光学微球纳米成像进展和挑战

吴光兴, 洪明辉

工程(英文) ›› 2024, Vol. 36 ›› Issue (5) : 102-123.

PDF(4096 KB)
PDF(4096 KB)
工程(英文) ›› 2024, Vol. 36 ›› Issue (5) : 102-123. DOI: 10.1016/j.eng.2023.10.019
研究论文
Article

光学微球纳米成像进展和挑战

作者信息 +

Optical Microsphere Nano-Imaging: Progress and Challenges

Author information +
History +

关键词

光学微球 / 纳米成像技术 / 虚拟成像 / 微球复合透镜 / 工程微球 / Microsphere / Nano-imaging / Virtual imaging / Microsphere compound lens / Engineered microsphere /

引用本文

导出引用
吴光兴, 洪明辉. 光学微球纳米成像技术——进展与挑战. Engineering. 2024, 36(5): 102-123 https://doi.org/10.1016/j.eng.2023.10.019

参考文献

[1]
E. Du, S. Shen, A. Qiu, N. Chen.Confocal laser speckle autocorrelation imaging of dynamic flow in microvasculature. Opto-Electron Adv, 5 (2) ( 2022), p. 210045
[2]
Y. Zhang, H. Gross. Systematic design of microscope objectives. Part I: system review and analysis. Adv Opt Technol, 8 (5) ( 2019), pp. 313-347
[3]
A.S. Stender, K. Marchuk, C. Liu, S. Sander, M.W. Meyer, E.A. Smith, et al.. Single cell optical imaging and spectroscopy. Chem Rev, 113 (4) ( 2013), pp. 2469-2527
[4]
E. Abbe. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für mikroskopische Anatomie, 9 (1) ( 1873), pp. 413-468 German
[5]
F.R.S. Lord Rayleigh. XXXi. Investigations in optics, with special reference to the spectroscope. Lond Edinb Dublin Philos Mag J Sci, 8 (49) ( 1879), pp. 261-274
[6]
C.M. Sparrow. On spectroscopic resolving power. Astrophys J, 44 ( 1916), pp. 76-86
[7]
W.V. Houston. A compound interferometer for fine structure work. Phys Rev, 29 (3) ( 1927), pp. 478-484
[8]
X. Chen. Computational methods for electromagnetic inverse scattering. John Wiley & Sons, Singapore ( 2018)
[9]
Y. Fang, Y. Huang, S. Liu, C. Kuang, X. Liu. Superresolution optical microscopy. S. Thomas, R. Thomas, A.K. Zachariah, R.K. Mishra (Eds.), Microscopy methods in nanomaterials characterization, Elsevier, Amsterdam ( 2017), pp. 241-291
[10]
S. So, M. Kim, D. Lee, D.M. Nguyen, J. Rho. Overcoming diffraction limit: from microscopy to nanoscopy. Appl Spectrosc Rev, 53 (2-4) ( 2018), pp. 290-312
[11]
P. Annibale, S. Vanni, M. Scarselli, U. Rothlisberger, A. Radenovic. Quantitative photo activated localization microscopy: unraveling the effects of photoblinking. PLoS One, 6 (7) ( 2011), p. e22678
[12]
B. Huang, W. Wang, M. Bates, X. Zhuang. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science, 319 (5864) ( 2008), pp. 810-813
[13]
H. Blom, J. Widengren. Stimulated emission depletion microscopy. Chem Rev, 117 (11) ( 2017), pp. 7377-7427
[14]
E. Rittweger, K.Y. Han, S.E. Irvine, C. Eggeling, S.W. Hell. STED microscopy reveals crystal colour centres with nanometric resolution. Nat Photon, 3 (3) ( 2009), pp. 144-147
[15]
M. Weber, M. Leutenegger, S. Stoldt, S. Jakobs, T.S. Mihaila, A.N. Butkevich, et al.. MINSTED fluorescence localization and nanoscopy. Nat Photon, 15 (5) ( 2021), pp. 361-366
[16]
M. Weber, H. von der Emde, M. Leutenegger, P. Gunkel, S. Sambandan, T.A. Khan, et al.. MINSTED nanoscopy enters the Ångström localization range. Nat Biotechnol, 41 (4) ( 2023), pp. 569-576
[17]
J. Wang, Z. Zhang, H. Shen, Q. Wu, M. Gu.Application and development of fluorescence probes in MINFLUX nanoscopy. J Innov Opt Health Sci, 16 (1) ( 2023), p. 2230011
[18]
K. Huang, F. Qin, H. Liu, H. Ye, C.W. Qiu, M. Hong, et al.. Planar diffractive lenses: fundamentals, functionalities, and applications. Adv Mater, 30 (26) ( 2018), p. 1704556
[19]
Wang Z, Luk’yanchuk B. Super-resolution imaging and microscopy by dielectric particle-lenses. In: AstratovV, editor. Label-freesuper-resolution microscopy. Cham: Springer; 2019. p. 371-406.
