[1] |
H. Rho, S.J. Im, O. Alrehaili, S. Lee, A. Jang, F. Perreault, et al. Facile surface modification of polyamide membranes using UV-photooxidation improves permeability and reduces natural organic matter fouling. Environ Sci Technol, 55 (10) (2021), pp. 6984-6994.
|
[2] |
Q.K. Tran, D. Jassby, K.A. Schwabe. The implications of drought and water conservation on the reuse of municipal wastewater: recognizing impacts and identifying mitigation possibilities. Water Res, 124 (2017), pp. 472-481.
|
[3] |
Y. Xiao, S.C. Jiang, X.Y. Wang, T. Muhammad, P. Song, B. Zhou, et al. Mitigation of biofouling in agricultural water distribution systems with nanobubbles. Environ Int, 141 (2020), 105787.
|
[4] |
A. Singh. A review of wastewater irrigation: environmental implications. Resour Conserv Recycling, 168 (2021), 105454.
|
[5] |
J. Wang, L. Wang, N. Sun, R. Tierney, H. Li, M. Corsetti, et al. Viscoelastic solid-repellent coatings for extreme water saving and global sanitation. Nat Sustain, 2 (12) (2019), pp. 1097-1105.
|
[6] |
M. Wang, P. Zhang, X. Liang, J. Zhao, Y. Liu, Y. Cao, et al. Ultrafast seawater desalination with covalent organic framework membranes. Nat Sustain, 5 (6) (2022), pp. 518-526.
|
[7] |
D.H. Seo, S. Pineda, Y.C. Woo, M. Xie, A.T. Murdock, E.Y.M. Ang, et al. Anti-fouling graphene-based membranes for effective water desalination. Nat Commun, 9 (1) (2018), p. 683.
|
[8] |
S.J. Im, L. Fortunato, A. Jang. Real-time fouling monitoring and membrane autopsy analysis in forward osmosis for wastewater reuse. Water Res, 197 (2021), 117098.
|
[9] |
P. Desmond, K.T. Huisman, H. Sanawar, N.M. Farhat, J. Traber, E.O. Fridjonsson, et al. Controlling the hydraulic resistance of membrane biofilms by engineering biofilm physical structure. Water Res, 210 (2022), 118031.
|
[10] |
S. Wakai, N. Eno, K. Miyanaga, H. Mizukami, T. Sunaba, Y. Miyano. Dynamics of microbial communities on the corrosion behavior of steel in freshwater environment. NPJ Mater Degrad, 6 (1) (2022), p. 45.
|
[11] |
M. Schoenitz, L. Grundemann, W. Augustin, S. Scholl. Fouling in microstructured devices: a review. Chem Commun, 51 (39) (2015), pp. 8213-8228.
|
[12] |
W. Guo, H.H. Ngo, J. Li. A mini-review on membrane fouling. Bioresour Technol, 122 (2012), pp. 27-34.
|
[13] |
Y. Xiao, Y. Liu, C. Ma, T. Muhammad, B. Zhou, Y. Zhou, et al. Using electromagnetic fields to inhibit biofouling and scaling in biogas slurry drip irrigation emitters. J Hazard Mater, 401 (2021), 123265.
|
[14] |
G. Scarascia, L. Fortunato, Y. Myshkevych, H. Cheng, T.O. Leiknes, P.Y. Hong. UV and bacteriophages as a chemical-free approach for cleaning membranes from anaerobic bioreactors. Proc Natl Acad Sci USA, 118 (37) (2021), e2016529118.
|
[15] |
P. Song, G. Feng, J. Brooks, B. Zhou, H. Zhou, Z. Zhao, et al. Environmental risk of chlorine-controlled clogging in drip irrigation system using reclaimed water: the perspective of soil health. J Clean Prod, 232 (2019), pp. 1452-1464.
|
[16] |
T. Muhammad, L. Li, Y. Xiao, Y. Zhou, Z. Liu, X. He, et al. Multiple fouling dynamics, interactions and synergistic effects in brackish surface water distribution systems. Chemosphere, 287 (2021), 132268.
|
[17] |
P. Song, B. Zhou, G. Feng, J.P. Brooks, H. Zhou, Z. Zhao, et al. The influence of chlorination timing and concentration on microbial communities in labyrinth channels: implications for biofilm removal. Biofouling, 35 (4) (2019), pp. 401-415.
|
[18] |
T. Temesgen, T.T. Bui, M. Han, T. Kim, H. Park. Micro and nanobubble technologies as a new horizon for water-treatment techniques: a review. Adv Colloid Interface Sci, 246 (2017), pp. 40-51.
|
[19] |
A. Agarwal, W.J. Ng, Y. Liu. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere, 84 (9) (2011), pp. 1175-1180.
|
[20] |
A. Azevedo, H. Oliveira, J. Rubio. Bulk nanobubbles in the mineral and environmental areas: updating research and applications. Adv Colloid Interface Sci, 271 (2019), 101992.
