[1] |
R. Zagrodnik, A. Duber, M. Lezyk, P. Oleskowicz-Popiel. Enrichment versus bioaugmentation-microbiological production of caproate from mixed carbon sources by mixed bacterial culture and Clostridium kluyveri. Environ Sci Technol, 54 (9) (2020), pp. 5864-5873.
|
[2] |
J. Xu, J. Hao, J.J.L. Guzman, C.M. Spirito, L.A. Harroff, L.T. Angenent. Temperature-phased conversion of acid whey waste into medium-chain carboxylic acids via lactic acid: no external e-donor. Joule, 3 (3) (2019), pp. 885-888.
|
[3] |
Y. Liu, P. He, L. Shao, H. Zhang, F. Lu. Significant enhancement by biochar of caproate production via chain elongation. Water Res, 119 (2017), pp. 150-159.
|
[4] |
X. Huang, W. Dong, H. Wang, Y. Feng. Role of acid/alkali-treatment in primary sludge anaerobic fermentation: insights into microbial community structure, functional shifts and metabolic output by high-throughput sequencing. Bioresour Technol, 249 (2018), pp. 943-952.
|
[5] |
M.V. Reddy, S. Hayashi, D. Choi, H. Cho, Y.C. Chang. Short chain and medium chain fatty acids production using food waste under non-augmented and bio-augmented conditions. J Clean Prod, 176 (2018), pp. 645-653.
|
[6] |
L.A. Kucek, J. Xu, M. Nguyen, L.T. Angenent. Waste conversion into n-caprylate and n-caproate: resource recovery from wine lees using anaerobic reactor microbiomes and in-line extraction. Front Microbiol, 7 (2016), p. 1892.
|
[7] |
Q. Wu, X. Bao, W. Guo, B. Wang, Y. Li, H. Luo, et al. Medium chain carboxylic acids production from waste biomass: current advances and perspectives. Biotechnol Adv, 37 (5) (2019), pp. 599-615.
|
[8] |
X. Shi, L. Wu, W. Wei, B. Ni. Insights into the microbiomes for medium-chain carboxylic acids production from biowastes through chain elongation. Crit Rev Environ Sci Technol, 52 (21) (2022), pp. 3787-3812.
|
[9] |
S.L. Wu, J. Sun, X. Chen, W. Wei, L. Song, X. Dai, et al. Unveiling the mechanisms of medium-chain fatty acid production from waste activated sludge alkaline fermentation liquor through physiological, thermodynamic and metagenomic investigations. Water Res, 169 (2020), p. 115218.
|
[10] |
S. Ge, J.G. Usack, C.M. Spirito, L.T. Angenent. Long-term n-caproic acid production from yeast-fermentation beer in an anaerobic bioreactor with continuous product extraction. Environ Sci Technol, 49 (13) (2015), pp. 8012-8021.
|
[11] |
M.T. Agler, C.M. Spirito, J.G. Usack, J.J. Werner, L.T. Angenent. Chain elongation with reactor microbiomes: upgrading dilute ethanol to medium-chain carboxylates. Energy Environ Sci, 5 (8) (2012), pp. 8189-8192.
|
[12] |
T.I.M. Grootscholten, F. Kinsky dal Borgo, H.V.M. Hamelers, C.J.N. Buisman. Promoting chain elongation in mixed culture acidification reactors by addition of ethanol. Biomass Bioenergy, 48 (2013), pp. 10-16.
|
[13] |
P. Yang, L. Leng, G.Y.A. Tan, C. Dong, S.Y. Leu, W.H. Chen, et al. Upgrading lignocellulosic ethanol for caproate production via chain elongation fermentation. Int Biodeterior Biodegradation, 135 (2018), pp. 103-109.
|
[14] |
X. Hu, H. Wang, Q. Wu, Y. Xu. Development, validation and application of specific primers for analyzing the clostridial diversity in dark fermentation pit mud by pcr-dgge. Bioresour Technol, 163 (2014), pp. 40-47.
|
[15] |
S. Joshi, A. Robles, S. Aguiar, A.G. Delgado. The occurrence and ecology of microbial chain elongation of carboxylates in soils. ISME J, 15 (7) (2021), pp. 1907-1918.
|
[16] |
M. Béchamp. Lettre de m. A. Béchamp a m. Dumas. Ann Chim Phys, 4 (13) (1868), pp. 103-111.
|
[17] |
H.A. Barker, S.M. Taha. Clostridium kluyverii, an organism concerned in the formation of caproic acid from ethyl alcohol. J Bacteriol, 43 (3) (1942), pp. 347-363.