[20]
L. Chen, Y. Zhou, Y. Li, M. Hong. Microsphere enhanced optical imaging and patterning: from physics to applications. Appl Phys Rev, 6 (2) ( 2019), Article 021304
[21]
Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, et al.. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat Commun, 2 ( 2011), p. 218
[22]
A. Brettin, F. Abolmaali, K.F. Blanchette, C.L. McGinnis, Y.E. Nesmelov, N.I. Limberopoulos, et al.. Enhancement of resolution in microspherical nanoscopy by coupling of fluorescent objects to plasmonic metasurfaces. Appl Phys Lett, 114 (13) ( 2019), p. 131101
[23]
H. Yang, N. Moullan, J. Auwerx, M.A.M. Gijs. Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope. Small, 10 (9) ( 2014), pp. 1712-1718
[24]
A. Darafsheh. Microsphere-assisted microscopy. J Appl Phys, 131 (3) ( 2022), Article 031102
[25]
P. Li, G. Li, H. Yu, F. Wang, L. Liu, W.J. Li. Advances in dielectric microspherical lens nanoscopy: label-free superresolution imaging. IEEE Nanotechnol Mag, 15 (1) ( 2021), pp. 38-51
[26]
B.S. Luk'yanchuk, R. Paniagua-Domínguez, I. Minin, O. Minin, Z. Wang. Refractive index less than two: photonic nanojets yesterday, today and tomorrow. Opt Mater Express, 7 (6) ( 2017), pp. 1820-1847
[27]
Z. Wang. Microsphere super-resolution imaging. P. O'Brien, P.J. Thomas (Eds.), Nanoscience: volume 3, The Royal Society of Chemistry, Cambridge ( 2016), pp. 193-210
[28]
H.J.W. Strutt. XV. On the light from the sky, its polarization and colour. Lond Edinb Dublin Philos Mag J Sci, 41 (271) ( 1871), pp. 107-120
[29]
C.F. Bohren, D.R. Huffman. Absorption and scattering of light by small particles. John Wiley & Sons, New York ( 1983)
[30]
Luk’yanchuk BS, Zheng YW, Lu Y. Laser cleaning of solid surface:optical resonance and near-field effects. In: Proceedings Volume 4065high-power laser ablation III; Aug 16; Santa Fe, NM USA. 2000 Bellingham:SPIE; 2000. p. 576-87.
[31]
H.J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, J. Boneberg. Local field enhancement effects for nanostructuring of surfaces. J Microsc, 202 (1) ( 2001), pp. 129-135
[32]
S. Surdo, M. Duocastella, A. Diaspro. Nanopatterning with photonic nanojets: review and perspectives in biomedical research. Micromachines, 12 (3) ( 2021), p. 256
[33]
A. Khan, Z. Wang, M.A. Sheikh, D.J. Whitehead, L. Li. Laser micro/nano patterning of hydrophobic surface by contact particle lens array. Appl Surf Sci, 258 (2) ( 2011), pp. 774-779
[34]
L. Chen, Y. Zhou, M. Wu, M. Hong.Remote-mode microsphere nano-imaging: new boundaries for optical microscopes. Opto-Electron Adv, 1 (1) ( 2018), p. 170001
[35]
H. Yang, R. Trouillon, G. Huszka, M.A.M. Gijs. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet. Nano Lett, 16 (8) ( 2016), pp. 4862-4870
[36]
Y. Pei, J. Zang, S. Yang, J. Wang, Y. Cao, Y.H. Ye. Optoplasmonic-enhanced imaging of monolayer polystyrene nanoparticle arrays by barium titanate glass microsphere-assisted microscopy: implications for nanoparticle characterization. ACS Appl Nano Mater, 4 (10) ( 2021), pp. 11281-11287
[37]
G. Wu, Y. Zhou, M. Hong. Bilayer-film-decorated microsphere with suppressed interface reflection for enhanced nano-imaging. Opt Express, 30 (16) ( 2022), pp. 28279-28289
[38]
V.M. Sundaram, S.B. Wen.Analysis of deep sub-micron resolution in microsphere based imaging. Appl Phys Lett, 105 (20) ( 2014), p. 204102
[39]
R. Heydarian,C. Simovski. Non-resonant subwavelength imaging by dielectric microparticles. Photon Nanostruct Fundam Appl, 46 ( 2021), p. 100950
