使用深度学习在CTA扫描卷下实现主动脉夹层分类和直径测量的双功能系统

Zhihui Huang, Rui Wang, Hui Yu, Yifan Xu, Cheng Cheng, Guangwei Wang, Haosen Cao, Xiang Wei, Hai-Tao Zhang

工程(英文) ›› 2024, Vol. 34 ›› Issue (3) : 83-91.

PDF(2472 KB)
PDF(2472 KB)
工程(英文) ›› 2024, Vol. 34 ›› Issue (3) : 83-91. DOI: 10.1016/j.eng.2023.11.014
研究论文
Article

使用深度学习在CTA扫描卷下实现主动脉夹层分类和直径测量的双功能系统

作者信息 +

A Dual-Functional System for the Classification and Diameter Measurement of Aortic Dissections Using CTA Volumes via Deep Learning

Author information +
History +

Abstract

Acute aortic dissection is one of the most life-threatening cardiovascular diseases, with a high mortality rate. Its prevalence ranges from 0.2% to 0.8% in humans, resulting in a significant number of deaths due to being missed in manual examinations. More importantly, the aortic diameter—a critical indicator for surgical selection—significantly influences the outcomes of surgeries post-diagnosis. Therefore, it is an urgent yet challenging mission to develop an automatic aortic dissection diagnostic system that can recognize and classify the aortic dissection type and measure the aortic diameter. This paper offers a dual-functional deep learning system called aortic dissections diagnosis-aiding system (DDAsys) that enables both accurate classification of aortic dissection and precise diameter measurement of the aorta. To this end, we created a dataset containing 61 190 computed tomography angiography (CTA) images from 279 patients from the Division of Cardiovascular Surgery at Tongji Hospital, Wuhan, China. The dataset provides a slice-level summary of difficult-to-identify features, which helps to improve the accuracy of both recognition and classification. Our system achieves a recognition F1 score of 0.984, an average classification F1 score of 0.935, and the respective measurement precisions for ascending and descending aortic diameters are 0.994 mm and 0.767 mm root mean square error (RMSE). The high consistency (88.6%) between the recommended surgical treatments and the actual corresponding surgeries verifies the capability of our system to aid clinicians in developing a more prompt, precise, and consistent treatment strategy.

Keywords

Aortic dissections / Computed tomography angiography / Classification / Deep learning

引用本文

导出引用
Zhihui Huang, Rui Wang, Hui Yu. . Engineering. 2024, 34(3): 83-91 https://doi.org/10.1016/j.eng.2023.11.014

