北京2022年冬奥会六足冰壶机器人的机构设计与运动规划

Ke Yin, Yue Gao, Feng Gao, Xianbao Chen, Yue Zhao, Yuguang Xiao, Qiao Sun, Jing Sun

工程(英文) ›› 2024, Vol. 35 ›› Issue (4) : 15-31.

PDF(5177 KB)
PDF(5177 KB)
工程(英文) ›› 2024, Vol. 35 ›› Issue (4) : 15-31. DOI: 10.1016/j.eng.2023.10.018
研究论文
Article

北京2022年冬奥会六足冰壶机器人的机构设计与运动规划

作者信息 +

Mechanism Design and Motion Planning of a Hexapod Curling Robot Exhibited During the Beijing 2022 Winter Olympics Games

Author information +
History +

Abstract

When a curling rock slides on an ice sheet with an initial rotation, a lateral movement occurs, which is known as the curling phenomenon. The force of friction between the curling rock and the ice sheet changes continually with changes in the environment; thus, the sport of curling requires great skill and experience. The throwing of the curling rock is a great challenge in robot design and control, and existing curling robots usually adopt a combination scheme of a wheel chassis and gripper that differs significantly from human throwing movements. A hexapod curling robot that imitates human kicking, sliding, pushing, and curling rock rotating was designed and manufactured by our group, and completed a perfect show during the Beijing 2022 Winter Olympics Games. Smooth switching between the walking and throwing tasks is realized by the robot’s morphology transformation based on leg configuration switching. The robot’s controlling parameters, which include the kicking velocity vk, pushing velocity vp, orientation angle θc, and rotation velocity ω, are determined by aiming and sliding models according to the estimated equivalent friction coefficient μequ and ratio e of the front and back frictions. The stable errors between the target and actual stopping points converge to 0.2 and 1.105 m in the simulations and experiments, respectively, and the error shown in the experiments is close to that of a well-trained wheelchair curling athlete. This robot holds promise for helping ice-makers rectify ice sheet friction or assisting in athlete training.

Keywords

Legged robot / Curling robot / Winter Olympics / Mechanism design / Motion planning

引用本文

导出引用
Ke Yin, Yue Gao, Feng Gao. . Engineering. 2024, 35(4): 15-31 https://doi.org/10.1016/j.eng.2023.10.018