[40]
T.X. Hoang, Y. Duan, X. Chen, G. Barbastathis. Focusing and imaging in microsphere-based microscopy. Opt Express, 23 (9) ( 2015), pp. 12337-12353
[41]
A. Maslov, V. Astratov.Resolution and reciprocity in microspherical nanoscopy: point-spread function versus photonic nanojets. Phys Rev Appl, 11 (6) ( 2019), p. 064004
[42]
Q.F. Shi, S.L. Yang, Y.R. Cao, X.Q. Wang, T. Chen, Y.H. Ye.Super-resolution imaging of low-contrast periodic nanoparticle arrays by microsphere-assisted microscopy. Chinese Phys B, 30 (4) ( 2021), p. 040702
[43]
Y. Cao, X. Wang, S. Yang, Y. Pei, J. Zang, J. Wang, et al.. Super-resolution imaging of plasmonic nanostructures by microsphere-assisted microscopy. Appl Opt, 61 (8) ( 2022) E8-13
[44]
Y. Cao, S. Yang, J. Wang, Q. Shi, Y.H. Ye.Surface plasmon enhancement for microsphere-assisted super-resolution imaging of metallodielectric nanostructures. J Appl Phys, 127 (23) ( 2020), p. 233103
[45]
S. Yang, Y. Cao, Q. Shi, X. Wang, T. Chen, J. Wang, et al.. Label-free super-resolution imaging of transparent dielectric objects assembled on a silver film by a microsphere-assisted microscope. J Phys Chem C, 123 (46) ( 2019), pp. 28353-28358
[46]
Y. Ben-Aryeh. Superresolution observed from evanescent waves transmitted through nano-corrugated metallic films. Appl Phys B, 109 ( 2012), pp. 165-170
[47]
R. Boudoukha, S. Perrin, A. Demagh, P. Montgomery, N.E. Demagh, S. Lecler. Near- to Far-field coupling of evanescent waves by glass microspheres. Photonics, 8 (3) ( 2021), p. 73
[48]
Y. Duan, G. Barbastathis, B. Zhang. Classical imaging theory of a microlens with super-resolution. Opt Lett, 38 (16) ( 2013), pp. 2988-2990
[49]
A. Bekirov, B. Luk’yanchuk, A.J.J.L. Fedyanin. Virtual Image within a transparent dielectric sphere. JETP Lett, 112 (6) ( 2020), pp. 341-345
[50]
T. Pahl, L. Hüser, S. Hagemeier, P. Lehmann. FEM-based modeling of microsphere-enhanced interferometry. Light Adv Manuf, 3 (4) ( 2022), pp. 699-711
[51]
S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, W. Guo. Overcoming the diffraction limit induced by microsphere optical nanoscopy. J Opt, 15 (12) ( 2013), Article 125710
[52]
X. Hao, C. Kuang, X. Liu, H. Zhang,Y. Li. Microsphere based microscope with optical super-resolution capability. Appl Phys Lett, 99 (20) ( 2011), p. 203102
[53]
Y. Ben-Aryeh. Increase of resolution by use of microspheres related to complex Snell’s law. J Opt Soc Am A, 33 (12) ( 2016), pp. 2284-2288
[54]
S. Yang, Y.H. Ye, Q. Shi, J. Zhang. Converting evanescent waves into propagating waves: the super-resolution mechanism in microsphere-assisted microscopy. J Phys Chem C, 124 (47) ( 2020), pp. 25951-25956
[55]
R. Ye, Y.H. Ye, H.F. Ma, J. Ma, B. Wang, J. Yao, et al.. Experimental far-field imaging properties of a∼ 5-μm diameter spherical lens. Opt Lett, 38 (11) ( 2013), pp. 1829-1831
[56]
X. Chen, T. Wu, Z. Gong, Y. Li, Y. Zhang, B. Li. Subwavelength imaging and detection using adjustable and movable droplet microlenses. Photon Res, 8 (3) ( 2020), pp. 225-234
[57]
Y. Li, X. Liu, B. Li.Single-cell biomagnifier for optical nanoscopes and nanotweezers. Light Sci Appl, 8 ( 2019), p. 61
[58]
T. Zhang, H. Yu, J. Shi, X. Wang, H. Luo, D. Lin, et al.. Correlative AFM and scanning microlens microscopy for time-efficient multiscale imaging. Adv Sci, 9 (12) ( 2022), p. 2103902
[59]
S. Yang, F. Wang, Y. Ye, Y. Xia, Y. Deng, J. Wang, et al.. Influence of the photonic nanojet of microspheres on microsphere imaging. Opt Express, 25 (22) ( 2017), pp. 27551-27558
