internet operated crawler as a tool for ecological status assessment. Prog Oceanogr, 184 (2020), 102321.
[53]
S. Krul, C. Pantos, M. Frangulea, J. Valente. Visual SLAM for indoor livestock and farming using a small drone with a monocular camera: a feasibility study. Drones, 5 (2) (2021), p. 41.
[54]
Z. Niu, H. Yang, L. Zhou, M.F. Taha, Y. He, Z. Qiu. Deep learning-based ranging error mitigation method for UWB localization system in greenhouse. Comput Electron Agric, 205 (2023), 107573.
[55]
R.A. Viscarra Rossel, A.B. McBratney, B. Minasny. (Eds.), Proximal soil sensing, Springer Science & Business Media, Beilin (2010).
[56]
V. Adamchuk, R.A. Viscarra Rossel. Special issue on proximal soil sensing. Geoderma, 199 (2013), p. 1.
[57]
N.A. Holme, R.L. Barrett. A sledge with television and photographic cameras for quantitative investigation of the epifauna on the continental shelf. J Mar Biol Assoc U K, 57 (2) (1977), pp. 391-403.
[58]
G. Li, X. Chen, F. Zhou, Y. Liang, Y. Xiao, X. Cao, et al. Self-powered soft robot in the Mariana Trench. Nature, 591 (7848) (2021), pp. 66-71.
[59]
S.H. Patel, S.G. Barco, L.M. Crowe, J.P. Manning, E. Matzen, R.J. Smolowitz, et al. Loggerhead turtles are good ocean-observers in stratified mid-latitude regions. Estuar Coast Shelf Sci, 213 (2018), pp. 128-136.
[60]
I.M.J. Van Den Beld, J.F. Bourillet, S. Arnaud-Haond, L. De Chambure, J.S. Davies, B. Guillaumont, et al. Cold-water coral habitats in submarine canyons of the Bay of Biscay. Front Mar Sci, 4 (2017), p. 118.
[61]
R.B. Wynn, V.A. Huvenne, T.P. Le Bas, B.J. Murton, D.P. Connelly, B.J. Bett, et al. Autonomous underwater vehicles (AUVs): their past, present and future contributions to the advancement of marine geoscience. Mar Geol, 352 (2014), pp. 451-468.
[62]
D.O.B. Jones, A.R. Gates, V.A.I. Huvenne, A.B. Phillips, B.J. Bett. Autonomous marine environmental monitoring: application in decommissioned oil fields. Sci Total Environ, 668 (2019), pp. 835-853.
[63]
S. Marini, N. Gjeci, S. Govindaraj, A. But, B. Sportich, E. Ottaviani, et al. ENDURUNS: an integrated and flexible approach for seabed survey through autonomous mobile vehicles. J Mar Sci Eng, 8 (9) (2020), p. 633.
[64]
N. Bahamon, J. Aguzzi, R. Bernardello, M.A. Ahumada-Sempoal, J. Puigdefabregas, J. Cateura, et al. The new pelagic operational observatory of the Catalan Sea (OOCS) for the multisensor coordinated measurement of atmospheric and oceanographic conditions. Sensors, 11 (12) (2011), pp. 11251-11272.
[65]
R. Venkatesan, K. Ramesh, A. Kishor, N. Vedachalam, M.A. Atmanand. Best practices for the ocean moored observatories. Front Mar Sci, 5 (2018), p. 469.
[66]
N.J. Robinson, S. Johnsen, A. Brooks, L. Frey, H. Judkins, M. Vecchione, et al. Studying the swift, smart, and shy: unobtrusive camera-platforms for observing large deep-sea squid. Deep Sea Res Part I Oceanogr Res Pap, 172 (2021), 103538.
[67]
R.C. Perez, G.R. Foltz, R. Lumpkin, J. Wei, K.J. Voss, M. Ondrusek. Oceanographic buoys: providing ocean data to assess the accuracy of variables derived from satellite measurements. Nalli (Ed.), Field measurements for passive environmental remote sensing, Elsevier, Amsterdam (2023), pp. 79-100.