|
[18] |
H.A. Barker, M.D. Kamen, B.T. Bornstein. The synthesis of butyric and caproic acids from ethanol and acetic acid by Clostridium kluyveri. Proc Natl Acad Sci USA, 31 (12) (1945), pp. 373-381.
|
[19] |
J. He, Z. Shi, T. Luo, S. Zhang, Y. Liu, G. Luo. Phenol promoted caproate production via two-stage batch anaerobic fermentation of organic substance with ethanol as electron donor for chain elongation. Water Res, 204 (2021), p. 117601.
|
[20] |
L.T. Angenent, H. Richter, W. Buckel, C.M. Spirito, K.J.J. Steinbusch, C.M. Plugge, et al. Chain elongation with reactor microbiomes: open-culture biotechnology to produce biochemicals. Environ Sci Technol, 50 (6) (2016), pp. 2796-2810.
|
[21] |
D. Luo, X. Meng, N. Zheng, Y. Li, H. Yao, S.J. Chapman. The anaerobic oxidation of methane in paddy soil by ferric iron and nitrate, and the microbial communities involved. Sci Total Environ, 788 (2021), p. 147773.
|
[22] |
J. Yang, L. Zou, L. Zheng, Z. Yuan, K. Huang, W. Gustave, et al. Iron-based passivator mitigates the coupling process of anaerobic methane oxidation and arsenate reduction in paddy soils. Environ Pollut, 313 (2022), p. 120182.
|
[23] |
L. Fan, D. Schneider, M.A. Dippold, A. Poehlein, W. Wu, H. Gui, et al. Active metabolic pathways of anaerobic methane oxidation in paddy soils. Soil Biol Biochem, 156 (2021), p. 108215.
|
[24] |
K. Tsutsuki, F.N. Ponnamperuma. Behavior of anaerobic decomposition products in submerged soils—effects of organic material amendment, soil properties, and temperature. Soil Sci Plant Nutr, 33 (1) (1987), pp. 13-33.
|
[25] |
R. Conrad. Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments: a mini review. Pedosphere, 30 (1) (2020), pp. 25-39.
|
[26] |
O. Sivan, M. Adler, A. Pearson, F. Gelman, I. Bar-Or, S.G. John, et al. Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnol Oceanogr, 56 (4) (2011), pp. 1536-1544.
|
[27] |
J.M. Saquing, Y.H. Yu, P.C. Chiu. Wood-derived black carbon (biochar) as a microbial electron donor and acceptor. Environ Sci Technol Lett, 3 (2) (2016), pp. 62-66.
|
[28] |
M. Keiluweit, P.S. Nico, M.G. Johnson, M. Kleber. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol, 44 (4) (2010), pp. 1247-1253.
|
[29] |
J. Cui, N.M. Holden. The relationship between soil microbial activity and microbial biomass, soil structure and grassland management. Soil Tillage Res, 146 (2015), pp. 32-38.
|
[30] |
Q. Wu, W. Guo, X. Bao, X. Meng, R. Yin, J. Du, et al. Upgrading liquor-making wastewater into medium chain fatty acid: insights into co-electron donors, key microflora, and energy harvest. Water Res, 145 (2018), pp. 650-659.
|
[31] |
Q. Wu, X. Feng, Y. Chen, M. Liu, X. Bao. Continuous medium chain carboxylic acids production from excess sludge by granular chain-elongation process. J Hazard Mater, 402 (2021), p. 123471.
|
[32] |
T. Luo, Q. Xu, W. Wei, J. Sun, X. Dai, B.J. Ni. Performance and mechanism of Fe3O4 improving biotransformation of waste activated sludge into liquid high-value products. Environ Sci Technol, 56 (6) (2022), pp. 3658-3668.
|
[33] |
G. Chen, X. Wu, D. Wang, J. Qin, S. Wu, Q. Zhou, et al. Cluster analysis of 12 Chinese native chicken populations using microsatellite markers. Asian-Australas J Anim Sci, 17 (8) (2004), pp. 1047-1052.
|
[34] |
S. Bao, G. Zhang, P. Zhang, Q. Wang, Y. Zhou, X. Tao, et al. Valorization of mixed volatile fatty acids by chain elongation: performances, kinetics and microbial community. Int J Agric Biol, 22 (6) (2019), pp. 1613-1622.
|
[35] |
Y. Liu, P. He, W. Han, L. Shao, F. Lü. Outstanding reinforcement on chain elongation through five-micrometer-sized biochar. Renew Energy, 161 (2020), pp. 230-239.