[60]
X. Yang, M. Hong. Enhancement of axial resolution and image contrast of a confocal microscope by a microsphere working in noncontact mode. Appl Opt, 60 (17) ( 2021), pp. 5271-5277
[61]
S. Zhou, Y. Deng, W. Zhou, M. Yu, H. Urbach, Y. Wu.Effects of whispering gallery mode in microsphere super-resolution imaging. Appl Phys B, 123 ( 2017), p. 236
[62]
Minin IV, Minin OV, Zhou S. Influence of the environment on the effect of super resonance in mesoscale dielectric spheres. In: ZhouZ, WadaK, TongL, editors. Nanophotonics, Micro/NanoOptics, and PlasmonicsVIII; 2022 Dec 5-11; online conference. Bellingham: SPIE; 2023. p. 92-9.
[63]
A.V. Maslov, V.N. Astratov.Imaging of sub-wavelength structures radiating coherently near microspheres. Appl Phys Lett, 108 (5) ( 2016), p. 051104
[64]
A.R. Bekirov, B.S. Luk’yanchuk, Z. Wang, A.A. Fedyanin. Wave theory of virtual image. Opt Mater Express, 11 (11) ( 2021), pp. 3646-3655
[65]
A.V. Maslov, V.N. Astratov.Optical nanoscopy with contact Mie-particles: resolution analysis. Appl Phys Lett, 110 (26) ( 2017), p. 261107
[66]
A. Darafsheh, V. Abbasian.Dielectric microspheres enhance microscopy resolution mainly due to increasing the effective numerical aperture. Light Sci Appl, 12 ( 2023), p. 22
[67]
Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, M. Hong. Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum. ACS Nano, 8 (2) ( 2014), pp. 1809-1816
[68]
K.W. Allen, N. Farahi, Y. Li, N.I. Limberopoulos, D.E. Walker Jr, A.M. Urbas, et al.. Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis. Ann Phys, 527 (7-8) ( 2015), pp. 513-522
[69]
A. Darafsheh, N.I. Limberopoulos, J.S. Derov, D.E. Walker Jr, V.N. Astratov.Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies. Appl Phys Lett, 104 (6) ( 2014), p. 061117
[70]
K.W. Allen, N. Farahi, Y. Li, N.I. Limberopoulos, D.E. Walker, A.M. Urbas, et al.. Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers. Opt Express, 23 (19) ( 2015), pp. 24484-24496
[71]
P.Y. Li, Y. Tsao, Y.J. Liu, Z.X. Lou, W.L. Lee, S.W. Chu, et al.. Unusual imaging properties of superresolution microspheres. Opt Express, 24 (15) ( 2016), pp. 16479-16486
[72]
F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, et al.. Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging. Nat Commun, 7 ( 2016), p. 13748
[73]
L.A. Krivitsky, J.J. Wang, Z. Wang, B. Luk’yanchuk.Locomotion of microspheres for super-resolution imaging. Sci Rep, 3 ( 2013), p. 3501
[74]
G. Wu, M. Hong. Optical nano-imaging via microsphere compound lenses working in non-contact mode. Opt Express, 29 (15) ( 2021), pp. 23073-23082
[75]
B. Jia, P. Li, F. Wang, H.Y. Chan, G. Zhang, W.J. Li. Determination of microsphere-lens magnification using micro-robotic scanning superlens nanoscopy. IEEE Open J Nanotechnol, 1 ( 2020), pp. 65-76
[76]
Huszka G, Yang H, Gijs MAM.Dielectric microsphere-based optical system for super-resolution microscopy. In:Proceedings of the 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS); 2017 Jun 18- 22 ; Kaohsiung, China. Piscataway: IEEE; 2017. p. 2003-6.
[77]
G. Huszka, H. Yang, M.A.M. Gijs. Microsphere-based super-resolution scanning optical microscope. Opt Express, 25 (13) ( 2017), pp. 15079-15092
[78]
A. Darafsheh, C. Guardiola, A. Palovcak, J.C. Finlay, A. Cárabe. Optical super-resolution imaging by high-index microspheres embedded in elastomers. Opt Lett, 40 (1) ( 2015), pp. 5-8
[79]
M. Sasaki, T. Kurosawa, K. Hane. Micro-objective manipulated with optical tweezers. Appl Phys Lett, 70 (6) ( 1997), pp. 785-787
