[1] |
T. Gashaw, T. Tulu, M. Argaw, A.W. Worqlul. Evaluation and prediction of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Environ Syst Res, 6 (1) (2017), p. 17.
|
[2] |
H.A. Kaul, I. Sopan. Land use land cover classification and change detection using high resolution temporal satellite data. J Environ, 1 (4) (2012), pp. 146-152.
|
[3] |
H. Wang, X. Liu, C. Zhao, Y. Chang, Y. Liu, F. Zang. Spatial- temporal pattern analysis of landscape ecological risk assessment based on land use/land cover change in Baishuijiang National nature reserve in Gansu Province, China. Ecol Indic, 124 (2021), p. 107454.
|
[4] |
J. Yang, J. Xu, Y. Zhou, D. Zhai, H. Chen, Q. Li, et al. Paddy rice phenological mapping throughout 30-years satellite images in the Honghe Hani Rice Terraces. Remote Sens, 15 (9) (2023), p. 2398.
|
[5] |
H.W. Zheng, G.Q. Shen, H. Wang, J. Hong. Simulating land use change in urban renewal areas: a case study in Hong Kong. Habitat Int, 46 (2015), pp. 23-34.
|
[6] |
E. Yirsaw, W. Wu, X. Shi, H. Temesgen, B. Bekele. Land use/land cover change modeling and the prediction of subsequent changes in ecosystem service values in a Coastal Area of China, the Su-Xi-Chang Region. Sustainability, 9 (7) (2017), p. 1204.
|
[7] |
Batunacun C. Nendel Y. Hu T. Lakes. Land-use change and land degradation on the Mongolian Plateau from 1975 to 2015—a case study from Xilingol, China. Land Degrad Dev, 29 (6) (2018), pp. 1595-1606.
|
[8] |
M. Minta, K. Kibret, P. Thorne, T. Nigussie, L. Nigatu. Land use and land cover dynamics in Dendi-Jeldu hilly-mountainous areas in the central Ethiopian highlands. Geoderma, 314 (2018), pp. 27-36.
|
[9] |
R.J. Permatasari, A. Damayanti, T.L. Indra, M. Dimyati. Prediction of land cover changes in Penajam Paser Utara Regency using cellular automata and Markov model. IOP Conf Ser Earth Environ Sci, 623 (1) (2021), p. 012005.
|
[10] |
D.F. Ren, A.H. Cao, F.Y. Wang. Response and multi-scenario prediction of carbon storage and habitat quality to land use in Liaoning Province, China. Sustainability, 15 (5) (2023), pp. 1-23.
|
[11] |
K. Mohan, P.K. Rai, V.N. Mishra. Prediction of land use changes based on land change modeler (LCM) using remote sensing: a case study of Muzaffarpur (Bihar), India. J Geogr Inst Jovan Cvijic SASA, 64 (1) (2014), pp. 111-127.
|
[12] |
S.K. Singh, S. Mustak, P.K. Srivastava, S. Szabó, T. Islam. Predicting spatial and decadal LULC changes through cellular automata Markov Chain Models using earth observation datasets and geo-information. Environ Processes, 2 (1) (2015), pp. 61-78.
|
[13] |
S.K. Singh, P.B. Laari, S. Mustak, P.K. Srivastava, S. Szabó. Modelling of land use land cover change using earth observation data-sets of Tons River Basin, Madhya Pradesh, India. Geocarto Int, 33 (11) (2018), pp. 1202-1222.
|
[14] |
S. Tavangar, H. Moradi, A.M. Bavani, M. Gholamalifard. A futuristic survey of the effects of LU/LC change on stream flow by CA-Markov model: a case of the Nekarood watershed, Iran. Geocarto Int, 36 (10) (2021), pp. 1100-1116.
|
[15] |
C. Ning, R. Subedi, L. Hao. Land use/cover change, fragmentation, and driving factors in Nepal in the last 25 years. Sustainability, 15 (8) (2023), p. 6957.
|
[16] |
M. Kindu, T. Schneider, D. Teketay, T. Knoke. Land use/land cover change analysis using object-based classification approach in Munessa-Shashemene landscape of the Ethiopian highlands. Remote Sens, 5 (5) (2013), pp. 2411-2435.