|
[21] |
M.U. Farid, J.A. Kharraz, C.H. Lee, J.K.H. Fang, S. St-Hilaire, A.K. An. Nanobubble-assisted scaling inhibition in membrane distillation for the treatment of high-salinity brine. Water Res, 209 (2021), 117954.
|
[22] |
A. Ghadimkhani, W. Zhang, T. Marhaba. Ceramic membrane defouling (cleaning) by air nano bubbles. Chemosphere, 146 (2016), pp. 379-384.
|
[23] |
Y. Oppenheimer-Shaanan, O. Sibony-Nevo, Z. Bloom-Ackermann, R. Suissa, N. Steinberg, E. Kartvelishvily, et al. Spatio-temporal assembly of functional mineral scaffolds within microbial biofilms. NPJ Mater Degrad, 2 (2016), p. 15031.
|
[24] |
Y. Shen, P.C. Huang, C. Huang, P. Sun, G.L. Monroy, W. Wu, et al. Effect of divalent ions and a polyphosphate on composition, structure, and stiffness of simulated drinking water biofilms. NPJ Mater Degrad, 4 (2018), p. 15.
|
[25] |
A. Ushida, T. Hasegawa, N. Takahashi, T. Nakajima, S. Murao, T. Narumi, et al. Effect of mixed nanobubble and microbubble liquids on the washing rate of cloth in an alternating flow. J Surfactants Deterg, 15 (6) (2012), pp. 695-702.
|
[26] |
D. Rice, P. Westerhoff, F. Perreault, S. Garcia-Segura. Electrochemical self-cleaning anodic surfaces for biofouling control during water treatment. Electrochem Commun, 96 (2018), pp. 83-87.
|
[27] |
Z. Wu, H. Chen, Y. Dong, H. Mao, J. Sun, S. Chen, et al. Cleaning using nanobubbles: defouling by electrochemical generation of bubbles. J Colloid Interface Sci, 328 (1) (2008), pp. 10-14.
|
[28] |
H. Dayarathne, S. Jeong, A. Jang. Chemical-free scale inhibition method for seawater reverse osmosis membrane process: air micro-nano bubbles. Desalination, 461 (2019), pp. 1-9.
|
[29] |
W. Wang, W. Fan, M. Huo, H. Zhao, Y. Lu. Hydroxyl radical generation and contaminant removal from water by the collapse of microbubbles under different hydrochemical conditions. Water Air Soil Pollut, 229 (3) (2018), p. 86.
|
[30] |
N.H. Nghia, P.T. Van, P.T. Giang, N.T. Hanh, S. St-Hilaire, J.A. Domingos. Control of Vibrio parahaemolyticus (AHPND strain) and improvement of water quality using nanobubble technology. Aquacult Res, 52 (6) (2021), pp. 2727-2739.
|
[31] |
S. Xue, T. Marhaba, W. Zhang. Nanobubble watering affects nutrient release and soil characteristics. ACS Agric Sci Technol, 2 (3) (2022), pp. 453-461.
|
[32] |
W. Chen, F. Bastida, Y. Liu, Y. Zhou, J. He, P. Song, et al. Nanobubble oxygenated increases crop production via soil structure improvement: the perspective of microbially mediated effects. Agric Water Manage, 282 (2023), 108263.
|
[33] |
Y. Zhou, F. Bastida, B. Zhou, Y. Sun, T. Gu, S. Li, et al. Soil fertility and crop production are fostered by micro-nano bubble irrigation with associated changes in soil bacterial community. Soil Biol Biochem, 141 (2020), 107663.
|
[34] |
J. Puig-Bargues, F.R. Lamm, T.P. Trooien, G.A. Clark. Effect of dripline flushing on subsurface drip irrigation systems. Trans ASABE, 53 (1) (2010), pp. 147-155.
|
[35] |
M. DuBois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith. Colorimetric method for determination of sugars and related substances. Anal Chem, 28 (3) (1956), pp. 350-356.
|
[36] |
O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall. Protein measurement with the Folin phenol reagent. J Biol Chem, 193 (1) (1951), pp. 265-275.
|
[37] |
X. Kong, D. Jin, X. Wang, F. Zhang, G. Duan, H. Liu, et al. Dibutyl phthalate contamination remolded the fungal community in agro-environmental system. Chemosphere, 215 (2019), pp. 189-198.
|
[38] |
J.C. Stegen, X. Lin, J.K. Fredrickson, X. Chen, D.W. Kennedy, C.J. Murray, et al. Quantifying community assembly processes and identifying features that impose them. ISME J, 7 (11) (2013), pp. 2069-2079.
|
[39] |
B.H. Toby, R.B. Von Dreele. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J Appl Cryst, 46 (2) (2013), pp. 544-549.
|
[40] |
A.J. Atkinson, O.G. Apul, O. Schneider, S. Garcia-Segura, P. Westerhoff. Nanobubble technologies offer opportunities to improve water treatment. Acc Chem Res, 52 (5) (2019), pp. 1196-1205.
|
[41] |
P. Seridou, N. Kalogerakis. Disinfection applications of ozone micro- and nanobubbles. Environ Sci Nano, 8 (12) (2021), pp. 3493-3510.