[80]
E. Mcleod, C.B. Arnold. Subwavelength direct-write nanopatterning using optically trapped microspheres. Nat Nanotechnol, 3 (7) ( 2008), pp. 413-417
[81]
Bañas A, Vizsnyiczai G, Búzás A, Palima D, Kelemen L, Ormos P, et al. Fabrication and optical trapping of handling structures for re-configurable microsphere magnifiers. In: GlückstadJ, AndrewsDL, GalvezEJ, editors. Feb 2-7 ; San Francisco CA,Proceedings Volume 8637, complex light and optical forces VII; 2013 USA. Bellingham: SPIE; 2013. p. 135-39.
[82]
M. Michihata, J. Kim, S. Takahashi, K. Takamasu, Y. Mizutani, Y. Takaya. Surface imaging technique by an optically trapped microsphere in air condition. Nanomanuf Metrol, 1 ( 2018), pp. 32-38
[83]
X. Liu, S. Hu, Y. Tang, Z. Xie, J. Liu, Y. He.Selecting a proper microsphere to combine optical trapping with microsphere-assisted microscopy. Appl Sci, 10 (9) ( 2020), p. 3127
[84]
T. Zhang, P. Li, H. Yu, F. Wang, X. Wang, T. Yang, et al.. Fabrication of flexible microlens arrays for parallel super-resolution imaging. Appl Surf Sci, 504 ( 2020), p. 144375
[85]
J. Zhou, Z. Lian, C. Zhou, S. Bi, Y. Wang.Scanning microsphere array optical microscope for efficient and large area super-resolution imaging. J Opt, 22 (10) ( 2020), p. 105602
[86]
X. Hao, C. Kuang, Y. Li, X. Liu, Y. Ku, Y. Jiang. Hydrophilic microsphere based mesoscopic-lens microscope (MMM). Opt Commun, 285 (20) ( 2012), pp. 4130-4133
[87]
A. Darafsheh, G.F. Walsh, L. Dal Negro, V.N. Astratov.Optical super-resolution by high-index liquid-immersed microspheres. Appl Phys Lett, 101 (14) ( 2012), p. 141128
[88]
S. Lee, L. Li, Z. Wang, W. Guo, Y. Yan, T. Wang. Immersed transparent microsphere magnifying sub-diffraction-limited objects. Appl Opt, 52 (30) ( 2013), pp. 7265-7270
[89]
H. Yang, M.A.M. Gijs. Optical microscopy using a glass microsphere for metrology of sub-wavelength nanostructures. Microelectron Eng, 143 ( 2015), pp. 86-90
[90]
A. Darafsheh. Influence of the background medium on imaging performance of microsphere-assisted super-resolution microscopy. Opt Lett, 42 (4) ( 2017), pp. 735-738
[91]
S. Li, H. Luo, F. Liu, T. Zhang, X. Wang, L. Liu, et al.. Imaging properties of microsphere superlenses with varying background refractive indices under inclined illumination. Opt Lett, 47 (22) ( 2022), pp. 5857-5860
[92]
B. Du, Y.H. Ye, J. Hou, M. Guo,T. Wang. Sub-wavelength image stitching with removable microsphere-embedded thin film. Appl Phys A, 122 ( 2016), p. 15
[93]
S. Yang, X. Wang, J. Wang, Y. Cao, F. Wang, T. Chen, et al.. Reduced distortion in high-index microsphere imaging by partial immersion. Appl Opt, 57 (27) ( 2018), pp. 7818-7822
[94]
F. Wang, S. Yang, H. Ma, P. Shen, N. Wei, M. Wang, et al.. Microsphere-assisted super-resolution imaging with enlarged numerical aperture by semi-immersion. Appl Phys Lett, 112 (2) ( 2018), p. 023101
[95]
Y. Zhou, M. Hong. Realization of noncontact confocal optical microsphere imaging microscope. Microsc Res Tech, 84 (10) ( 2021), pp. 2381-2387
[96]
Y. Cao, S. Yang, D. Wang, J. Wang, Y.H. Ye. Surface plasmon-enhanced dark-field microsphere-assisted microscopy. Opt Express, 31 (5) ( 2023), pp. 8641-8649
[97]
L. Hüser, T. Pahl, M. Künne, P. Lehmann.Microsphere assistance in interference microscopy with high numerical aperture objective lenses. J Opt Microsyst, 2 (4) ( 2022), p. 044501
[98]
J. Wang, R. Jiang, S. Yang, Y. Cao, Y.H. Ye. Microsphere-assisted dark-field microscopy based on a fully immersed low refractive index microsphere. Opt Lett, 48 (7) ( 2023), pp. 1858-1861
