考虑生态系统服务价值基于混合双主体代理和元胞自动机建模的高密度人口流域土地利用/土地覆盖动态模拟方法研究

李雨桐, 蔡宴朋, 付强, 张晓东, 万航, 杨志峰

工程(英文) ›› 2024, Vol. 37 ›› Issue (6) : 198-211.

PDF(3607 KB)
PDF(3607 KB)
工程(英文) ›› 2024, Vol. 37 ›› Issue (6) : 198-211. DOI: 10.1016/j.eng.2023.10.015
研究论文
Article

考虑生态系统服务价值基于混合双主体代理和元胞自动机建模的高密度人口流域土地利用/土地覆盖动态模拟方法研究

作者信息 +

Dynamics of Land Use/Land Cover Considering Ecosystem Services for a Dense-Population Watershed Based on a Hybrid Dual-Subject Agent and Cellular Automaton Modeling Approach

Author information +
History +

摘要

土地利用/土地覆盖表示人类社会系统和地理环境系统的相互作用和影响,引起自然和人类相关问题以及利益关联者之间的潜在冲突。该研究引入土地生态系统服务价值和农民经济状况属性,开发基于元胞自动机和多智能体耦合的仿真模型有效处理社会经济和土地利用协同的问题,以研究人类与环境相互作用并对华南湿润地区土地利用变化情况进行预测。引起土地利用/土地覆盖改变的驱动因子包括自然属性数据和社会经济数据。元胞自动机耦合多智能体模型主要包括初始化模块、迁移模块、资产模块、土地适宜性模块和土地利用变化决策模块。本研究应用空间逻辑回归模型以获得影响城市用地的社会经济因素转换概率。同时,引入了多准则评价和马尔可夫模型以获得影响生态用地的自然属性因素转换概率。本研究提出了一种基于多智能体模型的元胞自动机-空间逻辑回归-多准则评价-马尔可夫的土地利用转换模型(ABCSMM),以探索多种政策对土地利用转换的影响。该模型考虑林地转换、城市扩张、生态系统服务价值和土地利用决策之间的联系,以便更精准地复刻观察到的土地利用模式。多政策情景下的土地利用模拟结果揭示了该模型在土地利用管理规范研究中的实用性。

Abstract

Land use/land cover represents the interactive and comprehensive influences between human activities and natural conditions, leading to potential conflicts among natural and human-related issues as well as among stakeholders. This study introduced economic standards for farmers. A hybrid approach (CA-ABM) of cellular automaton (CA) and an agent-based model (ABM) was developed to effectively deal with social and land-use synergic issues to examine human-environment interactions and projections of land-use conversions for a humid basin in south China. Natural attributes and socioeconomic data were used to analyze land use/land cover and its drivers of change. The major modules of the CA-ABM are initialization, migration, assets, land suitability, and land-use change decisions. Empirical estimates of the factors influencing the urban land-use conversion probability were captured using parameters based on a spatial logistic regression (SLR) model. Simultaneously, multicriteria evaluation (MCE) and Markov models were introduced to obtain empirical estimates of the factors affecting the probability of ecological land conversion. An agent-based CA-SLR-MCE-Markov (ABCSMM) land-use conversion model was proposed to explore the impacts of policies on land-use conversion. This model can reproduce observed land-use patterns and provide links for forest transition and urban expansion to land-use decisions and ecosystem services. The results demonstrated land-use simulations under multi-policy scenarios, revealing the usefulness of the model for normative research on land-use management.

关键词

土地利用/土地覆盖 / 人地系统 / 多智能体 / 元胞自动机

Keywords

Land use/land cover / Human-environment interactions / Agent-based model / Cellular automaton

引用本文

导出引用
李雨桐, 蔡宴朋, 付强. 考虑生态系统服务价值基于混合双主体代理和元胞自动机建模的高密度人口流域土地利用/土地覆盖动态模拟方法研究. Engineering. 2024, 37(6): 198-211 https://doi.org/10.1016/j.eng.2023.10.015