参考文献

[1]
H. Kamel, M.J. Roman, A. Pitcher, R.B. Devereux. Pregnancy and the risk of aortic dissection or rupture: a cohort-crossover analysis. Circulation, 134 (7) (2016), pp. 527-533.
[2]
J. Zhao, J. Zhao, S. Pang, Q. Feng. Segmentation of the true lumen of aorta dissection via morphology-constrained stepwise deep mesh regression. IEEE Trans Med Imaging, 41 (7) (2022), pp. 1826-1836.
[3]
D. He, A. Mao, C.B. Zheng, H. Kan, K. Zhang, Z. Zhang, et al. Aortic heterogeneity across segments and under high fat/salt/glucose conditions at the single-cell level. Natl Sci Rev, 7 (5) (2020), pp. 881-896.
[4]
C.T. Nguyen, C.S. Hall, S.A. Wickline. Characterization of aortic microstructure with ultrasound: implications for mechanisms of aortic function and dissection. IEEE Trans Ultrason Ferroelectr Freq Control, 49 (11) (2002), pp. 1561-1571.
[5]
E.M. Isselbacher, O. Preventza, J.H. Black III, J.G. Augoustides, A.W. Beck, M.A. Bolen, et al. 2022 ACC/AHA guideline for the diagnosis and management of aortic disease: a report of the American heart association/American college of cardiology joint committee on clinical practice guidelines. J Am Coll Cardiol, 80 (24) (2022), pp. e223-e393.
[6]
W.K. Cheung, R. Bell, A. Nair, L.J. Menezes, R. Patel, S. Wan, et al. A computationally efficient approach to segmentation of the aorta and coronary arteries using deep learning. IEEE Access, 9 (2021), pp. 108873-108888.
[7]
J. Brunet, B. Pierrat, P. Badel. A parametric study on factors influencing the onset and propagation of aortic dissection using the extended finite element method. IEEE Trans Biomed Eng, 68 (10) (2021), pp. 2918-2929.
[8]
P. Nazerian, C. Mueller, A.M. Soeiro, B.A. Leidel, S.A.T. Salvadeo, F. Giachino, et al. Diagnostic accuracy of the aortic dissection detection risk score plus D-dimer for acute aortic syndromes: the ADvISED prospective multicenter study. Circulation, 137 (3) (2018), pp. 250-258.
[9]
G. Rong, A. Mendez, E.B. Assi, B. Zhao, M. Sawan. Artificial intelligence in healthcare: review and prediction case studies. Engineering, 6 (3) (2020), pp. 291-301.
[10]
A. Pepe, J. Li, M. Rolf-Pissarczyk, C. Gsaxner, X. Chen, G.A. Holzapfel, et al. Detection, segmentation, simulation and visualization of aortic dissections: a review. Med Image Anal, 65 (2020), 101773.
[11]
O.C. Avila-Montes, U. Kurkure, R. Nakazato, D.S. Berman, D. Dey, I.A. Kakadiaris. Segmentation of the thoracic aorta in noncontrast cardiac CT images. IEEE J Biomed Health Inform, 17 (5) (2013), pp. 936-949.
[12]
J. Zhao, Q. Feng. Automatic aortic dissection centerline extraction via morphology-guided CRN tracker. IEEE J Biomed Health Inform, 25 (9) (2021), pp. 3473-3485.
[13]
Pepe A, Egger J, Codari M, Willemink MJ, Gsaxner C, Li J, et al. Automated cross-sectional view selection in CT angiography of aortic dissections with uncertainty awareness and retrospective clinical annotations. 2021. arXiv:2111.11269.
[14]
L.D. Hahn, G. Mistelbauer, K. Higashigaito, M. Koci, M.J. Willemink, A.M. Sailer, et al. CT-based true- and false-lumen segmentation in type B aortic dissection using machine learning. Radiol Cardiothorac Imaging, 2 (3) (2020), e190179.
[15]
Vladimir I, Alexey S. TernausNet: U-Net with VGG11 encoder pre-trained on imageNet for image segmentation. 2018. arXiv:1801.05746.
[16]
D. Chen, X. Zhang, Y. Mei, F. Liao, H. Xu, Z. Li, et al. Multi-stage learning for segmentation of aortic dissections using a prior aortic anatomy simplification. Med Image Anal, 69 (2021), 101931.
[17]
M. Gayhart, H. Arisawa. Automated detection of healthy and diseased aortae from images obtained by contrast-enhanced CT scan. Comput Math Methods Med, 2013 (2013), 107871.
[18]
Dehghan E, Wang H, Syeda-Mahmood T. Automatic detection of aortic dissection in contrast-enhanced CT. In: Proceedings of the 14th International Symposium on Biomedical Imaging (ISBI); 2017 Apr 18-21; Melbourne, VIC, Australia. New York City: IEEE; 557-60.
[19]
Xu X, He Z, Niu K, Zhang Y, Tang H. An automatic detection scheme of acute Stanford type A aortic dissection based on DCNNs in CTA images. In:Proceedings of the 4th International Conference on Multimedia Systems and Signal Processing (ICMSSP); 2019 May 10-12; Guangzhou, China; 2019. p. 16-20.
[20]
