胆汁酸在预防和治疗感染性疾病中的生物活性、机制、生产和潜在应用

, , , , , , 刘爽 , 杨朔 , Biljana Blazekovic , 李露 , 张继丹 , 王毅

工程(英文) ›› 2024, Vol. 38 ›› Issue (7) : 18 -33.

PDF (5036KB)
工程(英文) ›› 2024, Vol. 38 ›› Issue (7) : 18 -33. DOI: 10.1016/j.eng.2023.11.017
研究论文

胆汁酸在预防和治疗感染性疾病中的生物活性、机制、生产和潜在应用

作者信息 +

Bioactivities, Mechanisms, Production, and Potential Application of Bile Acids in Preventing and Treating Infectious Diseases

Author information +
文章历史 +
PDF (5156K)

摘要

感染性疾病是一个全球公共卫生问题,全世界范围内新发和再发感染性疾病呈上升趋势。因此,感染性疾病的预防和治疗仍然是面临的重大挑战。胆汁酸是宿主和微生物的常见代谢物,这些宿主和微生物在控制脂质、葡萄糖和能量的代谢方面发挥着重要作用。胆汁酸在历史上曾经作为一线有价值的治疗药剂,用于治疗相关的代谢和肝胆疾病。值得注意的是,胆汁酸是牛黄和熊胆的主要活性成分,而牛黄和熊胆作为常见的传统中药,具有清热、解毒和疏风解痉的疗效。近年来,胆汁酸在治疗感染性疾病方面的良好表现已经引起了科学界的注意。本文首次对胆汁酸在治疗和预防感染性疾病方面的生物活性、可能机制、生产路线以及潜在应用进行综述。与之前的综述相比,我们对现有的关于胆汁酸在治疗病原微生物(病原微生物是导致全球性发病和死亡的主要原因)所引起的感染性疾病相关的研究进行了全面的总结。此外,为了确保胆汁酸以可负担的价格进行稳定供应,有必要阐明胆汁酸在体内的生物合成,这将帮助科学家们解释胆汁酸的累积,并发现如何通过化学合成、生物合成和化学-酶法合成的方式对不同的胆汁酸进行改造。最后,我们探索本领域目前面临的挑战,并为以胆汁酸为基础的药物和胆汁酸的可持续生产推荐开发策略。目前的研究表明,胆汁酸是一种治疗感染性疾病的潜在的新颖治疗药剂,并能以可持续的方式进行人工合成。

Abstract

Infectious diseases are a global public health problem, with emerging and re-emerging infectious diseases on the rise worldwide. Therefore, their prevention and treatment are still major challenges. Bile acids are common metabolites in both hosts and microorganisms that play a significant role in controlling the metabolism of lipids, glucose, and energy. Bile acids have historically been utilized as first-line, valuable therapeutic agents for related metabolic and hepatobiliary diseases. Notably, bile acids are the major active ingredients of cow bezoar and bear bile, which are commonly used traditional Chinese medicines (TCMs) with the therapeutic effects of clearing heat, detoxification, and relieving wind and spasm. In recent years, the promising performance of bile acids against infectious diseases has attracted attention from the scientific community. This paper reviews for the first time the biological activities, possible mechanisms, production routes, and potential applications of bile acids in the treatment and prevention of infectious diseases. Compared with previous reviews, we comprehensively summarize existing studies on the use of bile acids against infectious diseases caused by pathogenic microorganisms that are leading causes of global morbidity and mortality. In addition, to ensure a stable supply of bile acids at affordable prices, it is necessary to clarify the biosynthesis of bile acids in vivo, which will assist scientists in elucidating the accumulation of bile acids and discovering how to engineer various bile acids by means of chemosynthesis, biosynthesis, and chemoenzymatic synthesis. Finally, we explore the current challenges in the field and recommend a development strategy for bile-acid-based drugs and the sustainable production of bile acids. The presented studies suggest that bile acids are potential novel therapeutic agents for managing infectious diseases and can be artificially synthesized in a sustainable way.

