[1] |
O. Gozlan, D. Sprinzak. Notch signaling in development and homeostasis. Development, 150 (4) (2023), dev201138.
|
[2] |
K. Duvall, L. Crist, A.J. Perl, N. Pode Shakked, P. Chaturvedi, R. Kopan. Revisiting the role of Notch in nephron segmentation confirms a role for proximal fate selection during mouse and human nephrogenesis. Development, 149 (10) (2022), dev200446.
|
[3] |
P.A. Seymour, C.A. Collin, A.R. Egeskov-Madsen, M.C. Jørgensen, H. Shimojo, I. Imayoshi, et al. Jag1 modulates an oscillatory Dll1-Notch-Hes1 signaling module to coordinate growth and fate of pancreatic progenitors. Dev Cell, 52 (6) (2020), pp. 731-747.e8.
|
[4] |
C. Porcheri, O. Golan, F.J. Calero-Nieto, R. Thambyrajah, C. Ruiz-Herguido, X. Wang, et al. Notch ligand Dll 4 impairs cell recruitment to aortic clusters and limits blood stem cell generation. EMBO J, 39 (8) (2020), p. e104270.
|
[5] |
F.M. Kobia, K. Preusse, Q. Dai, N. Weaver, M.R. Hass, P. Chaturvedi, et al. Notch dimerization and gene dosage are important for normal heart development, intestinal stem cell maintenance, and splenic marginal zone B-cell homeostasis during mite infestation. PLoS Biol, 18 (10) (2020), p. e3000850.
|
[6] |
R. Logeay, C. Géminard, P. Lassus, M. Rodríguez-Vázquez, D. Kantar, L. Heron-Milhavet, et al. Mechanisms underlying the cooperation between loss of epithelial polarity and Notch signaling during neoplastic growth in Drosophila. Development, 149 (3) (2022), dev200110.
|
[7] |
R.J. Suckling, B. Korona, P. Whiteman, C. Chillakuri, L. Holt, P.A. Handford, et al. Structural and functional dissection of the interplay between lipid and Notch binding by human Notch ligands. EMBO J, 36 (15) (2017), pp. 2204-2215.
|
[8] |
Y. Meng, S. Sanlidag, S.A. Jensen, S.A. Burnap, W.B. Struwe, A.H. Larsen, et al. An N-glycan on the C 2 domain of JAGGED1 is important for Notch activation. Sci Signal, 15 (755) (2022), eabo3507.
|
[9] |
T. Martins, Y. Meng, B. Korona, R. Suckling, S. Johnson, P.A. Handford, et al. The conserved C 2 phospholipid-binding domain in Delta contributes to robust Notch signalling. EMBO Rep, 22 (10) (2021), p. e52729.
|
[10] |
V.C. Luca, B.C. Kim, C. Ge, S. Kakuda, D. Wu, M. Roein-Peikar, et al. Notch-Jagged complex structure implicates a catch bond in tuning ligand sensitivity. Science, 355 (6331) (2017), pp. 1320-1324.
|
[11] |
V.C. Luca, K.M. Jude, N.W. Pierce, M.V. Nachury, S. Fischer, K.C. Garcia. Structural basis for Notch1 engagement of Delta-like 4. Science, 347 (6224) (2015), pp. 847-853.
|
[12] |
S.J. Bray, M.. Gomez-Lamarca. Notch after cleavage. Curr Opin Cell Biol, 51 (2018), pp. 103-109.
|
[13] |
J. Falo-Sanjuan, N.C. Lammers, H.G. Garcia, S.J. Bray. Enhancer priming enables fast and sustained transcriptional responses to Notch signaling. Dev Cell, 50 (4) (2019), pp. 411-425.e8.
|
[14] |
R. Kopan, M.X.G. Ilagan. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell, 137 (2) (2009), pp. 216-233.
|
[15] |
F. Oswald, R.A. Kovall. CSL-associated corepressor and coactivator complexes. Adv Exp Med Biol, 1066 (2018), pp. 279-295.
|
[16] |
D. Henrique, F. Schweisguth. Mechanisms of Notch signaling: a simple logic deployed in time and space. Development, 146 (3) (2019), dev172148.
|
[17] |
D. Sprinzak, S.C. Blacklow. Biophysics of Notch signaling. Annu Rev Biophys, 50 (1) (2021), pp. 157-189.
|
[18] |
J.F. De Celis, S. Bray. Feed-back mechanisms affecting Notch activation at the dorsoventral boundary in the Drosophila wing. Development, 124 (17) (1997), pp. 3241-3251.
|
[19] |
D. Sprinzak, A. Lakhanpal, L. Lebon, L.A. Santat, M.E. Fontes, G.A. Anderson, et al. Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature, 465 (7294) (2010), pp. 86-90.
|
[20] |
F. Del Gaudio, D. Liu, U. Lendahl. Notch signalling in healthy and diseased vasculature. Open Biol, 12 (4) (2022), 220004.
|
[21] |
T. Troost, U. Binshtok, D. Sprinzak, T. Klein. Cis-inhibition suppresses basal Notch signaling during sensory organ precursor selection. Proc Natl Acad Sci USA, 120 (23) (2023), e2214535120.
|
[22] |
N. Nandagopal, L.A. Santat, M.B. Elowitz. Cis-activation in the Notch signaling pathway. Elife, 8 (2019), p. e37880.
|
[23] |
G. Chapman, D.B. Sparrow, E. Kremmer, S.L. Dunwoodie. Notch inhibition by the ligand Delta-like 3 defines the mechanism of abnormal vertebral segmentation in spondylocostal dysostosis. Hum Mol Genet, 20 (5) (2011), pp. 905-916.
|
[24] |
K. Serth, K. Schuster-Gossler, E. Kremmer, B. Hansen, B. Marohn-Köhn, A. Gossler. O-fucosylation of DLL3 is required for its function during somitogenesis. PLoS One, 10 (4) (2015), p. e0123776.
|
[25] |
F.A. Carrieri, P.J. Murray, D. Ditsova, M.A. Ferris, P. Davies, J.K. Dale. CDK1 and CDK2 regulate NICD1 turnover and the periodicity of the segmentation clock. EMBO Rep, 20 (7) (2019), p. e46436.
|
[26] |
B.D. Giaimo, E.K. Gagliani, R.A. Kovall, T. Borggrefe. Transcription factor RBPJ as a molecular switch in regulating the Notch response. Adv Exp Med Biol, 1287 (2021), pp. 9-30.
|
[27] |
P.A. Handford, M. Mayhew, M. Baron, P.R. Winship, I.D. Campbell, G.G. Brownlee. Key residues involved in calcium-binding motifs in EGF-like domains. Nature, 351 (6322) (1991), pp. 164-167.
|
[28] |
D. Bellavia, S. Checquolo, A.F. Campese, M.P. Felli, A. Gulino, I. Screpanti. Notch3: from subtle structural differences to functional diversity. Oncogene, 27 (38) (2008), pp. 5092-5098.
|
[29] |
A.C. James, J.O. Szot, K. Iyer, J.A. Major, S.E. Pursglove, G. Chapman, et al. Notch 4 reveals a novel mechanism regulating Notch signal transduction. Biochim Biophys Acta, 1843 (7) (2014), pp. 1272-1284.
|
[30] |
H. Komatsu, M.Y. Chao, J. Larkins-Ford, M.E. Corkins, G.A. Somers, T. Tucey, et al. OSM-11 facilitates LIN-12 Notch signaling during Caenorhabditis elegans vulval development. PLoS Biol, 6 (8) (2008), p. e196.
|
[31] |
W.R. Gordon, M. Roy, D. Vardar-Ulu, M. Garfinkel, M.R. Mansour, J.C. Aster, et al. Structure of the Notch1-negative regulatory region: implications for normal activation and pathogenic signaling in T-ALL. Blood, 113 (18) (2009), pp. 4381-4390.
|
[32] |
J. Cordle, S. Johnson, J. Zi, Y. Tay, P. Roversi, M. Wilkin, et al. A conserved face of the Jagged/Serrate DSL domain is involved in Notch trans-activation and cis-inhibition. Nat Struct Mol Biol, 15 (8) (2008), pp. 849-857.
|
[33] |
S. Hambleton, N.V. Valeyev, A. Muranyi, V. Knott, J.M. Werner, A.J. McMichael, et al. Structural and functional properties of the human Notch-1 ligand binding region. Structure, 12 (12) (2004), pp. 2173-2183.
|
[34] |
W.R. Gordon, D. Vardar-Ulu, G. Histen, C. Sanchez-Irizarry, J.C. Aster, S.C. Blacklow. Structural basis for autoinhibition of Notch. Nat Struct Mol Biol, 14 (4) (2007), pp. 295-300.
|
[35] |
S. Kidd, T. Lieber. Furin cleavage is not a requirement for Drosophila Notch function. Mech Dev, 115 (1-2) (2002), pp. 41-51.
|
[36] |
F. Logeat, C. Bessia, C. Brou, O. LeBail, S. Jarriault, N.G. Seidah, et al. The Notch 1 receptor is cleaved constitutively by a furin-like convertase. Proc Natl Acad Sci USA, 95 (14) (1998), pp. 8108-8112.
|
[37] |
I. Pfeffer, L. Brewitz, T. Krojer, S.A. Jensen, G.T. Kochan, N.J. Kershaw, et al. Aspartate/asparagine-β-hydroxylase crystal structures reveal an unexpected epidermal growth factor-like domain substrate disulfide pattern. Nat Commun, 10 (1) (2019), p. 4910.
|
[38] |
K. Matsumoto, K.B. Luther, R.S. Haltiwanger. Diseases related to Notch glycosylation. Mol Aspects Med, 79 (2021), 100938.