J. Cheng, S. Tian, L. Yu, X. Ma, Y. Xing. A deep learning algorithm using contrast-enhanced computed tomography (CT) images for segmentation and rapid automatic detection of aortic dissection. Biomed Signal Process Control, 62 (2020), 102145.
[21]
Yellapragada MS, Xie Y, Graf B, Richmond D, Krishnan A, Sitek A. Deep learning based detection of acute aortic syndrome in contrast CT images. In: Proceedings of the 17th International Symposium on Biomedical Imaging (ISBI); 2020 Apr 3-7; Iowa City, IA, USA. New York City: IEEE; 2020. p. 1474-7.
[22]
X. Xiong, Y. Ding, C. Sun, Z. Zhang, X. Guan, T. Zhang, et al. A cascaded Multi-task generative framework for detecting aortic dissection on 3D non-contrast-enhanced computed tomography. IEEE J Biomed Health Inform, 26 (10) (2022), pp. 5177-5188.
[23]
S. Wörz, H. von Tengg-Kobligk, V. Henninger, F. Rengier, H. Schumacher, D. Böckler, et al. 3-D quantification of the aortic arch morphology in 3-D CTA data for endovascular aortic repair. IEEE Trans Biomed Eng, 57 (10) (2010), pp. 2359-2368.
[24]
J. Wang, J. Zhao, Y. Ma, B. Huang, D. Yuan, Y. Yang. Midterm prognosis of type B aortic dissection with and without dissecting aneurysm of descending thoracic aorta after endovascular repair. Sci Rep, 9 (1) (2019), p. 8870.
[25]
A. Fedorov, R. Beichel, J. Kalpathy-Cramer, J. Finet, J.C. Fillion-Robin, S. Pujol, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging, 30 (9) (2012), pp. 1323-1341.
[26]
Y. Yu, S.T. Acton. Speckle reducing anisotropic diffusion. IEEE Trans Image Process, 11 (11) (2002), pp. 1260-1270.
[27]
K. Krissian, C.F. Westin, R. Kikinis, K.G. Vosburgh. Oriented speckle reducing anisotropic diffusion. IEEE Trans Image Process, 16 (5) (2007), pp. 1412-1424.
[28]
J. Li, Z.L. Yu, Z. Gu, H. Liu, Y. Li. Dilated-Inception Net: multi-scale feature aggregation for cardiac right ventricle segmentation. IEEE Trans Biomed Eng, 66 (12) (2019), pp. 3499-3508.
[29]
Vesal S, Ravikumar N, Maier A. A 2D dilated residual U-Net for multi-organ segmentation in thoracic CT. 2018. arXiv:1905.07710.
[30]
Ronneberger O, Fischer P, Brox T. U-Net:convolutional networks for biomedical image segmentation. In: Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI). 2015 Oct 5-9; Munich, Germany; 2015. p. 234-41.
[31]
L.R. Dice. Measures of the amount of ecologic association between species. Ecology, 26 (3) (1945), pp. 297-302.
[32]
A.K. Golla, D.F. Bauer, R. Schmidt, T. Russ, D. Norenberg, K. Chung, et al. Convolutional neural network ensemble segmentation with ratio-based sampling for the arteries and veins in abdominal CT scans. IEEE Trans Biomed Eng, 68 (5) (2021), pp. 1518-1526.
[33]
F. Shi, Q. Yang, X. Guo, T.A. Qureshi, Z. Tian, H. Miao, et al. Intracranial vessel wall segmentation using convolutional neural networks. IEEE Trans Biomed Eng, 66 (10) (2019), pp. 2840-2847.
[34]
K. Han, L. Liu, Y. Song, Y. Liu, C. Qiu, Y. Tang, et al. An effective semi-supervised approach for liver CT image segmentation. IEEE J Biomed Health Inform, 26 (8) (2022), pp. 3999-4007.
[35]
B.D. Bodell, A.C. Taylor, P.J. Patel. Thoracic endovascular aortic repair: review of current devices and treatments options. Tech Vasc Interv Radiol, 21 (3) (2018), pp. 137-145.
[36]
C.J. Preetha, H. Meredig, G. Brugnara, M.A. Mahmutoglu, M. Foltyn, F. Isensee, et al. Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study. Lancet Digit Health, 3 (12) (2021), pp. e784-e794.
[37]
X. Xu, X. Jiang, C. Ma, P. Du, X. Li, S. Lv, et al. A deep learning system to screen novel coronavirus disease; 2019 pneumonia. Engineering, 6 (10) (2020), pp. 1122-1129.
[38]
H. Zhu, C. Cheng, H. Yin, X. Li, P. Zuo, J. Ding, et al. Automatic multilabel electrocardiogram diagnosis of heart rhythm or conduction abnormalities with deep learning: a cohort study. Lancet Digit Health, 2 (7) (2020), pp. e348-e357.
[39]
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) 2016 Jun 26-Jul 1; Las Vegas, NV, USA. IEEE; 2016. p. 770-8.
[40]
A.S. Chin, D. Fleischmann. State-of-the-art computed tomography angiography of acute aortic syndrome. Semin Ultrasound CT MR, 33 (3) (2012), pp. 222-234.
[41]
S. Liu, Y. Wang, X. Yang, B. Lei, L. Liu, S.X. Li, et al. Deep learning in medical ultrasound analysis: a review. Engineering, 5 (2) (2019), pp. 261-275.
PDF(2472 KB)

Accesses

Citation

Detail

段落导航
相关文章

/