参考文献

[1]
T. Gashaw, T. Tulu, M. Argaw, A.W. Worqlul. Evaluation and prediction of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Environ Syst Res, 6 (1) (2017), p. 17.
[2]
H.A. Kaul, I. Sopan. Land use land cover classification and change detection using high resolution temporal satellite data. J Environ, 1 (4) (2012), pp. 146-152.
[3]
H. Wang, X. Liu, C. Zhao, Y. Chang, Y. Liu, F. Zang. Spatial- temporal pattern analysis of landscape ecological risk assessment based on land use/land cover change in Baishuijiang National nature reserve in Gansu Province, China. Ecol Indic, 124 (2021), p. 107454.
[4]
J. Yang, J. Xu, Y. Zhou, D. Zhai, H. Chen, Q. Li, et al. Paddy rice phenological mapping throughout 30-years satellite images in the Honghe Hani Rice Terraces. Remote Sens, 15 (9) (2023), p. 2398.
[5]
H.W. Zheng, G.Q. Shen, H. Wang, J. Hong. Simulating land use change in urban renewal areas: a case study in Hong Kong. Habitat Int, 46 (2015), pp. 23-34.
[6]
E. Yirsaw, W. Wu, X. Shi, H. Temesgen, B. Bekele. Land use/land cover change modeling and the prediction of subsequent changes in ecosystem service values in a Coastal Area of China, the Su-Xi-Chang Region. Sustainability, 9 (7) (2017), p. 1204.
[7]
Batunacun C. Nendel Y. Hu T. Lakes. Land-use change and land degradation on the Mongolian Plateau from 1975 to 2015—a case study from Xilingol, China. Land Degrad Dev, 29 (6) (2018), pp. 1595-1606.
[8]
M. Minta, K. Kibret, P. Thorne, T. Nigussie, L. Nigatu. Land use and land cover dynamics in Dendi-Jeldu hilly-mountainous areas in the central Ethiopian highlands. Geoderma, 314 (2018), pp. 27-36.
[9]
R.J. Permatasari, A. Damayanti, T.L. Indra, M. Dimyati. Prediction of land cover changes in Penajam Paser Utara Regency using cellular automata and Markov model. IOP Conf Ser Earth Environ Sci, 623 (1) (2021), p. 012005.
[10]
D.F. Ren, A.H. Cao, F.Y. Wang. Response and multi-scenario prediction of carbon storage and habitat quality to land use in Liaoning Province, China. Sustainability, 15 (5) (2023), pp. 1-23.
[11]
K. Mohan, P.K. Rai, V.N. Mishra. Prediction of land use changes based on land change modeler (LCM) using remote sensing: a case study of Muzaffarpur (Bihar), India. J Geogr Inst Jovan Cvijic SASA, 64 (1) (2014), pp. 111-127.
[12]
S.K. Singh, S. Mustak, P.K. Srivastava, S. Szabó, T. Islam. Predicting spatial and decadal LULC changes through cellular automata Markov Chain Models using earth observation datasets and geo-information. Environ Processes, 2 (1) (2015), pp. 61-78.
[13]
S.K. Singh, P.B. Laari, S. Mustak, P.K. Srivastava, S. Szabó. Modelling of land use land cover change using earth observation data-sets of Tons River Basin, Madhya Pradesh, India. Geocarto Int, 33 (11) (2018), pp. 1202-1222.
[14]
S. Tavangar, H. Moradi, A.M. Bavani, M. Gholamalifard. A futuristic survey of the effects of LU/LC change on stream flow by CA-Markov model: a case of the Nekarood watershed, Iran. Geocarto Int, 36 (10) (2021), pp. 1100-1116.
[15]
C. Ning, R. Subedi, L. Hao. Land use/cover change, fragmentation, and driving factors in Nepal in the last 25 years. Sustainability, 15 (8) (2023), p. 6957.
[16]
M. Kindu, T. Schneider, D. Teketay, T. Knoke. Land use/land cover change analysis using object-based classification approach in Munessa-Shashemene landscape of the Ethiopian highlands. Remote Sens, 5 (5) (2013), pp. 2411-2435.
[17]