[68]
Barnes CR, Best MMR, Bornhold BD, Juniper SK, Pirenne B, Phibbs P. The NEPTUNE Project—a cabled ocean observatory in the NE Pacific:overview, challenges and scientific objectives for the installation and operation of Stage I in Canadian waters. In:Proceedings of 2007 Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies; 2007 Apr 17-20; Tokyo, Japan. Piscataway: IEEE. 2007.
[69]
F.C. De Leo, B. Ogata, A.R. Sastri, M. Heesemann, S. Mihály, M. Galbraith, et al. High-frequency observations from a deep-sea cabled observatory reveal seasonal overwintering of Neocalanus spp. in Barkley Canyon, NE Pacific: insights into particulate organic carbon flux. Prog Oceanogr, 169 (2018), pp. 120-137.
[70]
I.G. Priede, P.M. Bagley. In-situ studies on deep-sea demersal fishes using autonomous unmanned lander platforms. Oceanogr Mar Biol, 38 (2000), pp. 357-392.
[71]
U. Hanz, E.M. Roberts, G. Duineveld, A. Davies, H. Van Haren, H.T. Rapp, et al. Long-term observations reveal environmental conditions and food supply mechanisms at an Arctic deep-sea sponge ground. J Geophys Res Oceans, 126 (3) (2021), e2020JC016776.
[72]
G.C.A. Duineveld, M.S.S. Lavaleye, E.M. Berghuis. Particle flux and food supply to a seamount cold-water coral community (Galicia Bank, NW Spain). Mar Ecol Prog Ser, 277 (2004), pp. 13-23.
[73]
F. Spagnoli, P. Penna, G. Giuliani, L. Masini, V. Martinotti. The AMERIGO Lander and the automatic benthic chamber (CBA): two new instruments to measure benthic fluxes of dissolved chemical species. Sensors, 19 (11) (2019), p. 2632.
[74]
A. Purser, L. Thomsen, M. Hofbauer, M. Menzel, H. Wagner, R. Chapman, et al. Temporal and spatial benthic data collection via Internet operated deep sea crawler. Methods Oceanogr, 5 (2013), pp. 1-18.
[75]
D. Chatzievangelou, L. Thomsen, J. Aguzzi, C. Doya, A. Purser. Transects in the deep: opportunities with tele-operated resident seafloor robots. Front Mar Sci, 9 (2022), 833617.
[76]
Schäfer B, Albiez J, Hellerer M, Knapmeyer M, Meinecke G, Pfannkuche O, et al. Robotic developments for extreme environments—deep sea and earth’s moon [Internet]; 2004. Available from: https://elib.dlr.de/91569/
[77]
K.L. Smith Jr, A.D. Sherman, P.R. McGill, R.G. Henthorn, J. Ferreira, T.P. Connolly, et al. Abyssal benthic rover, an autonomous vehicle for long-term monitoring of deep-ocean processes. Sci Robot, 6 (60) (2021), eabl4925.
[78]
Z. Wang, X. Liu, H. Huang, Y. Chen. Development of an autonomous underwater helicopter with high manoeuvrability. Appl Sci, 9 (19) (2019), p. 4072.
[79]
P. Du, S.H. Huang, W. Yang, Y. Wang, Z. Wang, R. Hu, et al. Design of a disc-shaped autonomous underwater helicopter with stable fins. J Mar Sci Eng, 10 (1) (2022), p. 67.
[80]
J.Y. Kim, B.H. Jun. Design of six-legged walking robot, little crabster for underwater walking and operation. Adv Robot, 28 (2) (2014), pp. 77-89.
[81]
G. Picardi, A. Astolfi, D. Chatzievangelou, J. Aguzzi, M. Calisti. Underwater legged robotics: review and perspectives. Bioinspir Biomim, 18 (3) (2023), 031001.
[82]
R. Harcourt, A.M. Sequeira, X. Zhang, F. Roquet, K. Komatsu, M. Heupel, et al. Animal-borne telemetry: an integral component of the ocean observing toolkit. Front Mar Sci, 6 (2019), p. 326.
[83]
H. Stuart, S. Wang, O. Khatib, M.R. Cutkosky. The ocean one hands: an adaptive design for robust marine manipulation. Int J Robot Res, 36 (2) (2017), pp. 150-166.
[84]
D.F. Gruber, R.J. Wood. Advances and future outlooks in soft robotics for minimally invasive marine biology. Sci Robot, 7 (66) (2022), eabm6807.
