[1] |
M. Denny. Curling rock dynamics. Can J Phys, 76 (4) (1998), pp. 295-304.
|
[2] |
M. Denny. Curling rock dynamics: towards a realistic model. Can J Phys, 80 (9) (2002), pp. 1005-1014.
|
[3] |
N. Maeno. Curl mechanism of a curling stone on ice pebbles. Bull Glaciol Res, 28 (2010), pp. 1-6.
|
[4] |
N. Maeno. Dynamics and curl ratio of a curling stone. Sports Eng, 17 (1) (2014), pp. 33-41.
|
[5] |
A.R. Penner. The physics of sliding cylinders and curling rocks. Am J Phys, 69 (3) (2001), pp. 332-339.
|
[6] |
M.R.A. Shegelski, R. Niebergall, M.A. Walton. The motion of a curling rock. Can J Phys, 74 (9-10) (1996), pp. 663-670.
|
[7] |
E.T. Jensen, M.R.A. Shegelski. The motion of curling rocks: experimental investigation and semi-phenomenological description. Can J Phys, 82 (10) (2004), pp. 791-809.
|
[8] |
M.R.A. Shegelski, R. Niebergall. The motion of rapidly rotating curling rocks. Aust J Phys, 52 (6) (1999), pp. 1025-1038.
|
[9] |
M.R.A. Shegelski, E. Lozowski. Pivot-slide model of the motion of a curling rock. Can J Phys, 94 (12) (2016), pp. 1305-1309.
|
[10] |
G. Mancini, L. de Schoulepnikoff. Improved pivot-slide model of the motion of a curling rock. Can J Phys, 97 (12) (2019), pp. 1301-1308.
|
[11] |
H. Nyberg, S. Alfredson, S. Hogmark, S. Jacobson. The asymmetrical friction mechanism that puts the curl in the curling stone. Wear, 301 (1-2) (2013), pp. 583-589.
|
[12] |
V. Honkanen, M. Ovaska, M.J. Alava, L. Laurson, A.J. Tuononen. A surface topography analysis of the curling stone curl mechanism. Sci Rep, 8 (1) (2018), p. 8123.
|
[13] |
Kawamura T, Kamimura R, Suzuki S, Iizuka K. A study on the curling robot will match with human result of one end game with one human. In:Proceedings of 2015 IEEE Conference on Computational Intelligence and Games (CIG); 2015 Aug 31-Sep 2; Tainan, China. Piscataway: IEEE; 2015. p. 489-95.
|
[14] |
Kobilarov M, Sukhatme G, Hyams J, Batavia P. People tracking and following with mobile robot using an omnidirectional camera and a laser. In:Proceedings of 2006 IEEE International Conference on Robotics and Automation (ICRA); 2006 May 15-19; Orlando, FL, USA. Piscataway: IEEE; 2006. p. 557-62.
|
[15] |
S. Kwon, S. Kim, J. Yu. Tilting-type balancing mobile robot platform for enhancing lateral stability. IEEE/ASME Trans Mechatron, 20 (3) (2015), pp. 1470-1481.
|
[16] |
K. Kato, M. Wada. Kinematic analysis and simulation of active-caster robotic drive with ball transmission (ACROBAT-S). Adv Robot, 31 (7) (2017), pp. 355-367.
|
[17] |
J.H. Choi, K. Nam, S. Oh. High-accuracy driving control of a stone-throwing mobile robot for curling. IEEE Trans Autom Sci Eng, 19 (4) (2022), pp. 3210-3221.
|
[18] |
Choi JH, Song C, Kim K, Oh S. Development of stone throwing robot and high precision driving control for curling. In: Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2018 Oct 1-5 ; Madrid, Spain. Piscataway:IEEE; 2018 Jul 13-19; Stockholm, Sweden. Palo Alto: AAAI press; 2018. p. 5883-5.
|
[19] |
D.O. Won, K.R. Müller, S.W. Lee. An adaptive deep reinforcement learning framework enables curling robots with human-like performance in real-world conditions. Sci Robot, 5 (46) (2020), eabb9764.
|
[20] |
Won DO, Kim BD, Kim HJ, Eom TS, Müller KR, Lee SW. Curly:an AI-based curling robot successfully competing in the Olympic discipline of curling. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18); 2018 Jul 13-19; Stockholm, Sweden. New York city: ACM Digital Library, 2018. p. 5883-5.
|
[21] |
W. Znegui, H. Gritli, S. Belghith. A new Poincaré map for investigating the complex walking behavior of the compass-gait biped robot. Appl Math Model, 94 (2021), pp. 534-557.
|
[22] |
A.T. Khan, S. Li, X. Zhou. Trajectory optimization of 5-link biped robot using beetle antennae search. IEEE Trans Circuits Syst II, 68 (10) (2021), pp. 3276-3280.
|
[23] |
F. Meng, Q. Huang, Z. Yu, X. Chen, X. Fan, W. Zhang, et al. Explosive electric actuator and control for legged robots. Engineering, 12 (2022), pp. 39-47.