|
[17] |
S.D. Dayamba, H. Djoudi, M. Zida, L. Sawadogo, L. Verchot. Biodiversity and carbon stocks in different land use types in the Sudanian Zone of Burkina Faso, West Africa. Agric Ecosyst Environ, 216 (2016), pp. 61-72.
|
[18] |
A. Alam, M.S. Bhat, M. Maheen. Using Landsat satellite data for assessing the land use and land cover change in Kashmir valley. GeoJournal, 85 (6) (2020), pp. 1529-1543.
|
[19] |
Y. Xu, Y. Chen, Y. Ren, Z. Tang, X. Yang, Y. Zhang. Attribution of streamflow changes considering spatial contributions and driver interactions based on hydrological modeling. Water Resour Manage, 37 (5) (2023), pp. 1859-1877.
|
[20] |
M. Witjes, L. Parente, C.J. van Diemen, T. Hengl, M. Landa, L. Brodský, et al. A spatiotemporal ensemble machine learning framework for generating land use/land cover time-series maps for Europe (2000-2019) based on LUCAS, CORINE and GLAD Landsat. PeerJ, 10 (2022), p. e13573.
|
[21] |
H. Memarian, S.K. Balasundram, J.B. Talib, C.T.B. Sung, A.M. Sood, K. Abbaspour. Validation of CA-Markov for simulation of land use and cover change in the Langat Basin, Malaysia. J Geogr Inf Syst, 4 (6) (2012), pp. 542-554.
|
[22] |
C. Hyandye, L.W. Martz. A Markovian and cellular automata land-use change predictive model of the Usangu Catchment. Int J Remote Sens, 38 (1) (2017), pp. 64-81.
|
[23] |
Y. Lu, P. Wu, X. Ma, X. Li. Detection and prediction of land use/land cover change using spatiotemporal data fusion and the Cellular Automata-Markov model. Environ Monit Assess, 191 (2) (2019), p. 68.
|
[24] |
Z. Zhang, G. Hörmann, J. Huang, N. Fohrer. A random forest-based CA-Markov model to examine the dynamics of land use/cover change aided with remote sensing and GIS. Remote Sens, 15 (8) (2023), p. 2128.
|
[25] |
L. Liu, S. Yu, H. Zhang, Y. Wang, C. Liang. Analysis of land use change drivers and simulation of different future scenarios: taking Shanxi Province of China as an example. Int J Environ Res Public Health, 20 (2) (2023), p. 1626.
|
[26] |
M.T.U. Rahman, F. Tabassum, M. Rasheduzzaman, H. Saba, L. Sarkar, J. Ferdous, et al. Temporal dynamics of land use/land cover change and its prediction using CA-ANN model for southwestern coastal Bangladesh. Environ Monit Assess, 189 (11) (2017), p. 565.
|
[27] |
M.G. Munthali, S. Mustak, A. Adeola, J. Botai, S.K. Singh, N. Davis. Modelling land use and land cover dynamics of Dedza district of Malawi using hybrid Cellular Automata and Markov model. Remote Sens Appl Soc Environ, 17 (2020), p. 100276.
|
[28] |
S. Sibanda, F. Ahmed. Modelling historic and future land use/land cover changes and their impact on wetland area in Shashe sub-catchment, Zimbabwe. Model Earth Syst Environ, 7 (1) (2021), pp. 57-70.
|
[29] |
M. Mwabumba, B.K. Yadav, M.J. Rwiza, I. Larbi, S. Twisa. Analysis of land use and land-cover pattern to monitor dynamics of Ngorongoro world heritage site (Tanzania) using hybrid cellular automata-Markov model. Curr Res Environ Sustainability, 4 (2022), p. 100126.
|
[30] |
B. Matlhodi, P.K. Kenabatho, B.P. Parida, J.G. Maphanyane. Analysis of the future land use land cover changes in the Gaborone dam catchment using CA-Markov model: implications on water resources. Remote Sens, 13 (13) (2021), p. 2427.
|
[31] |
A. Naboureh, M.H.R. Moghaddam, B. Feizizadeh, T. Blaschke. An integrated object-based image analysis and CA-Markov model approach for modeling land use/land cover trends in the Sarab plain. Arabian J Geosci, 10 (12) (2017), p. 259.