[85]
M. Cianchetti, M. Calisti, L. Margheri, M. Kuba, C. Laschi. Bioinspired locomotion and grasping in water: the soft eight-arm OCTOPUS robot. Bioinspir Biomim, 10 (3) (2015), 035003.
[86]
Flögel S, Ahrns I, Nuber C, Hildebrandt M, Duda A, Schwendner J, et al. A new deep-sea crawler system-MANSIO-VIATOR. In: 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO); 2018 May 28-31; Kobe, Japan. Piscataway: IEEE. 2018.
[87]
Nakatani T, Li S, Ura T, Bodenmann A, Sakamaki T. 3D visual modeling of hydrothermal chimneys using a rotary laser scanning system. In:Proceedings of 2011 IEEE Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies; 2011 Apr 5-8; Tokyo, Japan. Piscataway: IEEE. 2011.
[88]
W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu. Edge computing: vision and challenges. IEEE Internet Things J, 3 (5) (2016), pp. 637-646.
[89]
Wehde H, Thomsen L, Pfannkuche O, Albiez J, Flögel S, Godø OR, et al. A flexible autonomous bottom resident infrastructure for bentho-pelagic monitoring. In:Proceedings of 2019 IMEKO TC-19 International Workshop on Metrology for the Sea (METROSea); 2019 Oct 3-5;Genoa, Italy 2019.
[90]
J. Aguzzi, J. Albiez, S. Flögel, O. Rune Godø, E. Grimsbø, S. Marini, et al. A flexible autonomous robotic observatory infrastructure for bentho-pelagic monitoring. Sensors, 20 (6) (2020), p. 1614.
[91]
Carandell M, Thoma DM, Martínez E, Nogueras M, Aguzzi J, Del Río J. Expanding the underwater communication capabilities of seafloor ecosystem monitoring stand-alone platforms using pop-up buoys. Ireland: IEEE 2023. p. 1-7.
[92]
S. Marini, L. Corgnati, C. Manotovani, M. Bastianini, E. Ottaviani, E. Fanelli, et al. Automated estimate of fish abundance through the autonomous imaging device GUARD1. Measurement, 126 (2018), pp. 72-75.
[93]
R. Sanchez-Iborra, I. Liaño, C. Simoes, E. Couñago, A.F. Skarmeta. Tracking and monitoring system based on lora technology for lightweight boats. Electronics, 8 (1) (2019), p. 15.
[94]
Robocean. Subsea robotics for innovative ecosystem engineering [Internet]. Edinburgh: the University of Edinburgh [cited 2023 Dec 27]. Available from: https://www.robocean.io/
[95]
K.C. Galloway, K.P. Becker, B. Philips, J. Kirby, S. Litcht, D. Tchernov, et al. Soft robotic grippers for biological sampling on deep reefs. Soft Robot, 3 (1) (2016), pp. 23-33.
[96]
Y.R. Petillot, G. Antonelli, G. Casalino, F. Ferreira. Underwater robots: from remotely operated vehicles to intervention-autonomous underwater vehicles. Robot Autom Mag, 26 (2) (2019), pp. 94-101.
[97]
G. Picardi, C. Mrudul, S. Iacoponi, S. Stefanni, C. Laschi, M. Calisti. Bioinspired underwater legged robot for seabed exploration with low environmental disturbance. Sci Robot, 5 (42) (2020), eaaz1012.
[98]
C. Corinaldesi, S. Varrella, M. Tangherlini, A. Dell’Anno, S. Canensi, C. Cerrano, et al. Changes in coral forest microbiomes predict the impact of marine heatwaves on habitat-forming species down to mesophotic depths. Sci Total Environ, 823 (2022), 153701.
[99]
M.R. Cutkosky. On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Robot Autom Mag, 5 (3) (1989), pp. 269-279.
[100]
S. Backus, R. Onishi, A. Bocklund, A. Berg, E. Contreras, A. Parness. Design and testing of the JPL-nautilus gripper for deep-ocean geological sampling. J Field Robot, 37 (6) (2020), pp. 972-986.