S.D. Dayamba, H. Djoudi, M. Zida, L. Sawadogo, L. Verchot. Biodiversity and carbon stocks in different land use types in the Sudanian Zone of Burkina Faso, West Africa. Agric Ecosyst Environ, 216 (2016), pp. 61-72.
[18]
A. Alam, M.S. Bhat, M. Maheen. Using Landsat satellite data for assessing the land use and land cover change in Kashmir valley. GeoJournal, 85 (6) (2020), pp. 1529-1543.
[19]
Y. Xu, Y. Chen, Y. Ren, Z. Tang, X. Yang, Y. Zhang. Attribution of streamflow changes considering spatial contributions and driver interactions based on hydrological modeling. Water Resour Manage, 37 (5) (2023), pp. 1859-1877.
[20]
M. Witjes, L. Parente, C.J. van Diemen, T. Hengl, M. Landa, L. Brodský, et al. A spatiotemporal ensemble machine learning framework for generating land use/land cover time-series maps for Europe (2000-2019) based on LUCAS, CORINE and GLAD Landsat. PeerJ, 10 (2022), p. e13573.
[21]
H. Memarian, S.K. Balasundram, J.B. Talib, C.T.B. Sung, A.M. Sood, K. Abbaspour. Validation of CA-Markov for simulation of land use and cover change in the Langat Basin, Malaysia. J Geogr Inf Syst, 4 (6) (2012), pp. 542-554.
[22]
C. Hyandye, L.W. Martz. A Markovian and cellular automata land-use change predictive model of the Usangu Catchment. Int J Remote Sens, 38 (1) (2017), pp. 64-81.
[23]
Y. Lu, P. Wu, X. Ma, X. Li. Detection and prediction of land use/land cover change using spatiotemporal data fusion and the Cellular Automata-Markov model. Environ Monit Assess, 191 (2) (2019), p. 68.
[24]
Z. Zhang, G. Hörmann, J. Huang, N. Fohrer. A random forest-based CA-Markov model to examine the dynamics of land use/cover change aided with remote sensing and GIS. Remote Sens, 15 (8) (2023), p. 2128.
[25]
L. Liu, S. Yu, H. Zhang, Y. Wang, C. Liang. Analysis of land use change drivers and simulation of different future scenarios: taking Shanxi Province of China as an example. Int J Environ Res Public Health, 20 (2) (2023), p. 1626.
[26]
M.T.U. Rahman, F. Tabassum, M. Rasheduzzaman, H. Saba, L. Sarkar, J. Ferdous, et al. Temporal dynamics of land use/land cover change and its prediction using CA-ANN model for southwestern coastal Bangladesh. Environ Monit Assess, 189 (11) (2017), p. 565.
[27]
M.G. Munthali, S. Mustak, A. Adeola, J. Botai, S.K. Singh, N. Davis. Modelling land use and land cover dynamics of Dedza district of Malawi using hybrid Cellular Automata and Markov model. Remote Sens Appl Soc Environ, 17 (2020), p. 100276.
[28]
S. Sibanda, F. Ahmed. Modelling historic and future land use/land cover changes and their impact on wetland area in Shashe sub-catchment, Zimbabwe. Model Earth Syst Environ, 7 (1) (2021), pp. 57-70.
[29]
M. Mwabumba, B.K. Yadav, M.J. Rwiza, I. Larbi, S. Twisa. Analysis of land use and land-cover pattern to monitor dynamics of Ngorongoro world heritage site (Tanzania) using hybrid cellular automata-Markov model. Curr Res Environ Sustainability, 4 (2022), p. 100126.
[30]
B. Matlhodi, P.K. Kenabatho, B.P. Parida, J.G. Maphanyane. Analysis of the future land use land cover changes in the Gaborone dam catchment using CA-Markov model: implications on water resources. Remote Sens, 13 (13) (2021), p. 2427.
[31]
A. Naboureh, M.H.R. Moghaddam, B. Feizizadeh, T. Blaschke. An integrated object-based image analysis and CA-Markov model approach for modeling land use/land cover trends in the Sarab plain. Arabian J Geosci, 10 (12) (2017), p. 259.
[32]