|
[39] |
H. Takeuchi, H. Yu, H. Hao, M. Takeuchi, A. Ito, H. Li, et al. O-glycosylation modulates the stability of epidermal growth factor-like repeats and thereby regulates Notch trafficking. J Biol Chem, 292 (38) (2017), pp. 15964-15973.
|
[40] |
A.K. Downing, V. Knott, J.M. Werner, C.M. Cardy, I.D. Campbell, P.A. Handford. Solution structure of a pair of calcium-binding epidermal growth factor-like domains: implications for the Marfan syndrome and other genetic disorders. Cell, 85 (4) (1996), pp. 597-605.
|
[41] |
P.C. Weisshuhn, D. Sheppard, P. Taylor, P. Whiteman, S.M. Lea, P.A. Handford, et al. Non-linear and flexible regions of the human Notch 1 extracellular domain revealed by high-resolution structural studies. Structure, 24 (4) (2016), pp. 555-566.
|
[42] |
S. Kettle, X. Yuan, G. Grundy, V. Knott, A.K. Downing, P.A. Handford. Defective calcium binding to fibrillin-1: consequence of an N2144S change for fibrillin-1 structure and function. J Mol Biol, 285 (3) (1999), pp. 1277-1287.
|
[43] |
J.F. De Celis, A. Garcia-Bellido. Modifications of the Notch function by Abruptex mutations in Drosophila melanogaster. Genetics, 136 (1) (1994), pp. 183-194.
|
[44] |
I. Rebay, R.J. Fleming, R.G. Fehon, L. Cherbas, P. Cherbas, S. Artavanis-Tsakonas. Specific EGF repeats of Notch mediate interactions with Delta and Serrate: implications for notch as a multifunctional receptor. Cell, 67 (4) (1991), pp. 687-699.
|
[45] |
P. Taylor, H. Takeuchi, D. Sheppard, C. Chillakuri, S.M. Lea, R.S. Haltiwanger, et al. Fringe-mediated extension of O-linked fucose in the ligand-binding region of Notch 1 increases binding to mammalian Notch ligands. Proc Natl Acad Sci USA, 111 (20) (2014), pp. 7290-7295.
|
[46] |
M.R. Zeronian, O. Klykov, J. Portell i de Montserrat, M.J. Konijnenberg, A. Gaur, R.A. Scheltema, et al. Notch-Jagged signaling complex defined by an interaction mosaic. Proc Natl Acad Sci USA, 118 (30) (2021), e2102502118.
|
[47] |
K. Tiyanont, T.E. Wales, M. Aste-Amezaga, J.C. Aster, J.R. Engen, S.C. Blacklow. Evidence for increased exposure of the Notch1 metalloprotease cleavage site upon conversion to an activated conformation. Structure, 19 (4) (2011), pp. 546-554.
|
[48] |
M.D. Rand, L.M. Grimm, S. Artavanis-Tsakonas, V. Patriub, S.C. Blacklow, J. Sklar, et al. Calcium depletion dissociates and activates heterodimeric notch receptors. Mol Cell Biol, 20 (5) (2000), pp. 1825-1835.
|
[49] |
L. Morsut, K.T. Roybal, X. Xiong, R.M. Gordley, S.M. Coyle, M. Thomson, et al. Engineering customized cell sensing and response behaviors using synthetic Notch receptors. Cell, 164 (4) (2016), pp. 780-791.
|
[50] |
K.T. Roybal, L.J. Rupp, L. Morsut, W.J. Walker, K.A. McNally, J.S. Park, et al. Precision tumor recognition by T cells with combinatorial antigen sensing circuits. Cell, 164 (4) (2016), pp. 770-779.
|
[51] |
J.H. Cho, A. Okuma, D. Al-Rubaye, E. Intisar, R.P. Junghans, W.W. Wong. Engineering Axl specific CAR and SynNotch receptor for cancer therapy. Sci Rep, 8 (1) (2018), p. 3846.
|
[52] |
Z. Wang, F. Wang, J. Zhong, T. Zhu, Y. Zheng, T. Zhao, et al. Using apelin-based synthetic Notch receptors to detect angiogenesis and treat solid tumors. Nat Commun, 11 (1) (2020), p. 2163.
|
[53] |
A. Hyrenius-Wittsten, Y. Su, M. Park, J.M. Garcia, J. Alavi, N. Perry, et al. SynNotch CAR circuits enhance solid tumor recognition and promote persistent antitumor activity in mouse models. Sci Transl Med, 13 (591) (2021), eabd8836.
|
[54] |
J.H. Choe, P.B. Watchmaker, M.S. Simic, R.D. Gilbert, A.W. Li, N.A. Krasnow, et al. SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Sci Transl Med, 13 (591) (2021), eabe7378.
|
[55] |
D.C. Sloas, J.C. Tran, A.M. Marzilli, J.T. Ngo. Tension-tuned receptors for synthetic mechanotransduction and intercellular force detection. Nat Biotechnol, 2023 (9) (2023), pp. 1-9.
|
[56] |
Z.J. Yang, Z.Y. Yu, Y.M. Cai, R.R. Du, L. Cai. Engineering of an enhanced synthetic Notch receptor by reducing ligand-independent activation. Commun Bio, 3 (1) (2020), p. 116.
|
[57] |
A.N. Hayward, E.J. Aird, W.R. Gordon. A toolkit for studying cell surface shedding of diverse transmembrane receptors. eLife, 8 (2019), e46983.
|
[58] |
W.R. Gordon, B. Zimmerman, L. He, L.J. Miles, J. Huang, K. Tiyanont, et al. Mechanical allostery: evidence for a force requirement in the proteolytic activation of Notch. Dev Cell, 33 (6) (2015), pp. 729-736.
|
[59] |
A.L. Parks, K.M. Klueg, J.R. Stout, M.A. Muskavitch. Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development, 127 (7) (2000), pp. 1373-1385.
|
[60] |
J. Pei, N.V. Grishin. Expansion of divergent SEA domains in cell surface proteins and nucleoporin 54. Protein Sci, 26 (3) (2017), pp. 617-630.
|
[61] |
M.R. Kelley, S. Kidd, W.A. Deutsch, M.W. Young. Mutations altering the structure of epidermal growth factor-like coding sequences at the Drosophila Notch locus. Cell, 51 (4) (1987), pp. 539-548.
|
[62] |
P. Portin. Allelic negative complementation at the Abruptex locus of Drosophila melanogaster. Genetics, 81 (1) (1975), pp. 121-133.
|
[63] |
A.K. Ohlin, G. Landes, P. Bourdon, C. Oppenheimer, R. Wydro, J. Stenflo. Beta-hydroxyaspartic acid in the first epidermal growth factor-like domain of protein C. Its role in Ca2+ binding and biological activity. J Biol Chem, 263 (35) (1988), pp. 19240-19248.
|
[64] |
G.G. Foster. Negative complementation at the notch locus of Drosophila melanogaster. Genetics, 81 (1) (1975), pp. 99-120.
|
[65] |
C.R. Chillakuri, D. Sheppard, M.X. Ilagan, L.R. Holt, F. Abbott, S. Liang, et al. Structural analysis uncovers lipid-binding properties of Notch ligands. Cell Rep, 5 (4) (2013), pp. 861-867.
|
[66] |
R.H.P. Law, N. Lukoyanova, I. Voskoboinik, T.T. Caradoc-Davies, K. Baran, M.A. Dunstone, et al. The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature, 468 (7322) (2010), pp. 447-451.
|
[67] |
S. Corbalan-Garcia, J.C. Gómez-Fernández. Signaling through C2 domains: more than one lipid target. Biochim Biophys Acta, 1838 (6) (2014), pp. 1536-1547.
|
[68] |
Y. Hirano, Y.G. Gao, D.J. Stephenson, N.T. Vu, L. Malinina, D.K. Simanshu, et al. Structural basis of phosphatidylcholine recognition by the C2-domain of cytosolic phospholipase A2α. eLife, 8 (2019), e44760.
|
[69] |
N.J. Kershaw, N.L. Church, M.D.W. Griffin, C.S. Luo, T.E. Adams, A.W. Burgess. Notch ligand delta-like1: X-ray crystal structure and binding affinity. Biochem J, 468 (1) (2015), pp. 159-166.
|
[70] |
K. Shimizu, S. Chiba, K. Kumano, N. Hosoya, T. Takahashi, Y. Kanda, et al. Mouse Jagged 1 physically interacts with Notch2 and other Notch receptors. Assessment by quantitative methods. J Biol Chem, 274 (46) (1999), pp. 32961-32969.
|
[71] |
R.J. Fleming. Ligand-induced cis-inhibition of Notch signaling: the role of an extracellular region of Serrate. Adv Exp Med Biol, 1227 (2020), pp. 29-49.
|
[72] |
B. D’souza, A. Miyamoto, G. Weinmaster. The many facets of Notch ligands. Oncogene, 27 (38) (2008), pp. 5148-5167.
|
[73] |
T. Kiyota, T. Kinoshita. Cysteine-rich region of X-Serrate-1 is required for activation of Notch signaling in Xenopus primary neurogenesis. Int J Dev Biol, 46 (2002), pp. 1057-1060.
|
[74] |
S. Yamamoto, W.L. Charng, N.A. Rana, S. Kakuda, M. Jaiswal, V. Bayat, et al. A mutation in EGF repeat-8 of notch discriminates between Serrate/Jagged and delta family ligands. Science, 338 (6111) (2012), pp. 1229-1232.
|
[75] |
D. Gonzalez-Perez, S. Das, D. Antfolk, H.S. Ahsan, E. Medina, C.E. Dundes, et al. Affinity-matured DLL 4 ligands as broad-spectrum modulators of Notch signaling. Nat Chem Biol, 19 (1) (2023), pp. 9-17.