关键词

胆汁酸 / 感染性疾病 / 生物活性 / 机制 / 抗感染药物

Key words

Bile acids / Infectious diseases / Bioactivities / Mechanisms / Anti-infective agents

引用本文

引用格式 ▾
Shuang Liu,Shuo Yang,Biljana Blazekovic,Lu Li,Jidan Zhang,Yi Wang,刘爽,杨朔,Biljana Blazekovic,李露,张继丹,王毅. 胆汁酸在预防和治疗感染性疾病中的生物活性、机制、生产和潜在应用[J]. 工程(英文), 2024, 38(7): 18-33 DOI:10.1016/j.eng.2023.11.017

登录浏览全文

4963

注册一个新账户 忘记密码

1 引言

感染性疾病包括传染性和非传染性两种,主要发生在神经系统、皮肤、肺部、肝脏和肠道。很多感染性疾病是由细菌、病毒、真菌和其他病原体引起的,是导致全球发病和死亡的主要原因之一[1]。人类历史上最致命的传染性疾病包括疟疾、天花、西班牙流感、肺结核、鼠疫、获得性免疫缺陷综合征(AIDS,即艾滋病)和霍乱。疟疾是由疟原虫(一种寄生虫)引起的,在过去的一个世纪中感染了数十亿人,至今仍然是热带地区严重的公共卫生威胁[2]。结核病是由结核分枝杆菌感染引起的,是全世界主要的致死传染病之一,每年有超过100万人死于结核病[3]。天花是由天花病毒引起的,是最古老和死亡率最高的传染性疾病之一,具有高度接触传染性,致死率约30% [4]。霍乱是一种由霍乱孤菌引起的严重肠道疾病,全世界曾多次暴发霍乱[5]。鼠疫,也被称为黑死病,是由于鼠疫耶尔森菌引起的,一直是最热门的国际公共卫生问题之一[6]。近年来,由严重急性呼吸系统综合征冠状病毒2(SARS-CoV-2)引起的新型冠状病毒肺炎(COVID-19)和由甲型流感病毒引起的H1N1流感(猪流感)也加入了全球最致命疾病清单[7]。此外,一些由病原体入侵引起的非传染性疾病,比如菌血症、败血症、脓毒症和感染性休克等,是危重症病人的严重并发症,也是造成分娩、手术、炎症、创伤、烧伤和慢性疾病死亡的主要原因。总的来说,感染性疾病是全球公共卫生的重要威胁,其预防和治疗仍然是主要挑战之一。

传统中医药用于治疗感染性疾病已经有几千年的历史,其疗效已经获得了全世界人民的认可。在中国,传统中医药在COVID-19疫情期间发挥了尤为重要的作用,政府多次推荐传统中医药作为主要治疗手段[8]。“扶正祛邪”是中医治疗疾病的基本原则,而且传统中医药在预防病原体入侵、减轻毒素损伤、抑制药物抗性、改善临床表现、阻断细胞因子风暴和增强免疫系统方面都具有独一无二的优势[9]。“君臣佐使”是中药方剂的配伍原则[10],其中“君药”是指在疾病治疗中起主要作用的植物药,而“臣药”则起到支持作用,“佐药”有助于解毒,而“使药”协调或加强其他药物的疗效。很多经典方剂已经被广泛用于治疗各种传染病。例如,八宝玉枢丸、片仔癀和时疫清瘟丸已经用于治疗感染性疾病和流行病[1112]。牛黄解毒丸、牛黄上清丸、梅花点舌丸、六神丸和熊胆丸已经广泛用于治疗喉咙肿痛、牙龈肿胀、角膜炎和结膜炎[1317]。安宫牛黄丸、熊胆牛黄胶囊和痰热清注射液(TRQ)已经用于治疗上呼吸道感染、急性肺炎、支气管炎、高烧和重症流感[1820]。在这些方剂中,牛黄和熊胆都是主要成分,由于其在清热、解毒和疏风解痉方面的潜在疗效,数千年看来一直被广泛使用。在中国,牛黄被广泛用于650多种知名方剂中,而熊胆则被认为是“四大名贵中药”之首。胆汁酸是牛黄和熊胆的主要活性成分,而且有越来越多的证据表明,胆汁酸可能在预防和治疗感染性疾病方面具有重要作用。