|
[36] |
H.B. Ding, G.Y.A. Tan, J.Y. Wang. Caproate formation in mixed-culture fermentative hydrogen production. Bioresour Technol, 101 (24) (2010), pp. 9550-9559.
|
[37] |
M. Coma, R. Vilchez-Vargas, H. Roume, R. Jauregui, D.H. Pieper, K. Rabaey. Product diversity linked to substrate usage in chain elongation by mixed-culture fermentation. Environ Sci Technol, 50 (12) (2016), pp. 6467-6476.
|
[38] |
Y. Liu, F. Lu, L. Shao, P. He. Alcohol-to-acid ratio and substrate concentration affect product structure in chain elongation reactions initiated by unacclimatized inoculum. Bioresour Technol, 218 (2016), pp. 1140-1150.
|
[39] |
D. Vasudevan, H. Richter, L. Angenent. Upgrading dilute ethanol from syngas fermentation to n-caproate with reactor microbiomes. Bioresour Technol, 151 (2014), pp. 378-382.
|
[40] |
P.J. Weimer, M. Nerdahl, D.J. Brandl. Production of medium-chain volatile fatty acids by mixed ruminal microorganisms is enhanced by ethanol in co-culture with Clostridium kluyveri. Bioresour Technol, 175 (2015), pp. 97-101.
|
[41] |
S. Villegas-Rodríguez, G. Buitrón. Performance of native open cultures (winery effluents, ruminal fluid, anaerobic sludge and digestate) for medium-chain carboxylic acid production using ethanol and acetate. J Water Process Eng, 40 (2021), p. 101784.
|
[42] |
C. Zhang, L. Yang, P. Tsapekos, Y. Zhang, I. Angelidaki. Immobilization of Clostridium kluyveri on wheat straw to alleviate ammonia inhibition during chain elongation for n-caproate production. Environ Int, 127 (2019), pp. 134-141.
|
[43] |
Y. Yin, Y. Zhang, D. Karakashev, J. Wang, I. Angelidaki. Biological caproate production by Clostridium kluyveri from ethanol and acetate as carbon sources. Bioresour Technol, 241 (2017), pp. 638-644.
|
[44] |
P. Weimer, D. Stevenson. Isolation, characterization, and quantification of Clostridium kluyveri from the bovine rumen. Appl Microbiol Biotechnol, 94 (2012), pp. 461-466.
|
[45] |
X. Hu, H. Du, Y. Xu. Identification and quantification of the caproic acid-producing bacterium Clostridium kluyveri in the fermentation of pit mud used for Chinese strong-aroma type liquor production. Int J Food Microbiol, 214 (2015), pp. 116-122.
|
[46] |
S. Wu, W. Wei, Q. Xu, X. Huang, J. Sun, X. Dai, et al. Revealing the mechanism of biochar enhancing the production of medium chain fatty acids from waste activated sludge alkaline fermentation liquor. Acs Es&T Water, 1 (4) (2021), pp. 1014-1024.
|
[47] |
W. Han, P. He, L. Shao, F. Lu. Road to full bioconversion of biowaste to biochemicals centering on chain elongation: a mini review. J Environ Sci (China), 86 (2019), pp. 50-64.
|
[48] |
L.A. Kucek, C.M. Spirito, L.T. Angenent. High n-caprylate productivities and specificities from dilute ethanol and acetate: chain elongation with microbiomes to upgrade products from syngas fermentation. Energy Environ Sci, 9 (11) (2016), pp. 3482-3494.
|
[49] |
C.M. Spirito, A.M. Marzilli, L.T. Angenent. Higher substrate ratios of ethanol to acetate steered chain elongation toward n-caprylate in a bioreactor with product extraction. Environ Sci Technol, 52 (22) (2018), pp. 13438-13447.
|
[50] |
G.H. Dinesh, R.S. Murugan, K. Mohanrasu, N. Arumugam, M. Basu, A. Arun. Anaerobic process for biohydrogen production using keratin degraded effluent. J Pure Appl Microbiol, 13 (2) (2019), pp. 1135-1143.
|
[51] |
Y. Gao, L. Guo, C. Jin, Y. Zhao, M. Gao, Z. She, et al. Metagenomics and network analysis elucidating the coordination between fermentative bacteria and microalgae in a novel bacterial-algal coupling reactor (BACR) for mariculture wastewater treatment. Water Res, 215 (2022), p. 118256.
|
[52] |
W. Buckel, R.K. Thauer. Flavin-based electron bifurcation, ferredoxin, flavodoxin, and anaerobic respiration with protons (Ech) or NAD+ (Rnf) as electron acceptors: a historical review. Front Microbiol, 9 (2018), p. 401.