|
[76] |
K.D. Irvine, E. Wieschaus. Fringe, a boundary-specific signaling molecule, mediates interactions between dorsal and ventral cells during Drosophila wing development. Cell, 79 (4) (1994), pp. 595-606.
|
[77] |
K. Brückner, L. Perez, H. Clausen, S. Cohen. Glycosyltransferase activity of fringe modulates Notch-Delta interactions. Nature, 406 (6794) (2000), pp. 411-415.
|
[78] |
D.J. Moloney, V.M. Panin, S.H. Johnston, J. Chen, L. Shao, R. Wilson, et al. Fringe is a glycosyltransferase that modifies Notch. Nature, 406 (6794) (2000), pp. 369-375.
|
[79] |
H. Takeuchi, M. Schneider, D.B. Williamson, A. Ito, M. Takeuchi, P.A. Handford, et al. Two novel protein O-glucosyltransferases that modify sites distinct from POGLUT1 and affect Notch trafficking and signaling. Proc Natl Acad Sci USA, 115 (36) (2018), pp. E8395-E8402.
|
[80] |
M.B. Andrawes, X. Xu, H. Liu, S.B. Ficarro, J.A. Marto, J.C. Aster, et al. Intrinsic selectivity of Notch 1 for Delta-like 4 over Delta-like 1. J Biol Chem, 288 (35) (2013), pp. 25477-25489.
|
[81] |
F. Pennarubia, A. Ito, M. Takeuchi, R.S. Haltiwanger. Cancer-associated Notch receptor variants lead to O-fucosylation defects that deregulate Notch signaling. J Biol Chem, 298 (12) (2022), 102616.
|
[82] |
Y. Yokoi, S.I. Nishimura. Effect of site-specific O-glycosylation on the structural behavior of NOTCH1 receptor extracellular EGF-like domains 11 and 10. Chemistry, 26 (54) (2020), pp. 12363-12372.
|
[83] |
W. Saiki, C. Ma, T. Okajima, H. Takeuchi. Current views on the roles of O-glycosylation in controlling notch-ligand interactions. Biomolecules, 11 (2) (2021), p. 309.
|
[84] |
H. Takeuchi, R.S. Haltiwanger. Role of glycosylation of Notch in development. Semin Cell Dev Biol, 21 (6) (2010), pp. 638-645.
|
[85] |
Y. Wang, G.F. Lee, R.F. Kelley, M.W. Spellman. Identification of a GDP-L-fucose: polypeptide fucosyltransferase and enzymatic addition of O-linked fucose to EGF domains. Glycobiology, 6 (8) (1996), pp. 837-842.
|
[86] |
Y. Wang, L. Shao, S. Shi, R.J. Harris, M.W. Spellman, P. Stanley, et al. Modification of epidermal growth factor-like repeats with O-fucose. Molecular cloning and expression of a novel GDP-fucose protein O-fucosyltransferase. J Biol Chem, 276 (2001), pp. 40338-40345.
|
[87] |
B.C. Holdener, R.S. Haltiwanger. Protein O-fucosylation: structure and function. Curr Opin Struct Biol, 56 (2019), pp. 78-86.
|
[88] |
S.H. Johnston, C. Rauskolb, R. Wilson, B. Prabhakaran, K.D. Irvine, T.F. Vogt. A family of mammalian fringe genes implicated in boundary determination and the Notch pathway. Development, 124 (11) (1997), pp. 2245-2254.
|
[89] |
B. Cohen, A. Bashirullah, L. Dagnino, C. Campbell, W.W. Fisher, C.C. Leow, et al. Fringe boundaries coincide with Notch-dependent patterning centres in mammals and alter Notch-dependent development in Drosophila. Nat Genet, 16 (3) (1997), pp. 283-288.
|
[90] |
L. LeBon, T.V. Lee, D. Sprinzak, H. Jafar-Nejad, M.B. Elowitz. Fringe proteins modulate Notch-ligand cis and trans interactions to specify signaling states. eLife, 3 (2014), e02950.
|
[91] |
A. Pandey, B.M. Harvey, M.F. Lopez, A. Ito, R.S. Haltiwanger, H. Jafar-Nejad. Glycosylation of specific Notch EGF repeats by O-Fut1 and fringe regulates Notch signaling in Drosophila. Cell Rep, 29 (7) (2019), pp. 2054-2066.e6.
|
[92] |
S. Kakuda, R.S. Haltiwanger. Deciphering the fringe-mediated Notch code: identification of activating and inhibiting sites allowing discrimination between ligands. Dev Cell, 40 (2) (2017), pp. 193-201.
|
[93] |
M. Schneider, V. Kumar, L.U. Nordstrøm, L. Feng, H. Takeuchi, H. Hao, et al. Inhibition of Delta-induced Notch signaling using fucose analogs. Nat Chem Biol, 14 (1) (2018), pp. 65-71.
|
[94] |
M. Acar, H. Jafar-Nejad, H. Takeuchi, A. Rajan, D. Ibrani, N.A. Rana, et al. Rumi is a CAP 10 domain glycosyltransferase that modifies Notch and is required for Notch signaling. Cell, 132 (2) (2008), pp. 247-258.
|
[95] |
H. Takeuchi, R.C. Fernández-Valdivia, D.S. Caswell, A. Nita-Lazar, N.A. Rana, T.P. Garner, et al. Rumi functions as both a protein O-glucosyltransferase and a protein O-xylosyltransferase. Proc Natl Acad Sci USA, 108 (40) (2011), pp. 16600-16605.
|
[96] |
D.J. Moloney, L.H. Shair, F.M. Lu, J. Xia, R. Locke, K.L. Matta, et al. Mammalian Notch 1 is modified with two unusual forms of O-linked glycosylation found on epidermal growth factor-like modules*. J Biol Chem, 275 (13) (2000), pp. 9604-9611.
|
[97] |
L. Shao, Y. Luo, D.J. Moloney, R.S. Haltiwanger. O-glycosylation of EGF repeats: identification and initial characterization of a UDP-glucose: protein O-glucosyltransferase. Glycobiology, 12 (11) (2002), pp. 763-770.
|
[98] |
N.A. Rana, A. Nita-Lazar, H. Takeuchi, S. Kakuda, K.B. Luther, R.S. Haltiwanger. O-glucose trisaccharide is present at high but variable stoichiometry at multiple sites on mouse Notch1. J Biol Chem, 286 (36) (2011), pp. 31623-31637.
|
[99] |
Z. Li, M. Fischer, M. Satkunarajah, D. Zhou, S.G. Withers, J.M. Rini. Structural basis of Notch O-glucosylation and O-xylosylation by mammalian protein-O-glucosyltransferase 1 (POGLUT1). Nat Commun, 8 (1) (2017), p. 185.
|
[100] |
D.B. Williamson, R.S. Haltiwanger. Identification, function, and biological relevance of POGLUT2 and POGLUT3. Biochem Soc Trans, 50 (2) (2022), pp. 1003-1012.
|
[101] |
B.M. Harvey, N.A. Rana, H. Moss, J. Leonardi, H. Jafar-Nejad, R.S. Haltiwanger. Mapping sites of O-glycosylation and fringe elongation on Drosophila Notch. J Biol Chem, 291 (31) (2016), pp. 16348-16360.
|
[102] |
T.V. Lee, M.K. Sethi, J. Leonardi, N.A. Rana, F.F.R. Buettner, R.S. Haltiwanger, et al. Negative regulation of Notch signaling by Xylose. PLoS Genet, 9 (6) (2013), e1003547.
|
[103] |
R. Fernandez-Valdivia, H. Takeuchi, A. Samarghandi, M. Lopez, J. Leonardi, R.S. Haltiwanger, et al. Regulation of mammalian Notch signaling and embryonic development by the protein O-glucosyltransferase Rumi. Development, 138 (10) (2011), pp. 1925-1934.
|
[104] |
J. Leonardi, R. Fernandez-Valdivia, Y.D. Li, A.A. Simcox, H. Jafar-Nejad. Multiple O-glucosylation sites on Notch function as a buffer against temperature-dependent loss of signaling. Development, 138 (16) (2011), pp. 3569-3578.
|
[105] |
C.N. Perdigoto, F. Schweisguth, A.J. Bardin. Distinct levels of Notch activity for commitment and terminal differentiation of stem cells in the adult fly intestine. Development, 138 (21) (2011), pp. 4585-4595.
|
[106] |
A. Pandey, N. Niknejad, H. Jafar-Nejad. Multifaceted regulation of Notch signaling by glycosylation. Glycobiology, 31 (2021), pp. 8-28.
|
[107] |
T. Lieber, S. Kidd, M.W. Young. Kuzbanian-mediated cleavage of Drosophila Notch. Genes Dev, 16 (2) (2002), pp. 209-221.
|
[108] |
H. Jafar-Nejad, J. Leonardi, R. Fernandez-Valdivia. Role of glycans and glycosyltransferases in the regulation of Notch signaling. Glycobiology, 20 (8) (2010), pp. 931-949.
|
[109] |
N. Ramkumar, B.M. Harvey, J.D. Lee, H.L. Alcorn, N.F. Silva-Gagliardi, C.J. McGlade, et al. Protein O-glucosyltransferase 1 (POGLUT1) promotes mouse gastrulation through modification of the apical polarity protein CRUMBS2. PLoS Genet, 11 (10) (2015), e1005551.
|
[110] |
E. Servián-Morilla, H. Takeuchi, T.V. Lee, J. Clarimon, F. Mavillard, E. Area-Gómez, et al. A POGLUT 1 mutation causes a muscular dystrophy with reduced Notch signaling and satellite cell loss. EMBO Mol Med, 8 (11) (2016), pp. 1289-1309.