本课题组致力于传统中医药抗菌领域研究十余年,重点关注TRQ。TRQ由黄芩、熊胆粉、山羊角、金银花和连翘组成,主要用于治疗上呼吸道感染、支气管炎和肺炎[2122]。TRQ自2003年开始使用,已经被列入国家卫生和计划生育委员会(NHFPC)及国家中医药管理局(SATCM)临床指南,用于治疗人禽流感、甲型H1N1流感、甲型H7N9流感、小儿手足口病、登革热和埃博拉病毒。此外,TRQ还在《新型冠状病毒感染诊疗方案(试行第六版、第七版和第八版)》中连续被列为推荐用药。尽管TRQ的临床效果已经在中国得到了大量患者的认可,但其药效物质基础和药理机制仍需要进一步的科学研究。我们已经发现,熊胆和TRQ的主要生物活性成分胆汁酸对一系列病原性细菌引起的疾病表现出潜在有前景的治疗效果[2324]。因此,结合这些发现和现有的研究,我们推测,胆汁酸是一种有前景的药剂,可以开发为抗感染药物,用于治疗感染性疾病。

胆汁酸广泛分布于动物、人类和微生物体内,对于控制脂质、葡萄糖和能量的代谢具有至关重要的作用。它们在调节营养吸收、宿主免疫和微生物发病机制方面发挥着重要作用,是治疗相关代谢性疾病[如2型糖尿病、肥胖症和非酒精性脂肪肝(NAFLD)]的有价值的一线治疗方案[2526]。目前已上市了多个用于治疗肝胆疾病的胆汁酸药物,如优思弗[熊去氧胆酸(UDCA)胶囊]、滔罗特[牛磺熊去氧胆(TUDCA)胶囊]、胆酸钠片、鹅去氧胆酸(CDCA)胶囊、胆酸(CA)胶囊和奥贝胆酸(OCA),这些产品已被证明可以溶解胆固醇结石并促进胆汁分泌,通过抑制疏水性胆汁酸的细胞毒性以及诱导细胞凋亡来保护胆管细胞和肝细胞[2732]。近年来,胆汁酸在治疗感染性疾病方面的良好表现已经引起了科学界的关注。本文对胆汁酸在治疗和预防感染性疾病方面的生物活性、潜在作用机制、生产路线和潜在应用进行综述,比先前的综述更加详细,并对其作为新型抗感染治疗药剂的潜力进行评价。

2 胆汁酸的结构和分布

胆汁酸是24碳类固醇衍生物,由三个六元环(A、B和C)和一个五元环(D)组成,带有羟基取代基和脂肪族侧链[33]。到目前为止,自然界中已经发现了100多种胆汁酸,常见的胆汁酸的结构如图1所示[3436]。典型的胆汁酸(蓝色突出显示)包括CA、CDCA、UDCA、去氧胆酸(DCA)、熊果胆酸(UCA)、猪胆酸(HCA)、猪去氧胆酸(HDCA)和石胆酸(LCA)。CA和CDCA是在肝脏中由胆固醇产生的两种主要的初级胆汁酸[37]。UDCA在肝脏中天然生成,是唯一获批用于治疗原发性胆汁性肝硬化(PBC)的药物,它与甘氨酸和牛磺酸结合,分别形成TUDCA和甘氨熊去氧胆酸(GUDCA)[38]。DCA和LCA分别是细菌从CA和CDCA脱羟基化而生成的主要次级胆汁酸[39]。在猪体内,HCA及其衍生物占胆汁酸总量的76%左右,HCA也出现在人类血液中[40]。HDCA是一种从牛黄中提取的生物活性化合物,通常在传统中医药中用于治疗中风[41]。UCA(3α,7β,12α-三羟基-5-胆烷-24-羧酸)可能是一种适合于治疗胆固醇结石、高脂血症、胆道发育不良、PBC、慢性肝炎和胆汁反流性胃炎的药物[35]。

结合型胆汁酸包括牛磺胆酸(TCA)、甘氨胆酸(GCA)、牛磺鹅去氧胆酸(TCDCA)、甘氨鹅去氧胆酸(GCDCA)、TUDCA、GUDCA、牛磺去氧胆酸(TDCA)、甘氨去氧胆酸(GDCA)、牛磺熊去氧胆酸(TUCA)和甘氨熊去氧胆酸(GUCA)。结合型胆汁酸在水中的溶解度较高,它们在体内通常以钠盐形式存在,比游离胆汁酸更稳定[42]。