|
[32] |
S. Giri, N.N. Arbab, R.G. Lathrop. Water security assessment of current and future scenarios through an integrated modeling framework in the Neshanic River Watershed. J Hydrol, 563 (2018), pp. 1025-1041.
|
[33] |
A. Gausen, W. Luk, C. Guo. Using agent-based modelling to evaluate the impact of algorithmic curation on social media. J Data Inf Qual, 15 (1) (2023), pp. 1-24.
|
[34] |
B.J. Sattler, J. Friesen, A. Tundis, P.F. Pelz. Modeling and validation of residential water demand in agent-based models: a systematic literature review. Water, 15 (3) (2023), p. 579.
|
[35] |
Hunter E. A hybrid agent-based and equation based epidemiological model for the spread of infectious diseases [dissertation]. Dublin: Technological University Dublin; 2020.
|
[36] |
S.J. Walsh, G.P. Malanson, B. Entwisle, R.R. Rindfuss, P.J. Mucha, B.W. Heumann, et al. Design of an agent-based model to examine population-environment interactions in Nang Rong District, Thailand. Appl Geogr, 39 (2013), pp. 183-198.
|
[37] |
X. Zhao, X. Ma, W. Tang, D. Liu. An adaptive agent-based optimization model for spatial planning: a case study of Anyue County, China. Sustain Cities Soc, 51 (2019), p. 101733.
|
[38] |
Y. An, A. Park. Developing an agent-based model to mitigate famine risk in North Korea: insights from the “Artificial North Korean Collective Farm” model. Land, 12 (4) (2023), p. 735.
|
[39] |
D. Dziubanski, K.J. Franz. Projecting hydrologic change under land use and climate scenarios in an agricultural watershed using agent-based modeling. Front Water, 5 (2023), p. 1020080.
|
[40] |
Crooks AT. The repast simulation/modelling system for geospatial simulation [dissertation]. London: University College London; 2007.
|
[41] |
KM. Johnston. Agent analyst:agent-based modeling in ArcGIS, Esri Press, Redlands (2024). In press.
|
[42] |
H. Mirzahossein, V. Noferesti, X. Jin. Residential development simulation based on learning by agent-based model. TeMA J Land Use Mobility Environ, 15 (2) (2022), pp. 193-207.
|
[43] |
G. Ravaioli, T. Domingos, R.F.M. Teixeira. A framework for data-driven agent-based modelling of agricultural land use. Land, 12 (4) (2023), p. 756.
|
[44] |
S. Abolhasani, M. Taleai. Assessing the effect of temporal dynamics on urban growth simulation: towards an asynchronous cellular automata. Trans GIS, 24 (2) (2020), pp. 332-354.
|
[45] |
J. Hao, Q. Lin, T. Wu, J. Chen, W. Li, X. Wu, et al. Spatial-temporal and driving factors of land use/cover change in Mongolia from 1990 to 2021. Remote Sens, 15 (7) (2023), p. 1813.
|
[46] |
W. Azemeraw, M. Matebie. Landslide susceptibility mapping using information value and logistic regression models in Goncha Siso Eneses area, northwestern Ethiopia. SN Appl Sci, 2 (2020), pp. 1-19.
|
[47] |
I.M. Perez, A. Airola, P.J. Boström, I. Jambor, T. Pahikkala. Tournament leave-pair-out cross-validation for receiver operating characteristic analysis. Stat Methods Med Res, 28 (10,11) (2018), pp. 2975-2991.
|
[48] |
R.G. Pontius Jr. Statistical methods to partition effects of quantity and location during comparison of categorical maps at multiple resolutions. Photogramm Eng Remote Sens, 68 (10) (2002), pp. 1041-1049.
|
[49] |
B.C. Pijanowski, A. Tayyebi, M.R. Delavar, M.J. Yazdanpanah. Urban expansion simulation using geospatial information system and artificial neural networks. Int J Environ Res, 3 (4) (2009), pp. 493-502.
|
[50] |
J. Yang, X. Huang. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst Sci Data, 13 (8) (2021), pp. 3907-3925.
|
[51] |
C. Llorca, N. Kuehnel, R. Moeckel. Agent-based integrated land use/transport models: a study on scale factors and transport model simulation intervals. Procedia Comput Sci, 170 (2020), pp. 733-738.