|
[111] |
E. Servián-Morilla, M. Cabrera-Serrano, K. Johnson, A. Pandey, A. Ito, E. Rivas, et al. POGLUT 1 biallelic mutations cause myopathy with reduced satellite cells, α-dystroglycan hypoglycosylation and a distinctive radiological pattern. Acta Neuropathol, 139 (3) (2020), pp. 565-582.
|
[112] |
W. Ma, J. Du, Q. Chu, Y. Wang, L. Liu, M. Song, et al. hCLP 46 regulates U937 cell proliferation via Notch signaling pathway. Biochem Biophys Res Commun, 408 (1) (2011), pp. 84-88.
|
[113] |
Q. Chu, L. Liu, W. Wang. Overexpression of hCLP46 enhances Notch activation and regulates cell proliferation in a cell type-dependent manner. Cell Prolif, 46 (3) (2013), pp. 254-262.
|
[114] |
A. Matsuura, M. Ito, Y. Sakaidani, T. Kondo, K. Murakami, K. Furukawa, et al. O-linked N-acetylglucosamine is present on the extracellular domain of notch receptors. J Biol Chem, 283 (51) (2008), pp. 35486-35495.
|
[115] |
Y. Sakaidani, T. Nomura, A. Matsuura, M. Ito, E. Suzuki, K. Murakami, et al. O-linked-N-acetylglucosamine on extracellular protein domains mediates epithelial cell-matrix interactions. Nat Commun, 2 (1) (2011), p. 583.
|
[116] |
M. Ogawa, Y. Senoo, K. Ikeda, H. Takeuchi, T. Okajima. Structural divergence in O-GlcNAc glycans displayed on epidermal growth factor-like repeats of mammalian Notch1. Molecules, 23 (7) (2018), p. 1745.
|
[117] |
M. Ogawa, T. Okajima. Structure and function of extracellular O-GlcNAc. Curr Opin Struct Biol, 56 (2019), pp. 72-77.
|
[118] |
Y. Sakaidani, N. Ichiyanagi, C. Saito, T. Nomura, M. Ito, Y. Nishio, et al. O-linked-N-acetylglucosamine modification of mammalian Notch receptors by an atypical O-GlcNAc transferase Eogt1. Biochem Biophys Res Commun, 419 (1) (2012), pp. 14-19.
|
[119] |
R. Müller, A. Jenny, P. Stanley. The EGF repeat-specific O-GlcNAc-transferase Eogt interacts with notch signaling and pyrimidine metabolism pathways in Drosophila. PLoS One, 8 (5) (2013), p. e62835.
|
[120] |
S. Varshney, P. Stanley. Multiple roles for O-glycans in Notch signalling. FEBS Lett, 592 (23) (2018), pp. 3819-3834.
|
[121] |
S. Sawaguchi, S. Varshney, M. Ogawa, Y. Sakaidani, H. Yagi, K. Takeshita, et al. O-GlcNAc on NOTCH 1 EGF repeats regulates ligand-induced Notch signaling and vascular development in mammals. eLife, 6 (2017), p. e24419.
|
[122] |
V.M. Panin, L. Shao, L. Lei, D.J. Moloney, K.D. Irvine, R.S. Haltiwanger. Notch ligands are substrates for protein O-fucosyltransferase-1 and Fringe. J Biol Chem, 277 (33) (2002), pp. 29945-29952.
|
[123] |
S.M. Thakurdas, M.F. Lopez, S. Kakuda, R. Fernandez-Valdivia, N. Zarrin-Khameh, R.S. Haltiwanger, et al. Jagged1 heterozygosity in mice results in a congenital cholangiopathy which is reversed by concomitant deletion of one copy of Poglut1 (Rumi). Hepatology, 63 (2) (2016), pp. 550-565.
|
[124] |
X. Sun, S. Artavanis-Tsakonas. The intracellular deletions of Delta and Serrate define dominant negative forms of the Drosophila Notch ligands. Development, 122 (8) (1996), pp. 2465-2474.
|
[125] |
X. Sun, S. Artavanis-Tsakonas. Secreted forms of DELTA and SERRATE define antagonists of Notch signaling in Drosophila. Development, 124 (17) (1997), pp. 3439-3448.
|
[126] |
C.A. Poodry. Shibire, a neurogenic mutant of Drosophila. Dev Biol, 138 (2) (1990), pp. 464-472.
|
[127] |
L. Meloty-Kapella, B. Shergill, J. Kuon, E. Botvinick, G. Weinmaster. Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins, and actin. Dev Cell, 22 (6) (2012), pp. 1299-1312.
|
[128] |
R. Le Borgne, A. Bardin, F. Schweisguth. The roles of receptor and ligand endocytosis in regulating Notch signaling. Development, 132 (8) (2005), pp. 1751-1762.
|
[129] |
G.A. Deblandre, E.C. Lai, C. Kintner. Xenopus neuralized is a ubiquitin ligase that interacts with XDelta1 and regulates Notch signaling. Dev Cell, 1 (6) (2001), pp. 795-806.
|
[130] |
M. Itoh, C.H. Kim, G. Palardy, T. Oda, Y.J. Jiang, D. Maust, et al. Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Dev Cell, 4 (1) (2003), pp. 67-82.
|
[131] |
X. Xie, B. Cho, J.A. Fischer. Drosophila Epsin’s role in Notch ligand cells requires three Epsin protein functions: the lipid binding function of the ENTH domain, a single ubiquitin interaction motif, and a subset of the C-terminal protein binding modules. Dev Biol, 363 (2) (2012), pp. 399-412.
|
[132] |
W. Wang, G. Struhl. Drosophila Epsin mediates a select endocytic pathway that DSL ligands must enter to activate Notch. Development, 131 (21) (2004), pp. 5367-5380.
|
[133] |
W. Wang, G. Struhl. Distinct roles for mind bomb, neuralized and spsin in mediating DSL endocytosis and signaling in Drosophila. Development, 132 (12) (2005), pp. 2883-2894.
|
[134] |
M. Okano, H. Matsuo, Y. Nishimura, K. Hozumi, S. Yoshioka, A. Tonoki, et al. Mib 1 modulates dynamin 2 recruitment via Snx18 to promote Dll1 endocytosis for efficient Notch signaling. Genes Cells, 21 (5) (2016), pp. 425-441.
|
[135] |
L. Seugnet, P. Simpson, M. Haenlin. Requirement for dynamin during notch signaling in Drosophila neurogenesis. Dev Biol, 192 (2) (1997), pp. 585-598.
|
[136] |
S.L. Windler, D. Bilder. Endocytic internalization routes required for Delta/Notch signaling. Curr Biol, 20 (6) (2010), pp. 538-543.
|
[137] |
J.P. Couso, E. Knust, A.A. Martinez. Serrate and wingless cooperate to induce vestigial gene expression and wing formation in Drosophila. Curr Biol, 5 (12) (1995), pp. 1437-1448.
|
[138] |
M. Glittenberg, C. Pitsouli, C. Garvey, C. Delidakis, S. Bray. Role of conserved intracellular motifs in Serrate signalling, cis-inhibition and endocytosis. EMBO J, 25 (20) (2006), pp. 4697-4706.
|
[139] |
G. Chapman, J.A. Major, K. Iyer, A.C. James, S.E. Pursglove, J.L.M. Moreau, et al. Notch 1 endocytosis is induced by ligand and is required for signal transduction. Biochim Biophys Acta, 1863 (1) (2016), pp. 166-177.
|
[140] |
P. Chastagner, E. Rubinstein, C. Brou. Ligand-activated Notch undergoes DTX4-mediated ubiquitylation and bilateral endocytosis before ADAM10 processing. Sci Signal, 10 (483) (2017), eaag2989.
|
[141] |
S.A. Mohamed, Z. Aherrahrou, H. Liptau, A.W. Erasmi, C. Hagemann, S. Wrobel, et al. Novel missense mutations (p. T596M and p. P1797H) in NOTCH1 in patients with bicuspid aortic valve. Biochem Biophys Res Commun, 345 (4) (2006), pp. 1460-1465.
|
[142] |
S.H. McKellar, D.J. Tester, M. Yagubyan, R. Majumdar, M.J. Ackerman, T.M. Sundt. III. Novel NOTCH1 mutations in patients with bicuspid aortic valve disease and thoracic aortic aneurysms. J Thorac Cardiovasc Surg, 134 (2) (2007), pp. 290-296.
|
[143] |
K.L. McBride, M.F. Riley, G.A. Zender, S.M. Fitzgerald-Butt, J.A. Towbin, J.W. Belmont, et al. NOTCH1 mutations in individuals with left ventricular outflow tract malformations reduce ligand-induced signaling. Hum Mol Genet, 17 (18) (2008), pp. 2886-2893.
|
[144] |
J.L. Theis, S.C.L. Hrstka, J.M. Evans, M.M. O’Byrne, M. de Andrade, P.W. O’Leary, et al. Compound heterozygous NOTCH1 mutations underlie impaired cardiogenesis in a patient with hypoplastic left heart syndrome. Hum Genet, 134 (9) (2015), pp. 1003-1011.
|
[145] |
N. Dargis, M. Lamontagne, N. Gaudreault, L. Sbarra, C. Henry, P. Pibarot, et al. Identification of gender-specific genetic variants in patients with bicuspid aortic valve. Am J Cardiol, 117 (3) (2016), pp. 420-426.
|
[146] |
E. Girdauskas, L. Geist, K. Disha, I. Kazakbaev, T. Groß, S. Schulz, et al. Genetic abnormalities in bicuspid aortic valve root phenotype: preliminary results. Eur J Cardiothorac Surg, 52 (1) (2017), pp. 156-162.