[101]
Kumamoto H, Shirakura N, Takamatsu J, Ogasawara T. Underwater suction gripper for object manipulation with an underwater robot. In:Proceedings of IEEE International Conference on Mechatronics (ICM) 2021 Mar 7-9; Kashiwa, Japan. Piscataway: IEEE; 2021.
[102]
Z.E. Teoh, B.T. Phillips, K.P. Becker, G. Whittredge, J.C. Weaver, C. Hoberman, et al. Rotary-actuated folding polyhedrons for midwater investigation of delicate marine organisms. Sci Robot, 3 (20) (2018), eaat5276.
[103]
N. Palomeras, A. Penalver, M. Massot-Campos, P.L. Negre, J.J. Fernàndez, P. Ridao, et al. I-AUV docking and panel intervention at sea. Sensors, 16 (10) (2016), p. 1673.
[104]
O. Khatib, X. Yeh, G. Brantner, B. Soe, B. Kim, S. Ganguly, et al. Ocean one: a robotic avatar for oceanic discovery. IEEE Robot Autom Mag, 23 (4) (2016), pp. 20-29.
[105]
Antonelli G. Encyclopedia of systems and control. In: underwater robots; Switzerland: Springer International Publishing; 2021. p. 2384-8.
[106]
J. Liu, S. Iacoponi, C. Laschi, L. Wen, M. Calisti. Underwater mobile manipulation: a soft arm on a benthic legged robot. IEEE Robot Autom Mag, 27 (4) (2020), pp. 12-26.
[107]
Donato E, Picardi G, Calisti M. Statics optimization of a hexapedal robot modelled as a Stewart platform. In: Proceedings of Towards Autonomous Robotic Systems 22nd Annual Conference; 2021 Sep 8-10; Berlin: Springer International Publishing. 2021.
[108]
J.D. Gage, P.A. Tyler. Deep-sea biology:a natural history of organisms at the deep-sea floor. Cambridge University Press, Southampton (1991).
[109]
N. Levin, S. Kark, R. Danovaro. Adding the third dimension to marine conservation. Conserv Lett, 11 (3) (2018), p. e12408.
[110]
R.J. Milligan, E.M. Scott, D.O. Jones, B.J. Bett, A.J. Jamieson, R. O’brien, et al. Evidence for seasonal cycles in deep-sea fish abundances: a great migration in the deep SE Atlantic?. J Anim Ecol, 89 (7) (2020), pp. 1593-1603.
[111]
M. Lavaleye, G. Duineveld, M. Bergman, I. Van Den Beld. Long-term baited lander experiments at a cold-water coral community on Galway Mound (Belgica Mound Province, NE Atlantic). Deep Sea Res Part II Top Stud Oceanogr, 145 (2017), pp. 22-32.
[112]
Z. Wang, K.M. Leung, Y.H. Sung, D. Dudgeon, J.W. Qiu. Recovery of tropical marine benthos after a trawl ban demonstrates linkage between abiotic and biotic changes. Commun Biol, 4 (1) (2021), p. 212.
[113]
J. Grinyo, J. Aguzzi, E. Kenchington, C. Costa, U. Hanz, F. Mienis. Occurrence and behavioral rhythms of the endangered Acadian redfish (Sebastes fasciatus) in the Sambro Bank (Scotian Shelf). Front Mar Sci, 10 (2023), 1158283.
[114]
K.L. Howell, A. Hilário, A.L. Allcock, D.M. Bailey, M. Baker, M.R. Clark, et al. A blueprint for an inclusive, global deep-sea ocean decade field program. Front Mar Sci, 7 (999) (2020), 584861.
[115]
A. Botta, P. Cavallone, L. Baglieri, G. Colucci, L. Tagliavini, G. Quaglia. A review of robots, perception, and tasks in precision agriculture. Appl Mech, 3 (3) (2022), pp. 830-854.
[116]
G.C. Hays, L.C. Ferreira, A.M. Sequeira, M.G. Meekan, C.M. Duarte, H. Bailey, et al. Key questions in marine megafauna movement ecology. Trends Ecol Evol, 31 (6) (2016), pp. 463-475.
[117]
D. Chatzievangelou, N. Bahamon, S. Martini, J. del Rio, G. Riccobene, M. Tangherlini, et al. Integrating diel vertical migrations of bioluminescent deep scattering layers into monitoring programs. Front Mar Sci, 8 (2021), 661809.