|
[52] |
C.G.C. Coelho, C.G. Ralha. MASE-EGTI: an agent-based simulator for environmental land change. Environ Modell Software, 147 (2022), p. 105252.
|
[53] |
E.G. Irwin, P.W. Jeanty, M.D. Partridge. Amenity values versus land constraints: the spatial effects of natural landscape features on housing values. Land Econ, 90 (1) (2014), pp. 61-78.
|
[54] |
O.N. Mensour, B. El Ghazzani, B. Hlimi, A. Ihlal. A geographical information system-based multi-criteria method for the evaluation of solar farms locations: a case study in Souss-Massa area, southern Morocco. Energy, 182 (2019), pp. 900-919.
|
[55] |
T. Everest, A. Sungur, H. Özcan. Determination of agricultural land suitability with a multiple-criteria decision-making method in Northwestern Turkey. Int J Environ Sci Technol, 18 (5) (2021), pp. 1073-1088.
|
[56] |
J. Malczewski. Integrating multicriteria analysis and geographic information systems: the ordered weighted averaging (OWA) approach. Int J Environ Technol Manage, 6 (1,2) (2006), pp. 7-19.
|
[57] |
Mishra M, Mishra KK, Subudhi AP, Phil M. Urban sprawl mapping and land use change analysis using remote sensing and GIS (case study of Bhubaneswar city, Orissa). In: Proceeding of Geospatial World Forum; 2018 Jan 15-19; Hyderabad, India; 2018.
|
[58] |
L. Wu, P. Shi, H. Gao. State estimation and sliding-mode control of Markovian jump singular systems. IEEE Trans Autom Control, 55 (5) (2010), pp. 1213-1219.
|
[59] |
H.M. Mosammam, J.T. Nia, H. Khani, A. Teymouri, M. Kazemi. Monitoring land use change and measuring urban sprawl based on its spatial forms: the case of Qom City. Egypt J Remote Sens Space Sci, 20 (1) (2017), pp. 103-116.
|
[60] |
X. Yang, X.Q. Zheng, L.N. Lv. A spatiotemporal model of land use change based on ant colony optimization, Markov chain, and cellular automata. Ecol Modell, 233 (2012), pp. 11-19.
|
[61] |
A. Maviza, F. Ahmed. Analysis of past and future multi-temporal land use and land cover changes in the semi-arid Upper-Mzingwane sub-catchment in the Matabeleland south province of Zimbabwe. Int J Remote Sens, 41 (14) (2020), pp. 5206-5227.
|
[62] |
J. Lin, X. Li, Y. Wen, P. He. Modeling urban land-use changes using a landscape-driven patch-based cellular automaton (LP-CA). Cities, 132 (2023), p. 103906.
|
[63] |
D. Guan, H. Li, T. Inohae, W. Su, T. Nagaie, K. Hokao. Modeling urban land use change by the integration of cellular automaton and Markov model. Ecol Modell, 222 (20-22) (2011), pp. 3761-3772.
|
[64] |
X. Yang, X.Q. Zheng, R. Chen. A land use change model: integrating landscape pattern indexes and Markov-CA. Ecol Modell, 283 (2014), pp. 1-7.
|
[65] |
H. Keshtkar, W. Voigt. A spatiotemporal analysis of landscape change using an integrated Markov chain and cellular automata models. Model Earth Syst Environ, 2 (1) (2016), p. 10.
|
[66] |
X. Liang, X. Liu, D. Li, H. Zhao, G. Chen. Urban growth simulation by incorporating planning policies into a CA-based future land-use simulation model. Int J Geogr Inf Sci, 32 (11) (2018), pp. 2294-2316.
|
[67] |
Z. Liu, P.H. Verburg, J. Wu, C. He. Understanding land system change through scenario-based simulations: a case study from the drylands in northern China. Environ Manage, 59 (3) (2017), pp. 440-454.
|
[68] |
N.Q. Omar, M.S.S. Ahamad, W.M.A.W. Hussin, N. Samat, S.Z.B. Ahmad. Markov CA, multi regression, and multiple decision making for modeling historical changes in Kirkuk City, Iraq. J Indian Soc Remote Sens, 42 (1) (2014), pp. 165-178.