S. Giri, N.N. Arbab, R.G. Lathrop. Water security assessment of current and future scenarios through an integrated modeling framework in the Neshanic River Watershed. J Hydrol, 563 (2018), pp. 1025-1041.
[33]
A. Gausen, W. Luk, C. Guo. Using agent-based modelling to evaluate the impact of algorithmic curation on social media. J Data Inf Qual, 15 (1) (2023), pp. 1-24.
[34]
B.J. Sattler, J. Friesen, A. Tundis, P.F. Pelz. Modeling and validation of residential water demand in agent-based models: a systematic literature review. Water, 15 (3) (2023), p. 579.
[35]
Hunter E. A hybrid agent-based and equation based epidemiological model for the spread of infectious diseases [dissertation]. Dublin: Technological University Dublin; 2020.
[36]
S.J. Walsh, G.P. Malanson, B. Entwisle, R.R. Rindfuss, P.J. Mucha, B.W. Heumann, et al. Design of an agent-based model to examine population-environment interactions in Nang Rong District, Thailand. Appl Geogr, 39 (2013), pp. 183-198.
[37]
X. Zhao, X. Ma, W. Tang, D. Liu. An adaptive agent-based optimization model for spatial planning: a case study of Anyue County, China. Sustain Cities Soc, 51 (2019), p. 101733.
[38]
Y. An, A. Park. Developing an agent-based model to mitigate famine risk in North Korea: insights from the “Artificial North Korean Collective Farm” model. Land, 12 (4) (2023), p. 735.
[39]
D. Dziubanski, K.J. Franz. Projecting hydrologic change under land use and climate scenarios in an agricultural watershed using agent-based modeling. Front Water, 5 (2023), p. 1020080.
[40]
Crooks AT. The repast simulation/modelling system for geospatial simulation [dissertation]. London: University College London; 2007.
[41]
KM. Johnston. Agent analyst:agent-based modeling in ArcGIS, Esri Press, Redlands (2024). In press.
[42]
H. Mirzahossein, V. Noferesti, X. Jin. Residential development simulation based on learning by agent-based model. TeMA J Land Use Mobility Environ, 15 (2) (2022), pp. 193-207.
[43]
G. Ravaioli, T. Domingos, R.F.M. Teixeira. A framework for data-driven agent-based modelling of agricultural land use. Land, 12 (4) (2023), p. 756.
[44]
S. Abolhasani, M. Taleai. Assessing the effect of temporal dynamics on urban growth simulation: towards an asynchronous cellular automata. Trans GIS, 24 (2) (2020), pp. 332-354.
[45]
J. Hao, Q. Lin, T. Wu, J. Chen, W. Li, X. Wu, et al. Spatial-temporal and driving factors of land use/cover change in Mongolia from 1990 to 2021. Remote Sens, 15 (7) (2023), p. 1813.
[46]
W. Azemeraw, M. Matebie. Landslide susceptibility mapping using information value and logistic regression models in Goncha Siso Eneses area, northwestern Ethiopia. SN Appl Sci, 2 (2020), pp. 1-19.
[47]
I.M. Perez, A. Airola, P.J. Boström, I. Jambor, T. Pahikkala. Tournament leave-pair-out cross-validation for receiver operating characteristic analysis. Stat Methods Med Res, 28 (10,11) (2018), pp. 2975-2991.
[48]
R.G. Pontius Jr. Statistical methods to partition effects of quantity and location during comparison of categorical maps at multiple resolutions. Photogramm Eng Remote Sens, 68 (10) (2002), pp. 1041-1049.
[49]
B.C. Pijanowski, A. Tayyebi, M.R. Delavar, M.J. Yazdanpanah. Urban expansion simulation using geospatial information system and artificial neural networks. Int J Environ Res, 3 (4) (2009), pp. 493-502.
[50]
J. Yang, X. Huang. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst Sci Data, 13 (8) (2021), pp. 3907-3925.
[51]