参考文献

[1]
M. Denny. Curling rock dynamics. Can J Phys, 76 (4) (1998), pp. 295-304.
[2]
M. Denny. Curling rock dynamics: towards a realistic model. Can J Phys, 80 (9) (2002), pp. 1005-1014.
[3]
N. Maeno. Curl mechanism of a curling stone on ice pebbles. Bull Glaciol Res, 28 (2010), pp. 1-6.
[4]
N. Maeno. Dynamics and curl ratio of a curling stone. Sports Eng, 17 (1) (2014), pp. 33-41.
[5]
A.R. Penner. The physics of sliding cylinders and curling rocks. Am J Phys, 69 (3) (2001), pp. 332-339.
[6]
M.R.A. Shegelski, R. Niebergall, M.A. Walton. The motion of a curling rock. Can J Phys, 74 (9-10) (1996), pp. 663-670.
[7]
E.T. Jensen, M.R.A. Shegelski. The motion of curling rocks: experimental investigation and semi-phenomenological description. Can J Phys, 82 (10) (2004), pp. 791-809.
[8]
M.R.A. Shegelski, R. Niebergall. The motion of rapidly rotating curling rocks. Aust J Phys, 52 (6) (1999), pp. 1025-1038.
[9]
M.R.A. Shegelski, E. Lozowski. Pivot-slide model of the motion of a curling rock. Can J Phys, 94 (12) (2016), pp. 1305-1309.
[10]
G. Mancini, L. de Schoulepnikoff. Improved pivot-slide model of the motion of a curling rock. Can J Phys, 97 (12) (2019), pp. 1301-1308.
[11]
H. Nyberg, S. Alfredson, S. Hogmark, S. Jacobson. The asymmetrical friction mechanism that puts the curl in the curling stone. Wear, 301 (1-2) (2013), pp. 583-589.
[12]
V. Honkanen, M. Ovaska, M.J. Alava, L. Laurson, A.J. Tuononen. A surface topography analysis of the curling stone curl mechanism. Sci Rep, 8 (1) (2018), p. 8123.
[13]
Kawamura T, Kamimura R, Suzuki S, Iizuka K. A study on the curling robot will match with human result of one end game with one human. In:Proceedings of 2015 IEEE Conference on Computational Intelligence and Games (CIG); 2015 Aug 31-Sep 2; Tainan, China. Piscataway: IEEE; 2015. p. 489-95.
[14]
Kobilarov M, Sukhatme G, Hyams J, Batavia P. People tracking and following with mobile robot using an omnidirectional camera and a laser. In:Proceedings of 2006 IEEE International Conference on Robotics and Automation (ICRA); 2006 May 15-19; Orlando, FL, USA. Piscataway: IEEE; 2006. p. 557-62.
[15]
S. Kwon, S. Kim, J. Yu. Tilting-type balancing mobile robot platform for enhancing lateral stability. IEEE/ASME Trans Mechatron, 20 (3) (2015), pp. 1470-1481.
[16]
K. Kato, M. Wada. Kinematic analysis and simulation of active-caster robotic drive with ball transmission (ACROBAT-S). Adv Robot, 31 (7) (2017), pp. 355-367.
[17]
J.H. Choi, K. Nam, S. Oh. High-accuracy driving control of a stone-throwing mobile robot for curling. IEEE Trans Autom Sci Eng, 19 (4) (2022), pp. 3210-3221.
[18]
Choi JH, Song C, Kim K, Oh S. Development of stone throwing robot and high precision driving control for curling. In: Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2018 Oct 1-5 ; Madrid, Spain. Piscataway:IEEE; 2018 Jul 13-19; Stockholm, Sweden. Palo Alto: AAAI press; 2018. p. 5883-5.
[19]
D.O. Won, K.R. Müller, S.W. Lee. An adaptive deep reinforcement learning framework enables curling robots with human-like performance in real-world conditions. Sci Robot, 5 (46) (2020), eabb9764.
[20]
Won DO, Kim BD, Kim HJ, Eom TS, Müller KR, Lee SW. Curly:an AI-based curling robot successfully competing in the Olympic discipline of curling. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18); 2018 Jul 13-19; Stockholm, Sweden. New York city: ACM Digital Library, 2018. p. 5883-5.
[21]
W. Znegui, H. Gritli, S. Belghith. A new Poincaré map for investigating the complex walking behavior of the compass-gait biped robot. Appl Math Model, 94 (2021), pp. 534-557.
[22]
A.T. Khan, S. Li, X. Zhou. Trajectory optimization of 5-link biped robot using beetle antennae search. IEEE Trans Circuits Syst II, 68 (10) (2021), pp. 3276-3280.
[23]
F. Meng, Q. Huang, Z. Yu, X. Chen, X. Fan, W. Zhang, et al. Explosive electric actuator and control for legged robots. Engineering, 12 (2022), pp. 39-47.
[24]