常见的氧代胆汁酸(图1中以橙色突出显示)包括3-氧代胆酸(3-oxo-CA)、3-氧代石胆酸(3-oxo-LCA)、7-氧代去氧胆酸(7-oxo-DCA)、7-氧代石胆酸(7-oxo-LCA)、12-氧代鹅去氧胆酸(12-oxo-CDCA)、12-氧代熊去氧胆酸(12-oxo-UDCA)、12-氧代石胆酸(12-oxo-LCA)、7,12-二氧代石胆酸(7,12-dioxo-LCA),它们都是由多种羟基类固醇脱氢酶(HSDH)催化的氧化产物[3536]。兔、小鼠和其他啮齿类动物中存在特定的胆汁酸(如α-鼠胆酸、β-鼠胆酸、ω-鼠胆酸和λ-鼠胆酸),它们的牛磺胆酸盐也在图1中以绿色突出显示[36]。

胆汁酸家族通常包含三类:C24胆汁酸、C27胆汁酸和C27胆汁醇[43],它们在自然界中的分布如图2所示[4448]。C24胆汁酸主要是从人类和熊、牛、猪、狗、羊、鸭、鹅、兔、鸡、鸽子、天鹅、蛇、鱼等动物的胆汁中分离出来的[44]。CA、CDCA、UDCA、HDCA、DCA和LCA是典型的C24胆汁酸。C27胆汁酸在低等原始脊椎动物中更为丰富,已经从卷尾鸟、裸喉钟鸟、犀鸟和短吻鳄的胆汁中分离出多种C27胆汁酸[4547]。例如,从大犀鸟和维萨亚犀鸟中分离得到的两种主要胆汁酸是3α,7α,24α-二羟基-5β-胆甾烷-27-羧酸和3α,7α,12α,24α-四羟基-5β-胆甾烷-27-羧酸与牛磺酸的结合物[46]。一些典型的C27胆汁醇如图2所示。C27硫酸胆汁盐常常存在于西印度海牛、大象、巨骨舌鱼和太阳鱼中[4748]。此外,胆汁酸根据其结构可分为两类,即游离胆汁酸和结合胆汁酸,前者与牛磺酸或甘氨酸结合形成后者。

3 胆汁酸的生物活性

胆汁酸是调节碳水化合物和脂质代谢所必需的物质[49]。自20世纪70年代以来,UDCA和CDCA已被证明对胆固醇结石有效。它们可以降低胆固醇饱和度,恢复脂质的微胶体状态,溶解和分解胆结石中的胆固醇;它们也用于治疗PBC、胆管炎、胆囊炎和急性化脓性胆管炎[29,50]。TUDCA被批准用于治疗PBC [51],此外,已有多项研究表明,TUDCA具有抗凋亡和神经保护活性,这已在多种疾病模型和临床治疗中得到证实[25,5253]。不仅如此,由于2型糖尿病与胆汁酸代谢紊乱有关,HCA及其衍生物可以改善葡萄糖稳态,并可能成为2型糖尿病的新型治疗药物[39,5455]。考虑到胆汁酸的多种药理活性,越来越多的衍生物正在被合成为候选药物。OCA是一种半合成胆汁酸,类似于天然酸CDCA,于2016年被批准作为一种新型药物,用于PBC的临床治疗。OCA是一种有效的法尼醇X受体(FXR)激动剂,能够调节胆汁酸的合成和分泌,以及肝脏和肠道中的脂质和葡萄糖代谢,也被发现是一种有前景的治疗NAFLD的药物[5657]。

有趣的是,除了上述药理活性外,胆汁酸还表现出广泛的生物活性谱,包括抗病毒、抗菌、抗炎和免疫调节活性,这些活性正逐渐被揭示和阐明(图3)。

3.1 胆汁酸的抗病毒作用

血管紧张素转化酶2(ACE2)已被鉴定为SARS-CoV-2进入细胞的受体和进入点。G蛋白偶联胆汁酸受体1(GPBAR1)和FXR是两个主要的胆汁酸受体,以GPBAR1/FXR配体为靶标是COVID-19富有前景的新型治疗方法[58]。据报道,天然GPBAR1配体,如GUDCA,可以抑制尖突蛋白的受体结合域(RBD)与ACE2的结合,结合率下降约20%。UDCA、TUDCA、BAR501和BAR502也可以轻微减少RBD与ACE2的结合[58]。胆汁酸受体GPBAR1促进胰高血糖素样肽(GLP)-1的释放,并作为ACE2的正向调节剂发挥作用[59]。