|
[147] |
L. Torres-Juan, Y. Rico, E. Fortuny, J. Pons, R. Ramos, F. Santos-Simarro, et al. NOTCH1 gene as a novel cause of thoracic aortic aneurysm in patients with tricuspid aortic valve: two cases reported. Int J Mol Sci, 24 (10) (2023), p. 8644.
|
[148] |
A.B. Stittrich, A. Lehman, D.L. Bodian, J. Ashworth, Z. Zong, H. Li, et al. Mutations in NOTCH1 cause Adams-Oliver syndrome. Am J Hum Genet, 95 (3) (2014), pp. 275-284.
|
[149] |
L. Southgate, M. Sukalo, A.S.V. Karountzos, E.J. Taylor, C.S. Collinson, D. Ruddy, et al. Haploinsufficiency of the NOTCH 1 receptor as a cause of Adams-Oliver syndrome with variable cardiac anomalies. Circ Cardiovasc Genet, 8 (4) (2015), pp. 572-581.
|
[150] |
J.A.N. Meester, M. Sukalo, K.C. Schröder, D. Schanze, G. Baynam, G. Borck, et al. Elucidating the genetic architecture of Adams-Oliver syndrome in a large European cohort. Hum Mutat, 39 (9) (2018), pp. 1246-1261.
|
[151] |
M.A. Gilbert, R.C. Bauer, R. Rajagopalan, C.M. Grochowski, G. Chao, D. McEldrew, et al. Alagille syndrome mutation update: comprehensive overview of JAG1 and NOTCH2 mutation frequencies and insight into missense variant classification. Hum Mutat, 40 (12) (2019), pp. 2197-2220.
|
[152] |
Kamath BM, Bauer RC, Loomes KM, Chao G, Gerfen J, Hutchinson A, et al. NOTCH2 mutations in Alagille syndrome. J Med Genet 2012;49:138-44.
|
[153] |
Y. ShenTu, X. Mi, D. Tang, Y. Jiang, L. Gao, X. Ma, et al. Alagille syndrome caused by NOTCH2 mutation presented atypical pathological changes. Clin Chim Acta, 521 (2021), pp. 258-263.
|
[154] |
M.S. Uddin, S.A. Fulayyih, F.F.A. Denaini, M.M.A. Hatlani. Pathogenic novel heterozygous variant c.1076c>T p. (Ser359Phe) chr1: 120512166 in NOTCH2 gene, type 2 alagille syndrome causing neonatal cholestasis: a case report. Am J Case Rep, 23 (2022), e935840.
|
[155] |
Z.D. Li, K. Abuduxikuer, L. Wang, C.Z. Hao, J. Zhang, M.X. Wang, et al. Defining pathogenicity of NOTCH2 variants for diagnosis of Alagille syndrome type 2 using a large cohort of patients. Liver Int, 42 (8) (2022), pp. 1836-1848.
|
[156] |
J. Li, H. Wu, S. Chen, J. Pang, H. Wang, X. Li, et al. Clinical and genetic characteristics of Alagille syndrome in adults. J Clin Transl Hepatol, 11 (2023), pp. 156-162.
|
[157] |
A. Joutel, C. Corpechot, A. Ducros, K. Vahedi, H. Chabriat, P. Mouton, et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature, 383 (6602) (1996), pp. 707-710.
|
[158] |
K. Coupland, U. Lendahl, H. Karlström. Role of NOTCH3 mutations in the cerebral small vessel disease cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke, 49 (11) (2018), pp. 2793-2800.
|
[159] |
M. Mukai, I. Mizuta, A. Watanabe-Hosomi, T. Koizumi, J. Matsuura, A. Hamano, et al. Genotype-phenotype correlations and effect of mutation location in Japanese CADASIL patients. J Hum Genet, 65 (8) (2020), pp. 637-646.
|
[160] |
T. Mizuno, I. Mizuta, A. Watanabe-Hosomi, M. Mukai, T. Koizumi. Clinical and genetic aspects of CADASIL. Front Aging Neurosci, 12 (2020), p. 91.
|
[161] |
C.A. Rodriguez, O.J.H. Fustes, C.B.T. Arteaga. A novel Notch 3 mutation (pathogenic variant c.1565G>C) in CADASIL. Neurologia, 37 (3) (2022), pp. 235-236.
|
[162] |
W. Ni, Y. Zhang, L. Zhang, J.J. Xie, H.F. Li, Z.Y. Wu. Genetic spectrum of NOTCH3 and clinical phenotype of CADASIL patients in different populations. CNS Neurosci Ther, 28 (11) (2022), pp. 1779-1789.
|
[163] |
J. Wei, G.P. Hemmings. The NOTCH4 locus is associated with susceptibility to schizophrenia. Nat Genet, 25 (4) (2000), pp. 376-377.
|
[164] |
C.J. Cardinale, D. Li, L. Tian, J.J. Connolly, M.E. March, C. Hou, et al. Association of a rare NOTCH4 coding variant with systemic sclerosis: a family-based whole exome sequencing study. BMC Musculoskelet Disord, 17 (1) (2016), p. 462.
|
[165] |
B. Fischer-Zirnsak, L. Segebrecht, M. Schubach, P. Charles, E. Alderman, K. Brown, et al. Haploinsufficiency of the Notch ligand DLL 1 causes variable neurodevelopmental disorders. Am J Hum Genet, 105 (3) (2019), pp. 631-639.
|
[166] |
H. Chabriat, A. Joutel, M. Dichgans, E. Tournier-Lasserve, M.G. Bousser. Cadasil. Lancet Neurol, 8 (7) (2009), pp. 643-653.
|
[167] |
H. Karlström, P. Beatus, K. Dannaeus, G. Chapman, U. Lendahl, J. Lundkvist. A CADASIL-mutated Notch 3 receptor exhibits impaired intracellular trafficking and maturation but normal ligand-induced signaling. Proc Natl Acad Sci USA, 99 (26) (2002), pp. 17119-17124.
|
[168] |
T. Pippucci, A. Maresca, P. Magini, G. Cenacchi, V. Donadio, F. Palombo, et al. Homozygous NOTCH3 null mutation and impaired NOTCH 3 signaling in recessive early-onset arteriopathy and cavitating leukoencephalopathy. EMBO Mol Med, 7 (6) (2015), pp. 848-858.
|
[169] |
C. Klein, S. Schreyer, F.E. Kohrs, P. Elhamoury, A. Pfeffer, T. Munder, et al. Stimulation of adult hippocampal neurogenesis by physical exercise and enriched environment is disturbed in a CADASIL mouse model. Sci Rep, 7 (1) (2017), p. 45372.
|
[170] |
J.W. Rutten, B.J. Van Eijsden, M. Duering, E. Jouvent, C. Opherk, L. Pantoni, et al. The effect of NOTCH3 pathogenic variant position on CADASIL disease severity: NOTCH3 EGFR 1-6 pathogenic variant are associated with a more severe phenotype and lower survival compared with EGFR 7-34 pathogenic variant. Genet Med, 21 (3) (2019), pp. 676-682.
|
[171] |
S.A. Jensen, S. Iqbal, A. Bulsiewicz, P.A. Handford. A microfibril assembly assay identifies different mechanisms of dominance underlying Marfan syndrome, stiff skin syndrome and acromelic dysplasias. Hum Mol Genet, 24 (15) (2015), pp. 4454-4463.
|
[172] |
V. Garg, A.N. Muth, J.F. Ransom, M.K. Schluterman, R. Barnes, I.N. King, et al. Mutations in NOTCH1 cause aortic valve disease. Nature, 437 (7056) (2005), pp. 270-274.
|
[173] |
O.J. Harrison, C. Torrens, K. Salhiyyah, A. Modi, N. Moorjani, P.A. Townsend, et al. Defective NOTCH signalling drives smooth muscle cell death and differentiation in bicuspid aortic valve aortopathy. Eur J Cardiothorac Surg, 56 (1) (2019), pp. 117-125.
|
[174] |
S. Sciacca, M. Pilato, G. Mazzoccoli, V. Pazienza, M. Vinciguerra. Anti-correlation between longevity gene SirT1 and Notch signaling in ascending aorta biopsies from patients with bicuspid aortic valve disease. Heart Vessels, 28 (2) (2013), pp. 268-275.
|
[175] |
L. Li, I.D. Krantz, Y. Deng, A. Genin, A.B. Banta, C.C. Collins, et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet, 16 (3) (1997), pp. 243-251.
|
[176] |
B.M. Kamath, N.B. Spinner, N.D. Rosenblum. Renal involvement and the role of Notch signalling in Alagille syndrome. Nat Rev Nephrol, 9 (7) (2013), pp. 409-418.
|
[177] |
J. Birtel, T. Eisenberger, M. Gliem, P.L. Müller, P. Herrmann, C. Betz, et al. Clinical and genetic characteristics of 251 consecutive patients with macular and cone/cone-rod dystrophy. Sci Rep, 8 (1) (2018), p. 4824.
|
[178] |
R. Fischetto, V.V. Palmieri, M.E. Tripaldi, A. Gaeta, A. Michelucci, M. Delvecchio, et al. Alagille syndrome: a novel mutation in JAG1 gene. Front Pediatr, 7 (2019), p. 199.
|
[179] |
L. Fabris, R. Fiorotto, C. Spirli, M. Cadamuro, V. Mariotti, M.J. Perugorria, et al. Pathobiology of inherited biliary diseases: a roadmap to understand acquired liver diseases. Nat Rev Gastroenterol Hepatol, 16 (8) (2019), pp. 497-511.