|
[69] |
M. Beroho, H. Briak, E.K. Cherif, I. Boulahfa, A. Ouallali, R. Mrabet, et al. Future scenarios of land use/land cover (LULC) based on a CA-Markov simulation model: case of a Mediterranean watershed in Morocco. Remote Sens, 15 (4) (2023), p. 1162.
|
[70] |
Y. Tsai, A. Zia, C. Koliba, G. Bucini, J. Guilbert, B. Beckage. An interactive land use transition agent-based model (ILUTABM): endogenizing human-environment interactions in the western Missisquoi watershed. Land Use Policy, 49 (2015), pp. 161-176.
|
[71] |
Arbab NN. Application of a spatially explicit, agent-based land use conversion model to assess water quality outcomes under buffer policies [dissertation]. Morgantown: West Virginia University; 2014.
|
[72] |
N.N. Arbab, A.R. Collins, J.F. Conley. Projections of watershed pollutant loads using a spatially explicit, agent-based land use conversion model: a case study of Berkeley County, West Virginia. Appl Spat Anal Policy, 11 (1) (2018), pp. 147-181.
|
[73] |
B. Egoh, M. Rouget, B. Reyers, A.T. Knight, R.M. Cowling, A.S. van Jaarsveld, et al. Integrating ecosystem services into conservation assessments: a review. Ecol Econ, 63 (4) (2007), pp. 714-721.
|
[74] |
I. Dullinger, F. Essl, D. Moser, K. Erb, H. Haberl, S. Dullinger. Biodiversity models need to represent land-use intensity more comprehensively. Global Ecol Biogeogr, 30 (5) (2021), pp. 924-932.
|
[75] |
S.M. Manson. Agent-based modeling and genetic programming for modeling land change in the Southern Yucatán Peninsular Region of Mexico. Agric Ecosyst Environ, 111 (1-4) (2005), pp. 47-62.
|
[76] |
T. Wang, X. Tu, V.P. Singh, X. Chen, K. Lin, R. Lai, et al. Socioeconomic drought analysis by standardized water supply and demand index under changing environment. J Cleaner Prod, 347 (2022), p. 131248.
|
[77] |
W. Mo, Y. Zhao, N. Yang, Z. Xu, W. Zhao, F. Li. Effects of climate and land use/land cover changes on water yield services in the Dongjiang Lake Basin. ISPRS Int J Geo-inf, 10 (7) (2021), p. 466.
|
[78] |
K. Zhu, X. Qiu, Y. Luo, M. Dai, X. Lu, C. Zang, et al. Spatial and temporal dynamics of water resources in typical ecosystems of the Dongjiang River Basin, China. J Hydrol, 614 (Pt B) (2022), p. 128617.
|
[79] |
Y. He, X. Chen, Z. Sheng, K. Lin, F. Gui. Water allocation under the constraint of total water-use quota: a case from Dongjiang River Basin, South China. Hydrol Sci J, 63 (1) (2018), pp. 154-167.
|
[80] |
YP Cai, GH Huang, ZF Yang Q. Tan. Identification of optimal strategies for Energy management systems planning under multiple uncertainties. Appl Energy, 86 (4) (2009), pp. 480-495.
|
[81] |
Cai YP, Huang GH, Lu HW, Yang ZF, Tan Q. I-VFRP: an interval-valued fuzzy robust programming approach for municipal waste-management planning under uncertainty. Eng Optim 2009; 41(5):399-418.
|
[82] |
W Zhou,W Zhang, Y. Cai. Laccase immobilization for water purification: a comprehensive review. Chem Eng J, 403 (2021), p. 126272.
|
[83] |
C Dong, Q Tan, GH Huang, YP Cai. A dual-inexact fuzzy stochastic model for water resources management and non-point source pollution mitigation under multiple uncertainties. Hydrol Earth Syst Sci, 18 (5) (2014), pp. 1793-1803.
|
[84] |
Y. Xu, Y Cai, T Sun, XA Yin, Q Tan, J Sun, et al. Ecological preservation based multi-objective optimization of coastal seawall engineering structures. J Cleaner Prod, 296 (2021), Article 126515.
|