在呼吸系统中,FXR是ACE2表达的直接调节剂,而且FXR激动剂(如UDCA)可以减少人类鼻黏膜中的FXR信号传导和ACE2表达,从而减少对SARS-CoV-2的易感性[6062]。UDCA还可以抑制呼吸道上皮细胞的异常迁移,防止SARS-CoV-2引起的损伤,并增强上皮基底层的修复[63]。最近,熊胆(其中总胆汁酸含有高达40%~50% UDCA)被推荐作为一种冠状病毒治疗药剂[64]。CDCA和GCDCA也被证明可以将SARS-CoV-2/ACE2相互作用减少45%~50%,而其他半合成衍生物均为FXR受体激动剂(BAR704和OCA),分别导致RBD/ACE2结合减少40%和20% [58]。另外,OCA被证实具有显著的抗病毒和抗炎属性,可以控制ACE2的表达并减轻COVID-19的症状[61]。

流感是一种高死亡率的急性呼吸道感染,流感病毒直接侵入呼吸道并引起病毒性肺炎、急性呼吸窘迫综合征、休克和其他严重危及生命的并发症[65]。1918年流感大流行造成约2100万人死亡,而1920年以来流感造成的总死亡人数,可能已经超过了1918年流感大流行。甲型流感病毒引起的流感仍然对全球人群的健康构成严重威胁,而且有病毒产生耐药性的风险[60]。CDCA和TUDCA虽然机制不同,但都有可能被开发为潜在的抗甲型流感药物。CDCA已被证明可通过阻断病毒核糖核蛋白(vRNP)的核输出来抑制甲型流感病毒的复制[66]。TUDCA于2007年在中国以某商品名批准上市,作为基质蛋白2(M2)质子通道抑制剂,它可以破坏M2质子通道的寡聚状态,从而消除或诱导低效病毒感染[67]。另一项研究结果表明,TUDCA通过内质网(ER)应激途径抑制1型单纯疱疹病毒(HSV-1)的复制[68]。

CDCA、HDCA和UDCA可以减轻A549和MDCK细胞培养中的三种甲型流感病毒亚型的复制,半数最大抑制浓度(IC50)分别为5.5~11.5、31.0~73.7和34.2~58.7 μmol·L-1。遗憾的是,本研究中未使用标准抗病毒药物作为阳性对照[66]。然而,另一项研究报道称,奥司他韦、扎那米韦和帕拉米韦对甲型流感病毒的IC50值分别为0.04~748.14、0.15~50.97和0.05~178.23 nmol·L-1 [69]。猪病毒性胃肠炎通常由猪丁型冠状病毒(PDCoV)引起,目前尚无针对该病毒的疫苗或抗病毒药物。CDCA和LCA均可通过肠上皮细胞系(IPEC-J2)中的GPCR-IFN-λ3-ISG15信号传导轴抑制PDCoV的复制[70]。胆汁酸的抗病毒效果如表1所示[58,6062,6668,70]。

3.2 胆汁酸的抗菌作用

胆管炎和胆囊炎往往同时发生,最常见的是由于胆汁淤积引起的继发性细菌感染[71]。对来自急性梗阻性化脓性胆管炎患者的胆汁进行细菌培养,显示存在大肠杆菌、产气荚膜梭菌、肺炎克雷伯菌、绿脓杆菌和粪肠球菌。有证据表明,UDCA可能对消化道感染具有治疗效果。艰难梭菌是引起腹泻和结肠炎的主要病原体,是一种威胁生命的院内病原菌,而且当正常的结肠微生物群新陈代谢失调时,就会发生艰难梭菌感染。在体外试验中,UDCA治疗可以使艰难梭菌的孢子萌发、营养生长和毒素活性显著下降,患者服用UDCA之后十个月以上未再发生感染[7172]。不管是在体内还是体外,UDCA都能阻断超广谱β-内酰胺酶(ESBL)-肠聚集性大肠杆菌(EAEC)的生长和入侵,并缓解结肠炎症状[73]。