|
[180] |
S. Hankeova, N. Van Hul, J. Laznovsky, E. Verboven, K. Mangold, N. Hensens, et al. Sex differences and risk factors for bleeding in Alagille syndrome. EMBO Mol Med, 14 (12) (2022), p. e15809.
|
[181] |
S. Hankeova, J. Salplachta, T. Zikmund, M. Kavkova, N. Van Hul, A. Brinek, et al. DUCT reveals architectural mechanisms contributing to bile duct recovery in a mouse model for Alagille syndrome. eLife, 10 (2021), p. e60916.
|
[182] |
J.A.N. Meester, A. Verstraeten, M. Alaerts, D. Schepers, L. Van Laer, B.L. Loeys. Overlapping but distinct roles for NOTCH receptors in human cardiovascular disease. Clin Genet, 95 (1) (2019), pp. 85-94.
|
[183] |
L. Fabris, M. Cadamuro, M. Guido, C. Spirli, R. Fiorotto, M. Colledan, et al. Analysis of liver repair mechanisms in Alagille syndrome and biliary atresia reveals a role for Notch signaling. Am J Pathol, 171 (2) (2007), pp. 641-653.
|
[184] |
T. Kohsaka, Z. Yuan, S. Guo, M. Tagawa, A. Nakamura, M. Nakano, et al. The significance of human Jagged 1 mutations detected in severe cases of extrahepatic biliary atresia. Hepatology, 36 (4) (2002), pp. 904-912.
|
[185] |
C. Guarnaccia, S. Dhir, A. Pintar, S. Pongor. The tetralogy of Fallot-associated G274D mutation impairs folding of the second epidermal growth factor repeat in Jagged-1. FEBS J, 276 (21) (2009), pp. 6247-6257.
|
[186] |
Z.A. Eldadah, A. Hamosh, N.J. Biery, R.A. Montgomery, M. Duke, R. Elkins, et al. Familial tetralogy of Fallot caused by mutation in the Jagged1 gene. Hum Mol Genet, 10 (2) (2001), pp. 163-169.
|
[187] |
R.C. Bauer, A.O. Laney, R. Smith, J. Gerfen, J.J.D. Morrissette, S. Woyciechowski, et al. Jagged 1 (JAG1) mutations in patients with tetralogy of Fallot or pulmonic stenosis. Hum Mutat, 31 (5) (2010), pp. 594-601.
|
[188] |
J.M. Sullivan, W.W. Motley, J.O. Johnson, W.H. Aisenberg, K.L. Marshall, K.E. Barwick, et al. Dominant mutations of the Notch ligand Jagged 1 cause peripheral neuropathy. J Clin Invest, 130 (3) (2020), pp. 1506-1512.
|
[189] |
S.S.J. Lee, V. Knott, J. Jovanović, K. Harlos, J.M. Grimes, L. Choulier, et al. Structure of the integrin binding fragment from fibrillin-1 gives new insights into microfibril organization. Structure, 12 (4) (2004), pp. 717-729.
|
[190] |
S. Coppens, A.M. Barnard, S. Puusepp, S. Pajusalu, K. Õunap, D. Vargas-Franco, et al. A form of muscular dystrophy associated with pathogenic variants in JAG2. Am J Hum Genet, 108 (5) (2021), pp. 840-856.
|
[191] |
D.B. Sparrow, G. Chapman, M.A. Wouters, N.V. Whittock, S. Ellard, D. Fatkin, et al. Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Am J Hum Genet, 78 (1) (2006), pp. 28-37.
|
[192] |
N. Otomo, S. Mizumoto, H.F. Lu, K. Takeda, B. Campos-Xavier, L. Mittaz-Crettol, et al. Identification of novel LFNG mutations in spondylocostal dysostosis. J Hum Genet, 64 (3) (2019), pp. 261-264.
|
[193] |
M.P. Bulman, K. Kusumi, T.M. Frayling, C. McKeown, C. Garrett, E.S. Lander, et al. Mutations in the human Delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat Genet, 24 (4) (2000), pp. 438-441.
|
[194] |
F.H. Adams, C.P. Oliver. Hereditary deformities in man. J Hered, 36 (1) (1945), pp. 3-7.
|
[195] |
J.A.N. Meester, L. Southgate, A.B. Stittrich, H. Venselaar, S.J.A. Beekmans, N. Den Hollander, et al. Heterozygous loss-of-function mutations in DLL 4 cause Adams-Oliver syndrome. Am J Hum Genet, 97 (3) (2015), pp. 475-482.
|
[196] |
M. Nagasaka, M. Taniguchi-Ikeda, H. Inagaki, Y. Ouchi, D. Kurokawa, K. Yamana, et al. Novel missense mutation in DLL4 in a Japanese sporadic case of Adams-Oliver syndrome. J Hum Genet, 62 (9) (2017), pp. 851-855.
|
[197] |
K. Rojnueangnit, T. Phawan, T. Khetkham, W. Techasatid, B. Sirichongkolthong. A novel DLL4 mutation in Adams-Oliver syndrome with absence of the right pulmonary artery in newborn. Am J Med Genet A, 188 (2) (2022), pp. 658-664.
|
[198] |
M. Umair, M. Younus, S. Shafiq, A. Nayab, M. Alfadhel. Clinical genetics of spondylocostal dysostosis: a mini review. Front Genet, 13 (2022), 996364.
|
[199] |
K. Kusumi, M.S. Mimoto, K.L. Covello, R.S.P. Beddington, R. Krumlauf, S.L. Dunwoodie. Dll 3 pudgy mutation differentially disrupts dynamic expression of somite genes. Genesis, 39 (2) (2004), pp. 115-121.
|
[200] |
M.Z. Mehboob, M. Lang. Structure, function, and pathology of protein O-glucosyltransferases. Cell Death Dis, 12 (1) (2021), p. 71.
|
[201] |
C. Stephan, M. Kurban, O. Abbas. Dowling-Degos disease: a review. Int J Dermatol, 60 (8) (2021), pp. 944-950.
|
[202] |
F. Buket Basmanav, A.M. Oprisoreanu, S.M. Pasternack, H. Thiele, G. Fritz, J. Wenzel, et al. Mutations in POGLUT1, encoding protein O-glucosyltransferase 1, cause autosomal-dominant Dowling-Degos disease. Am J Hum Genet, 91 (1) (2014), pp. 135-143.
|
[203] |
B.J. McMillan, B. Zimmerman, E.D. Egan, M. Lofgren, X. Xu, A. Hesser, et al. Structure of human POFUT1, its requirement in ligand-independent oncogenic Notch signaling, and functional effects of Dowling-Degos mutations. Glycobiology, 27 (8) (2017), pp. 777-786.
|
[204] |
M. Li, R. Cheng, J. Liang, H. Yan, H. Zhang, L. Yang, et al. Mutations in POFUT1, encoding protein O-fucosyltransferase 1, cause generalized Dowling-Degos disease. Am J Hum Genet, 92 (6) (2013), pp. 895-903.
|
[205] |
R. Shaheen, M. Aglan, K. Keppler-Noreuil, E. Faqeih, S. Ansari, K. Horton, et al. Mutations in EOGT confirm the genetic heterogeneity of autosomal-recessive Adams-Oliver syndrome. Am J Hum Genet, 92 (4) (2013), pp. 598-604.
|
[206] |
A.P. Weng, A.A. Ferrando, W. Lee, J.P. Morris IV, L.B. Silverman, C. Sanchez-Irizarry, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science, 306 (5694) (2004), pp. 269-271.
|
[207] |
X. Xu, S.H. Choi, T. Hu, K. Tiyanont, R. Habets, A.J. Groot, et al. Insights into autoregulation of Notch 3 from structural and functional studies of its negative regulatory region. Structure, 23 (7) (2015), pp. 1227-1235.
|
[208] |
P. Van Vlierberghe, A. Ambesi-Impiombato, A. Perez-Garcia, J.E. Haydu, I. Rigo, M. Hadler, et al. ETV6 mutations in early immature human T cell leukemias. J Exp Med, 208 (13) (2011), pp. 2571-2579.
|
[209] |
J. Zhang, L. Ding, L. Holmfeldt, G. Wu, S.L. Heatley, D. Payne-Turner, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature, 481 (7380) (2012), pp. 157-163.
|
[210] |
M. Neumann, S. Heesch, C. Schlee, S. Schwartz, N. Gökbuget, D. Hoelzer, et al. Whole-exome sequencing in adult ETP—all reveals a high rate of DNMT3A mutations. Blood, 121 (23) (2013), pp. 4749-4752.
|
[211] |
D. Shimizu, T. Taki, A. Utsunomiya, H. Nakagawa, K. Nomura, Y. Matsumoto, et al. Detection of NOTCH1 mutations in adult T-cell leukemia/lymphoma and peripheral T-cell lymphoma. Int J Hematol, 85 (3) (2007), pp. 212-218.
|
[212] |
J. Pancewicz, J.M. Taylor, A. Datta, H.H. Baydoun, T.A. Waldmann, O. Hermine, et al. Notch signaling contributes to proliferation and tumor formation of human T-cell leukemia virus type 1-associated adult T-cell leukemia. Proc Natl Acad Sci USA, 107 (38) (2010), pp. 16619-16624.
|
[213] |
P. Sportoletti, S. Baldoni, L. Cavalli, B. Del Papa, E. Bonifacio, R. Ciurnelli, et al. NOTCH1 PEST domain mutation is an adverse prognostic factor in B-CLL. Br J Haematol, 151 (4) (2010), pp. 404-406.
|
[214] |
M. Di Ianni, S. Baldoni, E. Rosati, R. Ciurnelli, L. Cavalli, M.F. Martelli, et al. A new genetic lesion in B-CLL: a NOTCH1 PEST domain mutation. Br J Haematol, 146 (6) (2009), pp. 689-691.