B. Jin, S. Ye, J. Su, J. Luo. Unknown payload adaptive control for quadruped locomotion with proprioceptive linear legs. IEEE/ASME Trans Mechatron, 27 (4) (2022), pp. 1891-1899.
[25]
X. Song, X. Zhang, X. Meng, C. Chen, D. Huang. Gait optimization of step climbing for a hexapod robot. J Field Robot, 39 (1) (2022), pp. 55-68.
[26]
H. Li, C. Qi, F. Gao, X. Chen, Y. Zhao, Z. Chen. Mechanism design and workspace analysis of a hexapod robot. Mech Mach Theory, 174 (2022), 104917.
[27]
D. Grzelczyk, J. Awrejcewicz. Dynamics, stability analysis and control of a mammal-like octopod robot driven by different central pattern generators. J Comput Appl Mech, 50 (1) (2019), pp. 76-89.
[28]
L. Cui, S. Wang, J. Zhang, D. Zhang, J. Lai, Y. Zheng, et al. Learning-based balance control of wheel-legged robots. IEEE Robot Autom Lett, 6 (4) (2021), pp. 7667-7674.
[29]
J. Li, Q. Wu, J. Wang, J. Li. Neural networks-based sliding mode tracking control for the four wheel-legged robot under uncertain interaction. Int J Robust Nonlinear Control, 31 (9) (2021), pp. 4306-4323.
[30]
L. Ni, L. Wu, H. Zhang. Parameters uncertainty analysis of posture control of a four-wheel-legged robot with series slow active suspension system. Mech Mach Theory, 175 (2022), 104966.
[31]
Z. Chen, J. Li, J. Wang, S. Wang, J. Zhao, J. Li. Towards hybrid gait obstacle avoidance for a six wheel-legged robot with payload transportation. J Intell Robot Syst, 102 (3) (2021), p. 60.
[32]
Z. Chen, J. Li, S. Wang, J. Wang, L. Ma. Flexible gait transition for six wheel-legged robot with unstructured terrains. Robot Auton Syst, 150 (2022), 103989.
[33]
F. Gao, S. Li, Y. Gao, C. Qi, Q. Tian, G.Z. Yang. Robots at the Beijing 2022 Winter Olympics. Sci Robot, 7 (65) (2022), eabq0785.
[34]
Y. Zheng, K. Xu, Y. Tian, X. Ding. Different manipulation mode analysis of a radial symmetrical hexapod robot with leg—arm integration. Front Mech Eng, 17 (1) (2022), p. 8.
[35]
G. Wang, L. Ding, H. Gao, Z. Deng, Z. Liu, H. Yu. Minimizing the energy consumption for a hexapod robot based on optimal force distribution. IEEE Access, 8 (2020), pp. 5393-5406.
[36]
W. Ouyang, H. Chi, J. Pang, W. Liang, Q. Ren. Adaptive locomotion control of a hexapod robot via bio-inspired learning. Front Neurorobot, 15 (2021), 627157.
[37]
Y. Zhao, F. Gao, Q. Sun, Y. Yin. Terrain classification and adaptive locomotion for a hexapod robot Qingzhui. Front Mech Eng, 16 (2) (2021), pp. 271-284.
[38]
L. Mao, F. Gao, Y. Tian, Y. Zhao. Novel method for preventing shin-collisions in six-legged robots by utilising a robot-terrain interference model. Mech Mach Theory, 151 (2020), 103897.
[39]
Arm P, Zenkl R, Barton P, Beglinger L, Dietsche A, Ferrazzini L, et al. SpaceBok:a dynamic legged robot for space exploration. In:Proceedings of 2019 International Conference on Robotics and Automation (ICRA); 2019 May 20-24; Montreal, QC, Canada. Piscataway: IEEE; 2019. p. 6288-94.
[40]
Kolvenbach H, Hampp E, Barton P, Zenkl R, Hutter M. Towards jumping locomotion for quadruped robots on the moon. In:Proceedings of 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2019 Nov 03-08; Macao, China. Piscataway: IEEE; 2020. p. 5459-66.
[41]
Boaventura T, Medrano-Cerda GA, Semini C, Buchli J, Caldwell DG. Stability and performance of the compliance controller of the quadruped robot HyQ. In:Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2013 Nov 3-7; Tokyo, Japan. Tokyo: IEEE; 2013. p. 1458-64.
[42]
K. Yin, C. Qi, Y. Gao, Q. Sun, F. Gao. Landing control method of a lightweight four-legged landing and walking robot. Front Mech Eng, 17 (4) (2022), p. 51.
[43]
A.R. Penner. A scratch-guide model for the motion of a curling rock. Tribol Lett, 67 (2) (2019), p. 35.
[44]
H. Nyberg, S. Hogmark, S. Jacobson. Calculated trajectories of curling stones sliding under asymmetrical friction: validation of published models. Tribol Lett, 50 (2013), pp. 379-385.
PDF(5177 KB)

Accesses

Citation

Detail

段落导航
相关文章

/