我们最近的研究表明,CDCA和UDCA可以显著抑制对甲氧西林敏感的金黄色葡萄球菌(MSSA)和耐甲氧西林金黄色葡萄球菌(MRSA)的活性。CDCA的最低抑制浓度(MIC)值是320 μg·mL-1。CDCA与氨基糖苷类药物有协同作用,或可增强对MSSA和MRSA的杀伤性。CDCA和阿米卡星(AMK)联合使用可以显著减少生物膜形成,并对感染金黄色葡萄球菌的小鼠模型具有保护作用[23]。这种协同作用机制的基础是,CDCA能够消散质子动力(PMF)的化学势(ΔpH),而且可以通过抑制MSSA和MRSA中的超氧化物歧化酶(SOD)的活性来增强活性氧(ROS)的生成。此外,CDCA与碳青霉烯类在对抗MRSA方面具有协同作用,这一点已经在25个临床菌株中得以证实。不仅如此,我们发现UDCA对MSSA和MRSA菌株均表现出显著活性(MIC = 1280 μg·mL-1)[24]。

研究表明,CDCA还具有抑制其他致病菌的作用。CDCA可以有效抑制人畜共患感染性病原体鼠伤寒沙门氏菌侵入上皮细胞。值得注意的是,我们发现CDCA直接抑制转录调节因子HilD,这与毒力和发病机制密切相关[74]。DCA和CDCA对淋病的病原体淋病奈瑟菌具有极快的杀菌作用[7576]。虽然β-内酰胺类抗生素是最重要的抗菌剂,但它们对β-内酰胺酶出现的防控效果大大降低。研究发现,CA是多重耐药菌株产生的针对β-内酰胺酶的抑制剂,CA与氨苄西林的组合对七种生产β-内酰胺酶的菌株均表现出显著的抗菌活性和协同作用,其分数抑菌浓度(FIC)小于或等于0.5 [77]。异别石胆酸(IsoalloLCA)由肠道Odoribacteraceae菌株生成,对耐多药艰难梭菌和屎肠球菌具有强效抗菌作用,并且可能对维持肠道稳态也有潜在作用[78]。此外,IsoalloLCA可强烈抑制其他革兰氏阳性病原体的生长和扩散,包括耐万古霉素屎肠球菌(VRE)、MRSA、停乳链球菌似马亚种(SDSE)、产气荚膜梭菌、化脓性链球菌、血链球菌、蜡样芽孢杆菌和单核细胞增多性李斯特氏菌。IsoalloLCA在形态变化中表现出强效抗菌活性,包括艰难梭菌和VRE的塌陷、肿胀和形成多个横壁,已通过扫描和透射电子显微镜观察到上述变化[7880]。DCA和LCA也可以抑制艰难梭菌的生长[7982]。Theriot等[83]报道称,霍乱、阿米巴痢疾和艰难梭菌结肠炎等肠道感染都受到胆汁酸代谢的影响。胆汁酸的抗菌作用如表2所示[23,7182]。

3.3 胆汁酸的抗炎作用

感染性疾病是一种病原体种类繁多、感染途径多样、症状和体征存在个体差异的临床疾病,而参与炎症反应的相关常见炎症因子是由多种感染引起的。由于某些感染引发的炎症反应常常是组织损伤和死亡的原因,因此,以减轻炎症为目的策略可能有助于评估新型抗感染药物[84]。

众所周知,胆汁酸通过激活GPBAR1和FXR受体介导的信号通路来调节脂质、葡萄糖和能量的代谢,而GPBAR1和FXR受体是胆汁酸治疗代谢性疾病的两种主要受体。有趣的是,越来越多的证据表明,胆汁酸可以直接和间接地通过GPBAR1和FXR受体来缓解和抑制炎症反应,这表明胆汁酸的抗炎机制与某些代谢性疾病的治疗密切相关,如胆结石、胆囊炎、2型糖尿病和非酒精性脂肪肝。