[118]
A.M. Queirós, S.N.R. Birchenough, J. Bremner, J.A. Godbold, R.E. Parker, A. Romero-Ramirez, et al. A bioturbation classification of European marine infaunal invertebrates. Ecol Evol, 3 (11) (2013), pp. 3958-3985.
[119]
I. Schulze, D. Wilken, M.L. Zettler, M. Gogina, M. Schönke, P. Feldens. Laboratory measurements to image endobenthos and bioturbation with a high-frequency 3D seismic lander. Geosciences, 11 (12) (2021), p. 508.
[120]
V.A.I. Huvenne, P.A. Tyler, D.G. Masson, E.H. Fisher, C. Hauton, V. Huehnerbach, et al. A picture on the wall: innovative mapping reveals cold-water coral refuge in submarine canyon. PLoS One, 6 (12) (2011), p. e28755.
[121]
A.B. Bugnot, K.A. Dafforn, R.A. Coleman, M. Ramsdale, J.T. Gibbeson, K. Erickson, et al. Linking habitat interactions and biodiversity within seascapes. Ecosphere, 13 (4) (2022), p. e4021.
[122]
R. Danovaro, E. Fanelli, J. Aguzzi, D. Billett, L. Carugati, C. Corinaldesi, et al. Ecological variables for developing a global deep-ocean monitoring and conservation strategy. Nat Ecol Evol, 4 (2) (2020), pp. 181-192.
[123]
L. Lins, D. Zeppilli, L. Menot, L.N. Michel, P. Bonifácio, M. Brandt, et al. Toward a reliable assessment of potential ecological impacts of deep-sea polymetallic nodule mining on abyssal infauna. Limnol Oceanogr Methods, 19 (9) (2021), pp. 626-650.
[124]
J. Pawlowski, K. Bruce, K. Panksep, F.I. Aguirre, S. Amalfitano, L. Apothéloz-Perret-Gentil, et al. Environmental DNA metabarcoding for benthic monitoring: a review of sediment sampling and DNA extraction methods. Sci Total Environ, 818 (2022), 151783.
[125]
C.L. Jerde, E.A. Wilson, T.L. Dressler. Measuring global fish species richness with eDNA metabarcoding. Mol Ecol Resour, 19 (1) (2019), pp. 19-22.
[126]
M.I. Brandt, B. Trouche, N. Henry, C. Liautard-Haag, L. Maignien, C. de Vargas, et al. An assessment of environmental metabarcoding protocols aiming at favoring contemporary biodiversity in inventories of deep-sea communities. Front Mar Sci, 7 (2020), p. 234.
[127]
C.S. Goldberg, C.R. Turner, K. Deiner, K.E. Klymus, P.F. Thomsen, M.A. Murphy, et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol Evol, 7 (11) (2016), pp. 1299-1307.
[128]
E. Aylagas, A. Borja, X. Pochon, A. Zaiko, N. Keeley, K. Bruce, et al. Translational molecular ecology in practice: linking DNA-based methods to actionable marine environmental management. Sci Total Environ, 744 (2020), 140780.
[129]
S. Duarte, P.E. Vieira, F.O. Costa. Assessment of species gaps in DNA barcode libraries of non-indigenous species (NIS) occurring in European coastal regions. Metabarcoding Metagenomics, 4 (2020), p. 55162.
[130]
J.A. Darling, X. Pochon, C.L. Abbott, G.J. Inglis, A. Zaiko. The risks of using molecular biodiversity data for incidental detection of species of concern. Divers Distrib, 26 (9) (2020), pp. 1116-1121.
[131]
K.C. Beng, R.T. Corlett. Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. Biodivers Conserv, 29 (7) (2020), pp. 2089-2121.
[132]
J. Pawlowski, A. Bonin, F. Boyer, T. Cordier, P. Taberlet. Environmental DNA for biomonitoring. Mol Ecol, 30 (13) (2021), pp. 2931-2936.
[133]
S. Stefanni, L. Mirimin, D. Stanković, D. Chatzievangelou, L. Bongiorni, S. Marini, et al. Framing cutting-edge integrative taxonomy in deep-sea biodiversity monitoring via eDNA and optoacoustic augmented observatories. Front Mar Sci, 8 (2022), 797140.