|
[215] |
X.S. Puente, S. Beà, R. Valdés-Mas, N. Villamor, J. Gutiérrez-Abril, J.I. Martín-Subero, et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature, 526 (7574) (2015), pp. 519-524.
|
[216] |
X.S. Puente, M. Pinyol, V. Quesada, L. Conde, G.R. Ordóñez, N. Villamor, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature, 475 (7354) (2011), pp. 101-105.
|
[217] |
R. Kridel, B. Meissner, S. Rogic, M. Boyle, A. Telenius, B. Woolcock, et al. Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood, 119 (9) (2012), pp. 1963-1971.
|
[218] |
S. Beà, R. Valdés-Mas, A. Navarro, I. Salaverria, D. Martín-Garcia, P. Jares, et al. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proc Natl Acad Sci USA, 110 (45) (2013), pp. 18250-18255.
|
[219] |
M.J. Kiel, T. Velusamy, B.L. Betz, L. Zhao, H.G. Weigelin, M.Y. Chiang, et al. Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma. J Exp Med, 209 (9) (2012), pp. 1553-1565.
|
[220] |
D. Rossi, V. Trifonov, M. Fangazio, A. Bruscaggin, S. Rasi, V. Spina, et al. The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development. J Exp Med, 209 (9) (2012), pp. 1537-1551.
|
[221] |
G. Trøen, I. Wlodarska, A. Warsame, S. Hernández Llodrà, C. De Wolf-Peeters, J. Delabie. NOTCH2 mutations in marginal zone lymphoma. Haematologica, 93 (7) (2008), pp. 1107-1109.
|
[222] |
D.R. Robinson, S. Kalyana-Sundaram, Y.M. Wu, S. Shankar, X. Cao, B. Ateeq, et al. Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nat Med, 17 (12) (2011), pp. 1646-1651.
|
[223] |
A. Stoeck, S. Lejnine, A. Truong, L. Pan, H. Wang, C. Zang, et al. Discovery of biomarkers predictive of GSI response in triple-negative breast cancer and adenoid cystic carcinoma. Cancer Discov, 4 (10) (2014), pp. 1154-1167.
|
[224] |
A.S. Ho, K. Kannan, D.M. Roy, L.G.T. Morris, I. Ganly, N. Katabi, et al. The mutational landscape of adenoid cystic carcinoma. Nat Genet, 45 (7) (2013), pp. 791-798.
|
[225] |
P.J. Stephens, H.R. Davies, Y. Mitani, P. Van Loo, A. Shlien, P.S. Tarpey, et al. Whole exome sequencing of adenoid cystic carcinoma. J Clin Invest, 123 (7) (2013), pp. 2965-2968.
|
[226] |
J.M. Mosquera, A. Sboner, L. Zhang, C.L. Chen, Y.S. Sung, H.W. Chen, et al. Novel MIR143-NOTCH fusions in benign and malignant glomus tumors. Genes Chromosomes Cancer, 52 (11) (2013), pp. 1075-1087.
|
[227] |
N. Agrawal, M.J. Frederick, C.R. Pickering, C. Bettegowda, K. Chang, R.J. Li, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science, 333 (6046) (2011), pp. 1154-1157.
|
[228] |
N.J. Wang, Z. Sanborn, K.L. Arnett, L.J. Bayston, W. Liao, C.M. Proby, et al. Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc Natl Acad Sci USA, 108 (43) (2011), pp. 17761-17766.
|
[229] |
S. Durinck, C. Ho, N.J. Wang, W. Liao, L.R. Jakkula, E.A. Collisson, et al. Temporal dissection of tumorigenesis in primary cancers. Cancer Discov, 1 (2) (2011), pp. 137-143.
|
[230] |
Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature, 489 (7417) (2012), pp. 519-525.
|
[231] |
T. Rampias, P. Vgenopoulou, M. Avgeris, A. Polyzos, K. Stravodimos, C. Valavanis, et al. A new tumor suppressor role for the Notch pathway in bladder cancer. Nat Med, 20 (10) (2014), pp. 1199-1205.
|
[232] |
J. George, J.S. Lim, S.J. Jang, Y. Cun, L. Ozretić, G. Kong, et al. Comprehensive genomic profiles of small cell lung cancer. Nature, 524 (7563) (2015), pp. 47-53.
|
[233] |
Y. Song, L. Li, Y. Ou, Z. Gao, E. Li, X. Li, et al. Identification of genomic alterations in oesophageal squamous cell cancer. Nature, 509 (7498) (2014), pp. 91-95.
|
[234] |
D.J. Brat, R.G.W. Verhaak, K.D. Aldape, W.K.A. Yung, S.R. Salama, L.A.D. Cooper, et al. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med, 372 (26) (2015), pp. 2481-2498.
|
[235] |
A. Klinakis, C. Lobry, O. Abdel-Wahab, P. Oh, H. Haeno, S. Buonamici, et al. A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature, 473 (7346) (2011), pp. 230-233.
|
[236] |
J.C. Aster, W.S. Pear, S.C. Blacklow. The varied roles of Notch in cancer. Annu Rev Pathol, 12 (1) (2017), pp. 245-275.
|
[237] |
P. Bernasconi-Elias, T. Hu, D. Jenkins, B. Firestone, S. Gans, E. Kurth, et al. Characterization of activating mutations of NOTCH3 in T cell acute lymphoblastic leukemia and anti-leukemic activity of NOTCH 3 inhibitory antibodies. Oncogene, 35 (47) (2016), pp. 6077-6086.
|
[238] |
F. Bonfiglio, A. Bruscaggin, F. Guidetti, L. Terzi di Bergamo, M. Faderl, V. Spina, et al. Genetic and phenotypic attributes of splenic marginal zone lymphoma. Blood, 139 (5) (2022), pp. 732-747.
|
[239] |
J.H. Choi, J.T. Park, B. Davidson, P.J. Morin, I.M. Shih, T.L. Wang. Jagged-1 and Notch3 Juxtacrine loop regulates ovarian tumor growth and adhesion. Cancer Res, 68 (14) (2008), pp. 5716-5723.
|
[240] |
J. Gao, J. Liu, D. Fan, H. Xu, Y. Xiong, Y. Wang, et al. Up-regulated expression of Notch1 and Jagged 1 in human colon adenocarcinoma. Pathol Biol, 59 (6) (2011), pp. 298-302.
|
[241] |
D. Guo, J. Ye, L. Li, J. Dai, D. Ma, C. Ji. Down-regulation of Notch-1 increases co-cultured Jurkat cell sensitivity to chemotherapy. Leuk Lymphoma, 50 (2) (2009), pp. 270-278.
|
[242] |
A.M. Jubb, L. Browning, L. Campo, H. Turley, G. Steers, G. Thurston, et al. Expression of vascular Notch ligands Delta-like 4 and Jagged-1 in glioblastoma. Histopathology, 60 (5) (2012), pp. 740-747.
|
[243] |
E.J. Kim, S.O. Kim, X. Jin, S.W. Ham, J. Kim, J.B. Park, et al. Epidermal growth factor receptor variant III renders glioma cancer cells less differentiated by JAGGED1. Tumour Biol, 36 (4) (2015), pp. 2921-2928.
|
[244] |
M. Reedijk, S. Odorcic, L. Chang, H. Zhang, N. Miller, D.R. McCready, et al. High-level coexpression of JAG1 and NOTCH 1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res, 65 (18) (2005), pp. 8530-8537.
|
[245] |
S. Santagata, F. Demichelis, A. Riva, S. Varambally, M.D. Hofer, J.L. Kutok, et al. JAGGED 1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res, 64 (19) (2004), pp. 6854-6857.
|
[246] |
T.M. Strati, V. Kotoula, I. Kostopoulos, K. Manousou, C. Papadimitriou, G. Lazaridis, et al. Prognostic subcellular Notch2, Notch3 and Jagged 1 localization patterns in early triple-negative breast cancer. Anticancer Res, 37 (5) (2017), pp. 2323-2334.
|
[247] |
M. Sugiyama, E. Oki, Y. Nakaji, S. Tsutsumi, N. Ono, R. Nakanishi, et al. High expression of the Notch ligand Jagged-1 is associated with poor prognosis after surgery for colorectal cancer. Cancer Sci, 107 (11) (2016), pp. 1705-1716.
|
[248] |
V. Vaish, J. Kim, M. Shim. Jagged-2 (JAG2) enhances tumorigenicity and chemoresistance of colorectal cancer cells. Oncotarget, 8 (32) (2017), pp. 53262-53275.
|
[249] |
B. Westhoff, I.N. Colaluca, G. D’Ario, M. Donzelli, D. Tosoni, S. Volorio, et al. Alterations of the Notch pathway in lung cancer. Proc Natl Acad Sci USA, 106 (52) (2009), pp. 22293-22298.
|
[250] |
X. Yuan, H. Wu, H. Xu, N. Han, Q. Chu, S. Yu, et al. Meta-analysis reveals the correlation of Notch signaling with non-small cell lung cancer progression and prognosis. Sci Rep, 5 (1) (2015), p. 10338.
|
[251] |
C.G. Zheng, R. Chen, J.B. Xie, C.B. Liu, Z. Jin, C. Jin. Immunohistochemical expression of Notch1, Jagged1, NF-κB and MMP-9 in colorectal cancer patients and the relationship to clinicopathological parameters. Cancer Biomark, 15 (6) (2015), pp. 889-897.
|
[252] |
C. Zhu, Y.J. Ho, M.A. Salomao, D.H. Dapito, A. Bartolome, R.F. Schwabe, et al. Notch activity characterizes a common hepatocellular carcinoma subtype with unique molecular and clinicopathologic features. J Hepatol, 74 (3) (2021), pp. 613-626.