UDCA是一种现有的减轻炎症和防止细胞死亡的药物,对以细胞因子风暴综合征为特征的COVID-19患者具有治疗潜力[64]。据报道,在艰难梭菌感染期间,UDCA降低了炎症介质NO的释放,同时降低了肿瘤坏死因子-α(TNF-α)、白细胞介素-1α(IL-1α)、白细胞介素-1β(IL-1β)和白细胞介素-6(IL-6)的表达水平。此外,UDCA增加了白细胞介素-10(IL-10)的表达水平并减弱了宿主的炎症反应[72,85]。不仅如此,据报道,UDCA和LCA通过激活G蛋白胆汁酸偶联受体5(TGR5,也称为GPBAR1)来改善肠道屏障完整性,并减轻小鼠结肠炎的症状[8687]。UDCA对体内结肠炎症的发展有保护作用,而UDCA的主要代谢产物LCA可能是肠道炎症的强效抑制剂[88]。

眼部碱烧伤(OAB)常伴有炎症,据报道,TUDCA可抑制炎症反应并保护角膜和视网膜免受损伤,这表明TUDCA可能是OAB的潜在治疗或干预药剂[89]。多项研究揭示了3-oxo-LCA和IsoalloLCA的抗炎作用。更具体地说,3-oxo-LCA和IsoalloLCA抑制T辅助细胞17(TH17)细胞分化,异硫胆酸增强调节性T细胞(Treg)细胞分化,这可能与炎症疾病有关[9091]。在治疗类风湿性关节炎方面,LCA、DCA、IsoalloLCA和3-oxo-LCA与狄氏副拟杆菌表现出相似性和协同作用[92]。

体内和体外研究表明,UCA具有良好的抗炎作用,使其成为有前景的抗炎治疗药剂。UCA的抗炎机制已得到广泛研究,包括其对组胺释放、脂氧合酶、环氧合酶、磷脂酶和弹性蛋白酶活性的抑制作用[93]。已发现CDCA可抑制多种促炎脂肪因子和关键炎症调节因子[94]。OCA是一种有效的FXR激动剂,具有显著的抗炎作用,可抑制核因子κB(NF-κB)的表达[62]。Sinha等[95]发现,补充次级胆汁酸可减轻三种小鼠结肠炎模型中的肠道炎症。

在动物实验中,某些胆汁酸可有效对抗革兰氏阳性菌[9698]。研究发现,DCA通过调节TGR5/蛋白激酶A(PKA)/NF-κB信号通路来抑制金黄色葡萄球菌诱发的子宫内膜炎[96]。由肠道菌群介导的次级胆汁酸,通过小鼠的TGR5-环磷酸腺苷(cAMP)-PKA-NF-κB/含有NACHT、LRR和PYD结构域的蛋白3(NLRP3)通路来缓解金黄色葡萄球菌诱发的乳腺炎[97]。此外,DCA和LCA可减轻肺炎克雷伯菌感染引起的小鼠肝损伤和炎症[98]。总之,胆汁酸的抗炎活性因其保护肝脏、促进胆汁分泌和控制肠道炎症的能力而备受关注。胆汁酸的抗炎作用如表3所示[62,72,8598]。

3.4 维持免疫稳态

免疫稳态是免疫系统的一种生理功能,在正常情况下通过识别和清除衰老和受损细胞来维持内环境的稳定。免疫稳态的紊乱会导致免疫疾病的发生。胆汁酸在维持免疫和稳态方面起着重要作用,促进CD4+ T细胞分化为各种T细胞亚群。据报道,IsoalloLCA可能在维持免疫稳态中起关键作用,IsoalloLCA水平可能是炎症性肠病患者的生物标志物[99]。

胆汁酸在调节肠道免疫反应中起着关键作用,它们通过与受体的化学通信来调节对肠道微生物抗原的免疫反应。FXR和GPBAR1在肠上皮细胞中高表达,抑制炎症小体组装并降低促炎细胞因子水平[100102]。FXR由初级胆汁酸(如CA和CDCA)激活,而GPBAR1主要由次级胆汁酸激活。FXR和GPBAR1受体是位于宿主免疫系统与肠道微生物群界面的信号分子,由胆汁酸激活[103105]。此外,常见的胆汁酸受体包括孕烷X受体(PXR)和维生素D受体(VDR)。LCA、3-酮LCA、CDCA、DCA和CA可通过PXR调节肠上皮细胞的多种炎症因子,并加速伤口修复[106110]。VDR可被3-oxo-LCA、IsoalloLCA和LCA激活,从而抑制Th17分化,并增加Treg分化[111112]。胆汁酸维持肠道免疫稳态,相关机制与抗炎作用部分重叠。因此,胆汁酸受体可能是干预肠道疾病的有前景的靶点。