[134]
A. Duhamet, C. Albouy, V. Marques, S. Manel, D. Mouillot. The global depth range of marine fishes and their genetic coverage for environmental DNA metabarcoding. Ecol Evol, 13 (1) (2023), p. e9672.
[135]
H.Y. Zhang, G.G. Rong, S.M. Bian, M. Sawan. Lab-on-chip microsystems for ex vivo network of neurons studies: a review. Front Bioeng Biotechnol, 10 (2022), 841389.
[136]
C.A. Scholin, J. Birch, S. Jensen, R. Marin III, E. Massion, D. Pargett, et al. The quest to develop ecogenomic sensors: a 25-year history of the environmental sample processor (ESP) as a case study. Oceanogr, 30 (4) (2017), pp. 100-113.
[137]
F.P. Chavez, M. Min, K. Pitz, N. Truelove, J. Baker, D. LaScala-Grunewald, et al. Observing life in the sea using environmental DNA. Oceanogr, 34 (2) (2021), pp. 102-119.
[138]
M. Vigo, J. Navarro, I. Masmitja, J. Aguzzi, J.A. García, G. Rotllant, et al. Spatial ecology of Norway lobster Nephrops norvegicus in Mediterranean deep-water environments: implications for designing no-take marine reserves. Mar Ecol Prog Ser, 674 (2021), pp. 173-188.
[139]
N.J. Robinson, S.J. Morreale, R. Nel, F.V. Paladino. Coastal leatherback turtles reveal conservation hotspot. Sci Rep, 6 (1) (2016), p. 37851.
[140]
E.L. Hazen, B. Abrahms, S. Brodie, G. Carroll, M.G. Jacox, M.S. Savoca, et al. Marine top predators as climate and ecosystem sentinels. Front Ecol Environ, 17 (10) (2019), pp. 565-574.
[141]
S. Fossette, V.J. Hobson, C. Girard, B. Calmettes, P. Gaspar, J.Y. Georges, et al. Spatio-temporal foraging patterns of a giant zooplanktivore, the leatherback turtle. J Mar Syst, 81 (3) (2010), pp. 225-234.
[142]
K.J. Parton, P.D. Doherty, M. Parrish, P. Shearer, K. Myrick, O.N. Shipley, et al. Opportunistic camera surveys provide insight into discrete foraging behaviours in nurse sharks (Ginglymostoma cirratum). Environ Biol Fishes, 106 (1) (2023), pp. 19-30.
[143]
A.M. Addamo, A. Vertino, J. Stolarski, R. García-Jiménez, M. Taviani, A. Machordom. Merging scleractinian genera: the overwhelming genetic similarity between solitary Desmophyllum and colonial Lophelia. BMC Evol Biol, 16 (2016), p. 149.
[144]
M.P. Dahl, R.T. Pereyra, T. Lundälv, C. André. Fine-scale spatial genetic structure and clonal distribution of the cold-water coral Lophelia pertusa. Coral Reefs, 31 (4) (2012), pp. 1135-1148.
[145]
A.I. Larsson, J. Jarnegren, S.M. Stromberg, M.P. Dahl, T. Lundalv, S. Brooke. Embryogenesis and larval biology of the cold-water coral Lophelia pertusa. PLoS One, 9 (7) (2014), e102222.
[146]
E.A. Larcom, D.L. McKean, J.M. Brooks, C.R. Fisher. Growth rates, densities, and distribution of Lophelia pertusa on artificial structures in the Gulf of Mexico. Deep Sea Res Part I Oceanogr Res Pap, 85 (2014), pp. 101-109.
[147]
V.F. Chamberland, D. Petersen, J.R. Guest, U. Petersen, M. Brittsan, M.J. Vermeij. New seeding approach reduces costs and time to outplant sexually propagated corals for reef restoration. Sci Rep, 7 (2017), p. 18076.
[148]
A.B. Paxton, K.W. Shertzer, N.M. Bacheler, G.T. Kellison, K.L. Riley, J.C. Taylor. Meta-analysis reveals artificial reefs can be effective tools for fish community enhancement but are not one-size-fits-all. Front Mar Sci, 7 (2020), p. 282.