[99]
Y. Zhou, Y. Tang, Q. Deng, L. Zhao, S. Hu.Contrast enhancement of microsphere-assisted super-resolution imaging in dark-field microscopy. Appl Phys Express, 10 (8) ( 2017), p. 082501
[100]
F. Wang, H.S.S. Lai, L. Liu, P. Li, H. Yu, Z. Liu, et al.. Super-resolution endoscopy for real-time wide-field imaging. Opt Express, 23 (13) ( 2015), pp. 16803-16811
[101]
S. Perrin, A. Leong-Hoï, S. Lecler, P. Pfeiffer, I. Kassamakov, A. Nolvi, et al.. Microsphere-assisted phase-shifting profilometry. Appl Opt, 56 (25) ( 2017), pp. 7249-7255
[102]
F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, et al.. Three-dimensional super-resolution morphology by near-field assisted white-light interferometry. Sci Rep, 6 ( 2016), p. 24703
[103]
M. Aakhte, V. Abbasian, E.A. Akhlaghi, A.R. Moradi, A. Anand, B. Javidi. Microsphere-assisted super-resolved Mirau digital holographic microscopy for cell identification. Appl Opt, 56 (9) ( 2017) D8-13
[104]
I. Kassamakov, S. Lecler, A. Nolvi, A. Leong-Hoï, P. Montgomery, E. Hæggström.3D super-resolution optical profiling using microsphere enhanced Mirau interferometry. Sci Rep, 7 ( 2017), p. 3683
[105]
A. Leong-Hoi, C. Hairaye, S. Perrin, S. Lecler, P. Pfeiffer, P. Montgomery.High resolution microsphere-assisted interference microscopy for 3D characterization of nanomaterials. Phys Status Solidi A, 215 (6) ( 2018), p. 1700858
[106]
S. Perrin, Y.J. Donie, P. Montgomery, G. Gomard,S. Lecler. Compensated microsphere-assisted interference microscopy. Phys Rev Appl, 13 (1) ( 2020), p. 014068
[107]
W. Aljuaid, J.A. Riley, N. Healy, V. Pacheco-Peña. On-fiber high-resolution photonic nanojets via high refractive index dielectrics. Opt Express, 30 (24) ( 2022), pp. 43678-43690
[108]
H. Yang, M. Cornaglia, M.A.M. Gijs. Photonic nanojet array for fast detection of single nanoparticles in a flow. Nano Lett, 15 (3) ( 2015), pp. 1730-1735
[109]
Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, B. Li. Trapping and detection of nanoparticles and cells using a parallel photonic nanojet array. ACS Nano, 10 (6) ( 2016), pp. 5800-5808
[110]
Y.C. Li, H.B. Xin, H.X. Lei, L.L. Liu, Y.Z. Li, Y. Zhang, et al.. Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet. Light Sci Appl, 5 ( 2016), p. e16176
[111]
S. Yang, Y.H. Ye, J. Zang, Y. Pei, Y. Xia, J. Zhang. Direct observation Brownian motion of individual nanoparticles in water using microsphere-assisted microscopy. Opt Lett, 46 (13) ( 2021), pp. 3099-3102
[112]
Stanescu SL, Vilain S, Galieni V, Goh G, Karpinska K, Barbolina I, et al. Imaging with the super-resolution microsphere amplifying lens (SMAL) nanoscope. In: Proceedingsof the Electron Microscopy and Analysis Group Conference 2017 ( EMAG2017; 2017 Jul 3-6 ; Manchester UK. Bristol: IOP Publishing Ltd.; 2017. p. 012014.
[113]
Li G, Li P, Chen T, Tian X, Gao S, Yang Z, et al. Microspherical lens assembly for super-wide field of view of super-resolution optical imaging. In:Proceedings of the 20th International Conference on Nanotechnology (IEEE-NANO); 2020 Jul 29- 31 ; Montreal, QC, Canada. Piscataway: IEEE; 2020. p. 168-71.
[114]
S. Lee, L. Li. Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy. Opt Commun, 334 ( 2015), pp. 253-257
[115]
M. Guo, Y.H. Ye, J. Hou, B. Du, T. Wang. Imaging of sub-surface nanostructures by dielectric planer cavity coupled microsphere lens. Opt Commun, 383 ( 2017), pp. 153-158
[116]
L. Li, W. Guo, Y. Yan, S. Lee, T. Wang. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy. Light Sci Appl, 2 ( 2013), p. e104