|
[24] |
B. Jin, S. Ye, J. Su, J. Luo. Unknown payload adaptive control for quadruped locomotion with proprioceptive linear legs. IEEE/ASME Trans Mechatron, 27 (4) (2022), pp. 1891-1899.
|
[25] |
X. Song, X. Zhang, X. Meng, C. Chen, D. Huang. Gait optimization of step climbing for a hexapod robot. J Field Robot, 39 (1) (2022), pp. 55-68.
|
[26] |
H. Li, C. Qi, F. Gao, X. Chen, Y. Zhao, Z. Chen. Mechanism design and workspace analysis of a hexapod robot. Mech Mach Theory, 174 (2022), 104917.
|
[27] |
D. Grzelczyk, J. Awrejcewicz. Dynamics, stability analysis and control of a mammal-like octopod robot driven by different central pattern generators. J Comput Appl Mech, 50 (1) (2019), pp. 76-89.
|
[28] |
L. Cui, S. Wang, J. Zhang, D. Zhang, J. Lai, Y. Zheng, et al. Learning-based balance control of wheel-legged robots. IEEE Robot Autom Lett, 6 (4) (2021), pp. 7667-7674.
|
[29] |
J. Li, Q. Wu, J. Wang, J. Li. Neural networks-based sliding mode tracking control for the four wheel-legged robot under uncertain interaction. Int J Robust Nonlinear Control, 31 (9) (2021), pp. 4306-4323.
|
[30] |
L. Ni, L. Wu, H. Zhang. Parameters uncertainty analysis of posture control of a four-wheel-legged robot with series slow active suspension system. Mech Mach Theory, 175 (2022), 104966.
|
[31] |
Z. Chen, J. Li, J. Wang, S. Wang, J. Zhao, J. Li. Towards hybrid gait obstacle avoidance for a six wheel-legged robot with payload transportation. J Intell Robot Syst, 102 (3) (2021), p. 60.
|
[32] |
Z. Chen, J. Li, S. Wang, J. Wang, L. Ma. Flexible gait transition for six wheel-legged robot with unstructured terrains. Robot Auton Syst, 150 (2022), 103989.
|
[33] |
F. Gao, S. Li, Y. Gao, C. Qi, Q. Tian, G.Z. Yang. Robots at the Beijing 2022 Winter Olympics. Sci Robot, 7 (65) (2022), eabq0785.
|
[34] |
Y. Zheng, K. Xu, Y. Tian, X. Ding. Different manipulation mode analysis of a radial symmetrical hexapod robot with leg—arm integration. Front Mech Eng, 17 (1) (2022), p. 8.
|
[35] |
G. Wang, L. Ding, H. Gao, Z. Deng, Z. Liu, H. Yu. Minimizing the energy consumption for a hexapod robot based on optimal force distribution. IEEE Access, 8 (2020), pp. 5393-5406.
|
[36] |
W. Ouyang, H. Chi, J. Pang, W. Liang, Q. Ren. Adaptive locomotion control of a hexapod robot via bio-inspired learning. Front Neurorobot, 15 (2021), 627157.
|
[37] |
Y. Zhao, F. Gao, Q. Sun, Y. Yin. Terrain classification and adaptive locomotion for a hexapod robot Qingzhui. Front Mech Eng, 16 (2) (2021), pp. 271-284.
|
[38] |
L. Mao, F. Gao, Y. Tian, Y. Zhao. Novel method for preventing shin-collisions in six-legged robots by utilising a robot-terrain interference model. Mech Mach Theory, 151 (2020), 103897.
|
[39] |
Arm P, Zenkl R, Barton P, Beglinger L, Dietsche A, Ferrazzini L, et al. SpaceBok:a dynamic legged robot for space exploration. In:Proceedings of 2019 International Conference on Robotics and Automation (ICRA); 2019 May 20-24; Montreal, QC, Canada. Piscataway: IEEE; 2019. p. 6288-94.
|
[40] |
Kolvenbach H, Hampp E, Barton P, Zenkl R, Hutter M. Towards jumping locomotion for quadruped robots on the moon. In:Proceedings of 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2019 Nov 03-08; Macao, China. Piscataway: IEEE; 2020. p. 5459-66.
|
[41] |
Boaventura T, Medrano-Cerda GA, Semini C, Buchli J, Caldwell DG. Stability and performance of the compliance controller of the quadruped robot HyQ. In:Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2013 Nov 3-7; Tokyo, Japan. Tokyo: IEEE; 2013. p. 1458-64.
|
[42] |
K. Yin, C. Qi, Y. Gao, Q. Sun, F. Gao. Landing control method of a lightweight four-legged landing and walking robot. Front Mech Eng, 17 (4) (2022), p. 51.
|
[43] |
A.R. Penner. A scratch-guide model for the motion of a curling rock. Tribol Lett, 67 (2) (2019), p. 35.
|
[44] |
H. Nyberg, S. Hogmark, S. Jacobson. Calculated trajectories of curling stones sliding under asymmetrical friction: validation of published models. Tribol Lett, 50 (2013), pp. 379-385.
|