C. Llorca, N. Kuehnel, R. Moeckel. Agent-based integrated land use/transport models: a study on scale factors and transport model simulation intervals. Procedia Comput Sci, 170 (2020), pp. 733-738.
[52]
C.G.C. Coelho, C.G. Ralha. MASE-EGTI: an agent-based simulator for environmental land change. Environ Modell Software, 147 (2022), p. 105252.
[53]
E.G. Irwin, P.W. Jeanty, M.D. Partridge. Amenity values versus land constraints: the spatial effects of natural landscape features on housing values. Land Econ, 90 (1) (2014), pp. 61-78.
[54]
O.N. Mensour, B. El Ghazzani, B. Hlimi, A. Ihlal. A geographical information system-based multi-criteria method for the evaluation of solar farms locations: a case study in Souss-Massa area, southern Morocco. Energy, 182 (2019), pp. 900-919.
[55]
T. Everest, A. Sungur, H. Özcan. Determination of agricultural land suitability with a multiple-criteria decision-making method in Northwestern Turkey. Int J Environ Sci Technol, 18 (5) (2021), pp. 1073-1088.
[56]
J. Malczewski. Integrating multicriteria analysis and geographic information systems: the ordered weighted averaging (OWA) approach. Int J Environ Technol Manage, 6 (1,2) (2006), pp. 7-19.
[57]
Mishra M, Mishra KK, Subudhi AP, Phil M. Urban sprawl mapping and land use change analysis using remote sensing and GIS (case study of Bhubaneswar city, Orissa). In: Proceeding of Geospatial World Forum; 2018 Jan 15-19; Hyderabad, India; 2018.
[58]
L. Wu, P. Shi, H. Gao. State estimation and sliding-mode control of Markovian jump singular systems. IEEE Trans Autom Control, 55 (5) (2010), pp. 1213-1219.
[59]
H.M. Mosammam, J.T. Nia, H. Khani, A. Teymouri, M. Kazemi. Monitoring land use change and measuring urban sprawl based on its spatial forms: the case of Qom City. Egypt J Remote Sens Space Sci, 20 (1) (2017), pp. 103-116.
[60]
X. Yang, X.Q. Zheng, L.N. Lv. A spatiotemporal model of land use change based on ant colony optimization, Markov chain, and cellular automata. Ecol Modell, 233 (2012), pp. 11-19.
[61]
A. Maviza, F. Ahmed. Analysis of past and future multi-temporal land use and land cover changes in the semi-arid Upper-Mzingwane sub-catchment in the Matabeleland south province of Zimbabwe. Int J Remote Sens, 41 (14) (2020), pp. 5206-5227.
[62]
J. Lin, X. Li, Y. Wen, P. He. Modeling urban land-use changes using a landscape-driven patch-based cellular automaton (LP-CA). Cities, 132 (2023), p. 103906.
[63]
D. Guan, H. Li, T. Inohae, W. Su, T. Nagaie, K. Hokao. Modeling urban land use change by the integration of cellular automaton and Markov model. Ecol Modell, 222 (20-22) (2011), pp. 3761-3772.
[64]
X. Yang, X.Q. Zheng, R. Chen. A land use change model: integrating landscape pattern indexes and Markov-CA. Ecol Modell, 283 (2014), pp. 1-7.
[65]
H. Keshtkar, W. Voigt. A spatiotemporal analysis of landscape change using an integrated Markov chain and cellular automata models. Model Earth Syst Environ, 2 (1) (2016), p. 10.
[66]
X. Liang, X. Liu, D. Li, H. Zhao, G. Chen. Urban growth simulation by incorporating planning policies into a CA-based future land-use simulation model. Int J Geogr Inf Sci, 32 (11) (2018), pp. 2294-2316.
[67]
Z. Liu, P.H. Verburg, J. Wu, C. He. Understanding land system change through scenario-based simulations: a case study from the drylands in northern China. Environ Manage, 59 (3) (2017), pp. 440-454.
[68]
N.Q. Omar, M.S.S. Ahamad, W.M.A.W. Hussin, N. Samat, S.Z.B. Ahmad. Markov CA, multi regression, and multiple decision making for modeling historical changes in Kirkuk City, Iraq. J Indian Soc Remote Sens, 42 (1) (2014), pp. 165-178.