[117]
Gao S, Meng K, Yang Z, Liu H, Wang F, Sun L, et al. The probe-combined microspheres applied in biomedical field for super-resolution imagings and micromanipulations. In:Proceedings of the 4th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS); 2019 Jul 13- 15 ; Nagoya, Japan. Piscataway: IEEE; 2019. p. 155-8.
[118]
B. Jia, F. Wang, H. Chan, G. Zhang, W.J. Li.In situ printing of liquid superlenses for subdiffraction-limited color imaging of nanobiostructures in nature. Microsyst Nanoeng, 5 ( 2019), p. 1
[119]
Q. Zhang, J. Li, X. Pan, X. Liu, H. Gai. Low-numerical aperture microscope objective boosted by liquid-immersed dielectric microspheres for quantum dot-based digital immunoassays. Anal Chem, 93 (38) ( 2021), pp. 12848-12853
[120]
G. Wu, S.W.L. Ng, Y. Zhou, M. Hong. Dynamic nano-imaging via a microsphere compound lens integrated microfluidic device with a 10× objective lens. Lab Chip, 23 (13) ( 2023), pp. 3070-3079
[121]
G. Jin, S. Hong, J. Rich, J. Xia, K. Kim, L. You, et al.. Intelligent nanoscope for rapid nanomaterial identification and classification. Lab Chip, 22 (16) ( 2022), pp. 2978-2985
[122]
P.W. Anderson. More is different: broken symmetry and the nature of the hierarchical structure of science. Science, 177 (4047) ( 1972), pp. 393-396
[123]
Y. Zhang, H. Gross. Systematic design of microscope objectives. Part II: lens modules and design principles. Adv Opt Technol, 8 (5) ( 2019), pp. 349-384
[124]
D. Kim, H. Choi, T. Brendel, H. Quach, M. Esparza, H. Kang, et al.. Advances in optical engineering for future telescopes. Opto-Electron Adv, 4 (6) ( 2021), Article 210040
[125]
H.S.S. Lai, F. Wang, Y. Li, B. Jia, L. Liu, W.J. Li. Super-resolution real imaging in microsphere-assisted microscopy. PLoS One, 11 (10) ( 2016), p. e0165194
[126]
Astratov VN, Jin B, Erykalin AA, Maslov AV. Ball lens-assisted smartphone microscopy with diffraction-limited resolution. In: LeclerS, AstratovVN, MininIV, editors. ProceedingsVolume 12152, 2022 Apr 3-May 23; Strasbourg, France. mesophotonics:physics and systems at mesoscale; Bellingham: SPIE; 2022. p. 31-6.
[127]
J. Zhou, B. Zeng, S. Bi, Y. Wang.Enhanced magnification factors in super-resolution imaging using stacked dual microspheres. J Opt, 22 (8) ( 2020), p. 085605
[128]
H. Luo, H. Yu, Y. Wen, T. Zhang, P. Li, F. Wang, et al.. Enhanced high-quality super-resolution imaging in air using microsphere lens groups. Opt Lett, 45 (11) ( 2020), pp. 2981-2984
[129]
Y. Deng, S. Yang, Y. Xia, Y. Cao, J. Wang, F. Wang, et al.. Super-resolution imaging properties of cascaded microsphere lenses. Appl Opt, 57 (20) ( 2018), pp. 5578-5582
[130]
H. Zhu, B. Yan, S. Zhou, Z. Wang, L. Wu. Synthesis and super-resolution imaging performance of a refractive-index-controllable microsphere superlens. J Mater Chem C, 3 (41) ( 2015), pp. 10907-10915
[131]
R. Dhama, B. Yan, C. Palego, Z. Wang. Super-resolution imaging by dielectric superlenses: TiO2 metamaterial superlens versus BaTiO3 superlens. Photonics, 8 (6) ( 2021), p. 222
[132]
W. Fan, B. Yan, Z. Wang, L. Wu. Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies. Sci Adv, 2 (8) ( 2016), p. e1600901
[133]
H. Zhu, W. Fan, S. Zhou, M. Chen, L. Wu. Polymer colloidal sphere-based hybrid solid immersion lens for optical super-resolution imaging. ACS Nano, 10 (10) ( 2016), pp. 9755-9761
[134]
B. Yan, Z. Wang, A.L. Parker, Y. Lai, P.J. Thomas, L. Yue, et al.. Superlensing microscope objective lens. Appl Opt, 56 (11) ( 2017), pp. 3142-3147
[135]