|
[53] |
G. Pagliano, V. Ventorino, A. Panico, O. Pepe. Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes. Biotechnol Biofuels, 10 (2017), p. 113.
|
[54] |
W. Han, P. He, L. Shao, F. Lu. Metabolic interactions of a chain elongation microbiome. Appl Environ Microbiol, 84 (22) (2018), pp. e01614-e1618.
|
[55] |
Y. Song, J. Bae, J. Shin, S. Jin, J.K. Lee, S.C. Kim, et al. Transcriptome and translatome of CO2 fixing acetogens under heterotrophic and autotrophic conditions. Sci Data, 8 (1) (2021), p. 51.
|
[56] |
C.W. de Araújo, R.C. Leitao, T.A. Gehring, L.T. Angenent, S.T. Santaella. Anaerobic fermentation for n-caproic acid production: a review. Process Biochem, 54 (2017), pp. 106-119.
|
[57] |
A.J.M. Stams, F.A.M. De Bok, C.M. Plugge, M.H.A. van Eekert, J. Dolfing, G. Schraa. Exocellular electron transfer in anaerobic microbial communities. Environ Microbiol, 8 (3) (2006), pp. 371-382.
|
[58] |
X. Zhang, J. Xia, J. Pu, C. Cai, G.W. Tyson, Z. Yuan, et al. Biochar-mediated anaerobic oxidation of methane. Environ Sci Technol, 53 (12) (2019), pp. 6660-6668.
|
[59] |
L. Feng, S. He, Z. Gao, W. Zhao, J. Jiang, Q. Zhao, et al. Mechanisms, performance, and the impact on microbial structure of direct interspecies electron transfer for enhancing anaerobic digestion—a review. Sci Total Environ, 862 (2023), Article 160813.
|
[60] |
Z. Zhao, C. Sun, Y. Li, H. Peng, Y. Zhang. Upgrading current method of anaerobic co-digestion of waste activated sludge for high-efficiency methanogenesis: establishing direct interspecies electron transfer via ethanol-type fermentation. Renew Energy, 148 (2020), pp. 523-533.
|
[61] |
Z. Zhao, J. Wang, Y. Li, T. Zhu, Q. Yu, T. Wang, et al. Why do DIETers like drinking: metagenomic analysis for methane and energy metabolism during anaerobic digestion with ethanol. Water Res, 171 (2020), p. 115425.
|
[62] |
Z.M. Summers, H.E. Fogarty, C. Leang, A.E. Franks, N.S. Malvankar, D.R. Lovley. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science, 330 (6009) (2010), p. 14135.
|
[63] |
X. Liu, S. Zhuo, X. Jing, Y. Yuan, C. Rensing, S. Zhou. Flagella act as geobacter biofilm scaffolds to stabilize biofilm and facilitate extracellular electron transfer. Biosens Bioelectron, 146 (2019), p. 111748.
|
[64] |
X. Liu, X. Jing, Y. Ye, J. Zhan, J. Ye, S. Zhou. Bacterial vesicles mediate extracellular electron transfer. Environ Sci Technol Lett, 7 (1) (2020), pp. 27-34.
|
[65] |
G. Wang, Q. Li, X. Gao, X. Wang. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: performance and associated mechanisms. Bioresour Technol, 250 (2018), pp. 812-820.
|
[66] |
A.J.M. Stams, D.Z. Sousa, R. Kleerebezem, C.M. Plugge. Role of syntrophic microbial communities in high-rate methanogenic bioreactors. Water Sci Technol, 66 (2) (2012), pp. 352-362.
|
[67] |
S. Ishii, T. Kosaka, Y. Hotta, K. Watanabe. Simulating the contribution of coaggregation to interspecies hydrogen fluxes in syntrophic methanogenic consortia. Appl Environ Microbiol, 72 (7) (2006), pp. 5093-5096.
|
[68] |
Y. Wang, J. Hou, H. Guo, T. Zhu, Y. Zhang, Y. Liu. New insight into mechanisms of ferroferric oxide enhancing medium-chain fatty acids production from waste activated sludge through anaerobic fermentation. Bioresour Technol, 360 (2022), p. 127629.
|
[69] |
X. Liu, J. Zhan, L. Liu, F. Gan, J. Ye, K.H. Nealson, et al. In situ spectroelectrochemical characterization reveals cytochrome-mediated electric syntrophy in geobacter coculture. Environ Sci Technol, 55 (14) (2021), pp. 10142-10151.
|