[149]
reefdesignlab.com. © 2023 [cited 2023 Dec 27]. Mentone: Reef design lab. Available from: http://www.reefdesignlab.com/
[150]
M. Montseny, C. Linares, N. Viladrich, P. Capdevila, S. Ambroso, D. Diaz, et al. A new large-scale and cost-effective restoration method for cold-water coral gardens. Aquat Conserv, 30 (5) (2020), pp. 977-987.
[151]
Grinyó J, Montseny M, Baena P, Ambroso S, Santín A, Biel Cabanelas M, et al. Restoration of deep ecosystems on the Catalan margin. In: the ocean we want: inclusive and transformative ocean science. Madrid: Consejo Superior de Investigaciones Científicas; 2022. p. 74-6.
[152]
I. Masmitja, J. Navarro, S. Gomariz, J. Aguzzi, B. Kieft, T. O’Reilly, et al. Mobile robotic platforms for the acoustic tracking of deep-water demersal fishery resources. Sci Robot, 5 (48) (2020), eabc3701.
[153]
Dunbabin M, Manley J, Harrison PL. Uncrewed maritime systems for coral reef conservation. In: Proceeding of Global Oceans 2020: Singapore-US Gulf Coast 2020 Oct 5-30; Biloxi, MS, USA. Singapore: IEEE. 2020. p. 1-6.
[154]
C. Pennesi, R. Danovaro. Assessing marine environmental status through microphytobenthos assemblages colonizing the autonomous reef monitoring structures (ARMS) and their potential in coastal marine restoration. Mar Pollut Bull, 125 (1-2) (2017), pp. 56-65.
[155]
C. Cerrano, S. Bianchelli, C.G. Di Camillo, F. Torsani, A. Pusceddu. Do colonies of Lytocarpia myriophyllum, L. 1758 (Cnidaria, Hydrozoa) affect the biochemical composition and the meiofaunal diversity of surrounding sediments?. Chem Ecol, 31 (1) (2015), pp. 1-21.
[156]
G. Jordi, M. Francescangeli, A. Santìn, G. Ercilla, F. Estrada, A. Mecho, et al. Megafaunal assemblages in deep-sea ecosystems of the Gulf of Cadiz, northeast Atlantic Ocean. Deep-Sea Res I: Oceanogr Res Pap, 183 (2022), 103738.
[157]
K.P. Sebens, J. Witting, B. Helmuth. Effects of water flow and branch spacing on particle capture by the reef coral Madracis mirabilis (Duchassaing and Michelotti). J Exp Mar Biol Ecol, 211 (1) (1997), pp. 1-28.
[158]
J. Grinyó, A. Gori, S. Ambroso, A. Purroy, C. Calatayud, C. Dominguez-Carrió, et al. Diversity, distribution, and population size structure of deep Mediterranean gorgonian assemblages (Menorca Channel, Western Mediterranean Sea). Prog Oceanogr, 145 (2016), pp. 42-56.
[159]
C. Kanzog. ROBEX-robotic exploration of extreme environments. J Unmanned Syst Technol, 3 (2) (2015), pp. 40-45.
[160]
J. Aguzzi, S. Violino, C. Costa, N. Bahamon, J. Navarro, D. Chatzievangelou, et al. Established and emerging research trends in Norway lobster, Nephrops norvegicus. Biology, 12 (2) (2023), p. 225.
[161]
United-Nations. System of environmental-economic accounting (SEEA). Central framework. New York City: United-Nations; 2014.
[162]
E. Bayraktarov, P.J. Stewart-Sinclair, S. Brisbane, L. Boström-Einarsson, M.I. Saunders, C.E. Lovelock, et al. Motivations, success, and cost of coral reef restoration. Restor Ecol, 27 (5) (2019), pp. 981-991.
[163]
D. Laffoley, J.M. Baxter, D.J. Amon, D.E. Currie, C.A. Downs, J.M. Hall-Spencer, et al. Eight urgent, fundamental and simultaneous steps needed to restore ocean health, and the consequences for humanity and the planet of inaction or delay. Aquat Conserv, 30 (1) (2020), pp. 194-208.
PDF(2534 KB)

Accesses

Citation

Detail

段落导航
相关文章

/