|
[42] |
W. Xiao, G. Xu. Mass transfer of nanobubble aeration and its effect on biofilm growth: microbial activity and structural properties. Sci Total Environ, 703 (2020), 134976.
|
[43] |
M. Ito, Y. Sugai. Nanobubbles activate anaerobic growth and metabolism of Pseudomonas aeruginosa. Sci Rep, 11 (1) (2021), p. 16858.
|
[44] |
F. Magaletti, L. Marino, C.M. Casciola. Shock wave formation in the collapse of a vapor nanobubble. Phys Rev Lett, 114 (6) (2015), 064501.
|
[45] |
M. Takahashi, H. Ishikawa, T. Asano, H. Horibe. Effect of microbubbles on ozonized water for photoresist removal. J Phys Chem C, 116 (23) (2012), pp. 12578-12583.
|
[46] |
P. Li, M. Takahashi, K. Chiba. Degradation of phenol by the collapse of microbubbles. Chemosphere, 75 (10) (2009), pp. 1371-1375.
|
[47] |
Y. Sun, S. Wang, J. Niu. Microbial community evolution of black and stinking rivers during in situ remediation through micro-nano bubble and submerged resin floating bed technology. Bioresour Technol, 258 (2018), pp. 187-194.
|
[48] |
Y. Liang, H. Zhao, Y. Deng, J. Zhou, G. Li, B. Sun. Long-term oil contamination alters the molecular ecological networks of soil microbial functional genes. Front Microbiol, 7 (2016), p. 60.
|
[49] |
M.M. Yuan, X. Guo, L. Wu, Y. Zhang, N. Xiao, D. Ning, et al. Climate warming enhances microbial network complexity and stability. Nat Clim Chang, 11 (4) (2021), pp. 343-348.
|
[50] |
J. Zhou, Y. Deng, F. Luo, Z. He, Y. Yang. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. MBio, 2 (4) (2011), pp. e00122-211.
|
[51] |
J. Wen, Y. Xiao, P. Song, B. Sun, T. Muhammad, L. Ma, et al. Bacillus amyloliquefaciens application to prevent biofilms in reclaimed water microirrigation systems. Irrig Drain, 70 (1) (2021), pp. 4-15.
|
[52] |
L. Li, M. Cao, H. Yin. Comparative roles between aragonite and calcite calcium carbonate whiskers in the hydration and strength of cement paste. Cement Concr Compos, 104 (2019), 103350.
|
[53] |
I. Beech, C.S. Cheung. Interactions of exopolymers produced by sulphate-reducing bacteria with metal ions. Int Biodeterior Biodegradation, 35 (1-3) (1995), pp. 59-72.
|
[54] |
J. McCutcheon, S.A. Wilson, G. Southam. Microbially accelerated carbonate mineral precipitation as a strategy for in situ carbon sequestration and rehabilitation of asbestos mine sites. Environ Sci Technol, 50 (3) (2016), pp. 1419-1427.
|
[55] |
S.F. Tan, S. Raj, G. Bisht, H.V. Annadata, C.A. Nijhuis, P. Král, et al. Nanoparticle interactions guided by shape-dependent hydrophobic forces. Adv Mater, 30 (16) (2018), p. 1707077.
|
[56] |
W. Yang, M. Son, B. Xiong, M. Kumar, S. Bucs, J.S. Vrouwenvelder, et al. Effective biofouling control using periodic H2O2 cleaning with CuO modified and polypropylene dpacers. ACS Sustain Chem Eng, 7 (10) (2019), pp. 9582-9587.
|
[57] |
J. Zhu, H. An, M. Alheshibri, L. Liu, P.M.J. Terpstra, G. Liu, et al. Cleaning with bulk nanobubbles. Langmuir, 32 (43) (2016), pp. 11203-11211.
|
[58] |
Y. Wu, H. Lin, W. Yin, S. Shao, S. Lv, Y. Hu. Water quality and microbial community changes in an urban river after micro-nano bubble technology in situ treatment. Water, 11 (1) (2019), p. 66.
|
[59] |
Y. Liu, Y. Zhou, T. Wang, J. Pan, B. Zhou, T. Muhammad, et al. micro-nano bubble water oxygation: synergistically improving irrigation water use efficiency, crop yield and quality. J Clean Prod, 222 (2019), pp. 835-843.
|
[60] |
Y. Zhou, B. Zhou, F. Xu, T. Muhammad, Y. Li. Appropriate dissolved oxygen concentration and application stage of micro-nano bubble water oxygation in greenhouse crop plantation. Agric Water Manage, 223 (2019), 105713.
|
[61] |
B. Huang, X. Nan, C. Fu, T. Guo. Study of the bubble collapse mechanism and its influencing factors on stability under ultra-low surface tension. Colloids Surf A Physicochem Eng Asp, 618 (2021), 126440.
|
[62] |
H. Zhou, Y. Li, Y. Wang, B. Zhou, R. Bhattarai. Composite fouling of drip emitters applying surface water with high sand concentration: dynamic variation and formation mechanism. Agric Water Manage, 215 (2019), pp. 25-43.
|