G. Huszka, M.A.M. Gijs.Turning a normal microscope into a super-resolution instrument using a scanning microlens array. Sci Rep, 8 ( 2018), p. 601
[136]
B. Yan, Y. Song, X. Yang, D. Xiong, Z. Wang. Unibody microscope objective tipped with a microsphere: design, fabrication, and application in subwavelength imaging. Appl Opt, 59 (8) ( 2020), pp. 2641-2648
[137]
A. Vlad, I. Huynen, S. Melinte. Wavelength-scale lens microscopy via thermal reshaping of colloidal particles. Nanotechnology, 23 (28) ( 2012), p. 285708
[138]
B. Du, H. Zhang, J. Xia, J. Wu, H. Ding, G. Tong. Super-resolution imaging with direct laser writing-printed microstructures. J Phys Chem A, 124 (35) ( 2020), pp. 7211-7216
[139]
G. Wu, Y. Zhou, M. Hong.Sub-50 nm optical imaging in ambient air with 10× objective lens enabled by hyper-hemi-microsphere. Light Sci Appl, 12 ( 2023), p. 49
[140]
J.Y. Lee, B.H. Hong, W.Y. Kim, S.K. Min, Y. Kim, M.V. Jouravlev, et al.. Near-field focusing and magnification through self-assembled nanoscale spherical lenses. Nature, 460 (7254) ( 2009), pp. 498-501
[141]
S. Song, Y. Li, Z. Yao, J. Li, X. Li, Y. Cao. 3D laser nanoprinting of optically functionalized structures with effective-refractive-index tailorable TiO2 nanoparticle-doped photoresin. Nanomaterials, 12 (1) ( 2022), p. 55
[142]
D. Kang, C. Pang, S.M. Kim, H.S. Cho, H.S. Um, Y.W. Choi, et al.. Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets. Adv Mater, 24 (13) ( 2012), pp. 1709-1715
[143]
Li P, Yu H, Wen Y, Zhao W, Liu L, Li WJ.Direct transfer printing of dielectric nanoparticle assembled superlens array for super-resolution imaging. In:Proceedings of the 19th International Conference on Nanotechnology (IEEE-NANO); 2019 Jul 22- 26 ; Macao, China. Piscataway: IEEE; 2019. p. 405-9.
[144]
Q. Shang, F. Tang, L. Yu, H. Oubaha, D. Caina, S. Yang, et al.. Super-resolution imaging with patchy microspheres. Photonics, 8 (11) ( 2021), p. 513
[145]
H. Zhu, Z. Chen, T.C. Chong, M. Hong. Photonic jet with ultralong working distance by hemispheric shell. Opt Express, 23 (5) ( 2015), pp. 6626-6633
[146]
Y. Shen, L.V. Wang, J.T. Shen. Ultralong photonic nanojet formed by a two-layer dielectric microsphere. Opt Lett, 39 (14) ( 2014), pp. 4120-4123
[147]
Y. Zhou, M. Hong. Formation of a three-dimensional bottle beam via an engineered microsphere. Photon Res, 9 (8) ( 2021), pp. 1598-1606
[148]
Y. Zhou, M. Hong. Formation of polarization-dependent optical vortex beams via an engineered microsphere. Opt Express, 29 (7) ( 2021), pp. 11121-11131
[149]
Y. Zhou, R. Ji, J. Teng, M. Hong. Wavelength-tunable focusing via a Fresnel zone microsphere. Opt Lett, 45 (4) ( 2020), pp. 852-855
[150]
M. Wu, B. Huang, R. Chen, Y. Yang, J. Wu, R. Ji, et al.. Modulation of photonic nanojets generated by microspheres decorated with concentric rings. Opt Express, 23 (15) ( 2015), pp. 20096-20103
[151]
M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, et al.. Super-focusing of center-covered engineered microsphere. Sci Rep, 6 ( 2016), p. 31637
[152]
Y. Zhou, R. Ji, J. Teng,M. Hong. Ultralong light focusing via negative axicon microsphere. Eng Res Express, 2 (1) ( 2020), p. 015044
[153]
M. Liao, S. Zheng, S. Pan, D. Lu, W. He, G. Situ, et al.. Deep-learning-based ciphertext-only attack on optical double random phase encryption. Opto-Electron Adv, 4 (5) ( 2021), p. 200016
[154]
Y. Guo, L. Zhong, L. Min, J. Wang, Y. Wu, K. Chen, et al.. Adaptive optics based on machine learning: a review. Opto-Electron Adv, 5 (7) ( 2022), p. 200082
PDF(4096 KB)

Accesses

Citation

Detail

段落导航
相关文章

/