[69]
M. Beroho, H. Briak, E.K. Cherif, I. Boulahfa, A. Ouallali, R. Mrabet, et al. Future scenarios of land use/land cover (LULC) based on a CA-Markov simulation model: case of a Mediterranean watershed in Morocco. Remote Sens, 15 (4) (2023), p. 1162.
[70]
Y. Tsai, A. Zia, C. Koliba, G. Bucini, J. Guilbert, B. Beckage. An interactive land use transition agent-based model (ILUTABM): endogenizing human-environment interactions in the western Missisquoi watershed. Land Use Policy, 49 (2015), pp. 161-176.
[71]
Arbab NN. Application of a spatially explicit, agent-based land use conversion model to assess water quality outcomes under buffer policies [dissertation]. Morgantown:  West Virginia University; 2014.
[72]
N.N. Arbab, A.R. Collins, J.F. Conley. Projections of watershed pollutant loads using a spatially explicit, agent-based land use conversion model: a case study of Berkeley County, West Virginia. Appl Spat Anal Policy, 11 (1) (2018), pp. 147-181.
[73]
B. Egoh, M. Rouget, B. Reyers, A.T. Knight, R.M. Cowling, A.S. van Jaarsveld, et al. Integrating ecosystem services into conservation assessments: a review. Ecol Econ, 63 (4) (2007), pp. 714-721.
[74]
I. Dullinger, F. Essl, D. Moser, K. Erb, H. Haberl, S. Dullinger. Biodiversity models need to represent land-use intensity more comprehensively. Global Ecol Biogeogr, 30 (5) (2021), pp. 924-932.
[75]
S.M. Manson. Agent-based modeling and genetic programming for modeling land change in the Southern Yucatán Peninsular Region of Mexico. Agric Ecosyst Environ, 111 (1-4) (2005), pp. 47-62.
[76]
T. Wang, X. Tu, V.P. Singh, X. Chen, K. Lin, R. Lai, et al. Socioeconomic drought analysis by standardized water supply and demand index under changing environment. J Cleaner Prod, 347 (2022), p. 131248.
[77]
W. Mo, Y. Zhao, N. Yang, Z. Xu, W. Zhao, F. Li. Effects of climate and land use/land cover changes on water yield services in the Dongjiang Lake Basin. ISPRS Int J Geo-inf, 10 (7) (2021), p. 466.
[78]
K. Zhu, X. Qiu, Y. Luo, M. Dai, X. Lu, C. Zang, et al. Spatial and temporal dynamics of water resources in typical ecosystems of the Dongjiang River Basin, China. J Hydrol, 614 (Pt B) (2022), p. 128617.
[79]
Y. He, X. Chen, Z. Sheng, K. Lin, F. Gui. Water allocation under the constraint of total water-use quota: a case from Dongjiang River Basin, South China. Hydrol Sci J, 63 (1) (2018), pp. 154-167.
[80]
YP Cai, GH Huang, ZF Yang Q. Tan. Identification of optimal strategies for Energy management systems planning under multiple uncertainties. Appl Energy, 86 (4) (2009), pp. 480-495.
[81]
Cai YP, Huang GH, Lu HW, Yang ZF, Tan Q. I-VFRP: an interval-valued fuzzy robust programming approach for municipal waste-management planning under uncertainty. Eng Optim 2009; 41(5):399-418.
[82]
W Zhou,W Zhang, Y. Cai. Laccase immobilization for water purification: a comprehensive review. Chem Eng J, 403 (2021), p. 126272.
[83]
C Dong, Q Tan, GH Huang, YP Cai. A dual-inexact fuzzy stochastic model for water resources management and non-point source pollution mitigation under multiple uncertainties. Hydrol Earth Syst Sci, 18 (5) (2014), pp. 1793-1803.
[84]
Y. Xu, Y Cai, T Sun, XA Yin, Q Tan, J Sun, et al. Ecological preservation based multi-objective optimization of coastal seawall engineering structures. J Cleaner Prod, 296 (2021), Article 126515.
PDF(3607 KB)

Accesses

Citation

Detail

段落导航
相关文章

/