|
[253] |
J.S. Lim, A. Ibaseta, M.M. Fischer, B. Cancilla, G. O’Young, S. Cristea, et al. Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer. Nature, 545 (7654) (2017), pp. 360-364.
|
[254] |
L.W. Ellisen, J. Bird, D.C. West, A.L. Soreng, T.C. Reynolds, S.D. Smith, et al. TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell, 66 (4) (1991), pp. 649-661.
|
[255] |
M.J. Malecki, C. Sanchez-Irizarry, J.L. Mitchell, G. Histen, M.L. Xu, J.C. Aster, et al. Leukemia-associated mutations within the NOTCH 1 heterodimerization domain fall into at least two distinct mechanistic classes. Mol Cell Biol, 26 (12) (2006), pp. 4642-4651.
|
[256] |
R. Ferrarotto, Y. Mitani, L. Diao, I. Guijarro, J. Wang, P. Zweidler-McKay, et al. Activating NOTCH1 mutations define a distinct subgroup of patients with adenoid cystic carcinoma who have poor prognosis, propensity to bone and liver metastasis, and potential responsiveness to Notch1 inhibitors. J Clin Oncol, 35 (3) (2017), pp. 352-360.
|
[257] |
M.D. Ianni, S. Baldoni, E. Rosati, R. Ciurnelli, L. Cavalli, M.F. Martelli, et al. A new genetic lesion in B-CLL: a NOTCH1 PEST domain mutation. Br J Haematol, 146 (6) (2009), pp. 689-691.
|
[258] |
P.S. Hammerman, D. Voet, M.S. Lawrence, D. Voet, R. Jing, K. Cibulskis, et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature, 489 (7417) (2012), pp. 519-525.
|
[259] |
N. Stransky, A.M. Egloff, A.D. Tward, A.D. Kostic, K. Cibulskis, A. Sivachenko, et al. The mutational landscape of head and neck squamous cell carcinoma. Science, 333 (6046) (2011), pp. 1157-1160.
|
[260] |
M.P. Alcolea, P. Greulich, A. Wabik, J. Frede, B.D. Simons, P.H. Jones. Differentiation imbalance in single oesophageal progenitor cells causes clonal immortalization and field change. Nat Cell Biol, 16 (6) (2014), p. 615.
|
[261] |
W. Sawangarun, M. Mandasari, J. Aida, K. Morita, K. Kayamori, T. Ikeda, et al. Loss of Notch 1 predisposes oro-esophageal epithelium to tumorigenesis. Exp Cell Res, 372 (2) (2018), pp. 129-140.
|
[262] |
H. Boukhatmi, T. Martins, Z. Pillidge, T. Kamenova, S. Bray. Notch mediates inter-tissue communication to promote tumorigenesis. Curr Biol, 30 (10) (2020), pp. 1809-1820.e4.
|
[263] |
C.S. Nowell, F. Radtke. Notch as a tumour suppressor. Nat Rev Cancer, 17 (3) (2017), pp. 145-159.
|
[264] |
I. Martincorena, J.C. Fowler, A. Wabik, A.R.J. Lawson, F. Abascal, M.W.J. Hall, et al. Somatic mutant clones colonize the human esophagus with age. Science, 362 (6417) (2018), pp. 911-917.
|
[265] |
E. Abby, S.C. Dentro, M.W.J. Hall, J.C. Fowler, S.H. Ong, R. Sood, et al. Notch1 mutations drive clonal expansion in normal esophageal epithelium but impair tumor growth. Nat Gene, 55 (2) (2023), pp. 232-245.
|
[266] |
S. Zhang, W.C. Chung, G. Wu, S.E. Egan, L. Miele, K. Xu. Manic fringe promotes a claudin-low breast cancer phenotype through Notch-mediated PIK3CG induction. Cancer Res, 75 (10) (2015), pp. 1936-1943.
|
[267] |
S. Wang, M. Itoh, E. Shiratori, M. Ohtaka, S. Tohda. NOTCH activation promotes glycosyltransferase expression in human myeloid leukemia cells. Hematol Rep, 10 (3) (2018), 7576.
|
[268] |
C. Yang, J.F. Hu, Q. Zhan, Z.W. Wang, G. Li, J.J. Pan, et al. SHCBP 1 interacting with EOGT enhances O-GlcNAcylation of NOTCH1 and promotes the development of pancreatic cancer. Genomics, 113 (2) (2021), pp. 827-842.
|
[269] |
M.G. Libisch, M. Casás, M.L. Chiribao, P. Moreno, A. Cayota, E. Osinaga, et al. GALNT 11 as a new molecular marker in chronic lymphocytic leukemia. Gene, 533 (1) (2014), pp. 270-279.
|
[270] |
R. Barua, K. Mizuno, Y. Tashima, M. Ogawa, H. Takeuchi, A. Taguchi, et al. Bioinformatics and functional analyses implicate potential roles for EOGT and L-fringe in pancreatic cancers. Molecules, 26 (4) (2021), p. 882.
|
[271] |
Y. Wang, N. Chang, T. Zhang, H. Liu, W. Ma, Q. Chu, et al. Overexpression of human CAP10-like protein 46KD in T-acute lymphoblastic leukemia and acute myelogenous leukemia. Genet Test Mol Biomarkers, 14 (1) (2010), pp. 127-133.
|
[272] |
K. Xu, J. Usary, P.C. Kousis, A. Prat, D.Y. Wang, J.R. Adams, et al. Lunatic fringe deficiency cooperates with the Met/Caveolin gene amplicon to induce basal-like breast cancer. Cancer Cell, 21 (5) (2012), pp. 626-641.
|
[273] |
R.A. Kroes, G. Dawson, J.R. Moskal. Focused microarray analysis of glyco-gene expression in human glioblastomas. J Neurochem, 103 (Suppl 1) (2007), pp. 14-24.
|
[274] |
H. Larose, N. Prokoph, J.D. Matthews, M. Schlederer, S. Högler, A.F. Alsulami, et al. Whole exome sequencing reveals NOTCH1 mutations in anaplastic large cell lymphoma and points to Notch both as a key pathway and a potential therapeutic target. Haematologica, 106 (6) (2021), pp. 1693-1704.
|
[275] |
S. Majumder, J.S. Crabtree, T.E. Golde, L.M. Minter, B.A. Osborne, L. Miele. Targeting Notch in oncology: the path forward. Nat Rev Drug Discov, 20 (2) (2021), pp. 125-144.
|
[276] |
E.R. Andersson, U. Lendahl. Therapeutic modulation of Notch signalling—are we there yet?. Nat Rev Drug Discov, 13 (5) (2014), pp. 357-378.
|
[277] |
J. Ridgway, G. Zhang, Y. Wu, S. Stawicki, W.C. Liang, Y. Chanthery, et al. Inhibition of Dll 4 signalling inhibits tumour growth by deregulating angiogenesis. Nature, 444 (7122) (2006), pp. 1083-1087.
|
[278] |
I. Noguera-Troise, C. Daly, N.J. Papadopoulos, S. Coetzee, P. Boland, N.W. Gale, et al. Blockade of Dll 4 inhibits tumour growth by promoting non-productive angiogenesis. Nature, 444 (7122) (2006), pp. 1032-1037.
|
[279] |
M. Masiero, D. Li, P. Whiteman, C. Bentley, J. Greig, T. Hassanali, et al. Development of therapeutic anti-JAGGED 1 antibodies for cancer therapy. Mol Cancer Ther, 18 (11) (2019), pp. 2030-2042.
|
[280] |
L.S. Rosen, R. Wesolowski, R. Baffa, K.H. Liao, S.Y. Hua, B.L. Gibson, et al. A phase I, dose-escalation study of PF-06650808, an anti-Notch3 antibody-drug conjugate, in patients with breast cancer and other advanced solid tumors. Invest New Drugs, 38 (1) (2020), pp. 120-130.
|
[281] |
R. Lehal, J. Zaric, M. Vigolo, C. Urech, V. Frismantas, N. Zangger, et al. Pharmacological disruption of the Notch transcription factor complex. Proc Natl Acad Sci USA, 117 (28) (2020), pp. 16292-16301.
|
[282] |
E. Lopez Miranda, A. Stathis, D. Hess, F. Racca, D. Quon, J. Rodon, et al. Phase 1 study of CB-103, a novel first-in-class inhibitor of the CSL-NICD gene transcription factor complex in human cancers. J Clin Oncol 39 (15_suppl) (2021), p. 3020.
|
[283] |
A.G. Atanasov, S.B. Zotchev, V.M. Dirsch, C.T. Supuran. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov, 20 (3) (2021), pp. 200-216.
|
[284] |
Y. Cao, L. Yu, G. Dai, S. Zhang, Z. Zhang, T. Gao, et al. Cinobufagin induces apoptosis of osteosarcoma cells through inactivation of Notch signaling. Eur J Pharmacol, 794 (2017), pp. 77-84.
|
[285] |
M.S. Kang, S.H. Baek, Y.S. Chun, A.Z. Moore, N. Landman, D. Berman, et al. Modulation of lipid kinase PI4KIIα activity and lipid raft association of presenilin 1 underlies γ-secretase inhibition by ginsenoside (20S)-Rg3. J Biol Chem, 288 (29) (2013), pp. 20868-20882.
|
[286] |
B. Zhou, Z. Yan, R. Liu, P. Shi, S. Qian, X. Qu, et al. Prospective study of transcatheter arterial chemoembolization (TACE) with ginsenoside Rg 3 versus TACE alone for the treatment of patients with advanced hepatocellular carcinoma. Radiology, 280 (2) (2016), pp. 630-639.
|