3.5 增强抗真菌药物的溶解

两性霉素B是一种广谱抗真菌药物,是临床一线用药,已成为治疗真菌感染的黄金标准。该药物用于治疗真菌引起的深部真菌感染,如败血症、心内膜炎、脑膜炎、腹腔感染、肺部感染、尿路感染和眼内炎。由于两性霉素B的溶解度有限,临床上用脱氧胆酸钠(SDCA)进行溶解,以便增强两性霉素B的溶解度[113]。

4 胆汁酸的生产策略

4.1 从原材料提取胆汁酸

胆固醇在肝脏内形成初级胆汁酸,CDCA和CA的形成需要多个关键酶。在哺乳动物中,胆汁酸在经过甘氨酸或牛磺酸修饰后,形成结合型胆汁酸盐。这些胆汁酸随后被肠道细菌代谢,生成DCA、LCA、HDCA和UDCA(图4)[114]。CDCA、CA、DCA和HDCA是鸡、猪、牛、羊和家禽胆汁中的初级胆汁酸,可以通过树脂法、超临界萃取法、有机溶剂萃取法和沉淀法来获得这些初级胆汁酸[115119]。然而,这些过程都比较复杂,制备周期长,而且来源有限,因此无法满足工业化生产的需求。UDCA是一种安全的治疗PBC的一线药物[37],但是,其生物活性成分主要采用一种无管引流技术从熊胆汁中提取,价格非常昂贵。在中国,熊属于国家二级保护动物,因此,由于资源有限以及动物保护法的限制,现有的无管引流技术已经被人工合成的UDCA生产方式所取代[120121]。

4.2 胆汁酸的人工合成

胆汁酸是熊胆和牛黄的主要成分,熊胆和牛黄在中国都属于珍稀药用动物原料。由于资源有限,人们正在考虑化学催化、生物催化和化学-酶法合成作为替代方法来生产胆汁酸。自20世纪50年代以来,化学合成方法已经广泛用于合成UDCA,该过程主要包括氧化(Jones氧化)和还原(Wolff-Kishner)反应[35]。由于CA在牛和羊的胆汁中含量丰富,因此曾使用CA作为UDCA化学催化的前体。但是,从CDCA合成UDCA的过程更加简单,而且生产成本比CA合成更低,因此,随着提取工艺的成熟和大规模生产,CDCA已经逐渐取代CA用于合成UDCA。目前,CA、UCA、DCA和HDCA都作为CDCA和UDCA化学合成的原材料。由于复杂的反应过程、低选择性、苛刻的反应条件、高能耗、高污染等问题,胆汁酸的化学合成仍然面临各种挑战,限制了该工艺的工业化发展。

生物催化在高效环保的合成中发挥着越来越重要的作用,全细胞转化和酶催化都已用于胆汁酸生产的生物催化。一些微生物,如梭状芽孢杆菌、产气柯林斯菌、大肠杆菌和脆弱拟杆菌,已用于全细胞转化,生产UDCA、UCA和12-oxo-UDCA [35]。真菌菌株,包括双极霉属、赤霉菌属、小克银汉霉菌属和弯孢菌属、假诺卡氏菌属、糖丝菌属、拟无枝菌酸菌属、伦茨菌属、糖多孢菌属和诺卡氏菌属,可生产UDCA,一些菌株还可生产CDCA、DCA、CA、7-酮DCA和3-酮DCA [122]。需要注意的是,全细胞转化也存在生长条件苛刻、微生物致病性强、催化产物复杂等缺点。

随后,全细胞转化逐渐被酶催化系统所取代。3α- HSDH、7α-HSDH、7β-HSDH和12α-HSDH是参与胆汁酸生物合成的关键酶。3α-HSDH催化C3-羟基基团的氧化,已用于临床定量检测血清中的总胆汁酸[123]。7α-HSDH和7β-HSDH是从CDCA合成UDCA的两种关键生物催化剂,已引起越来越多的关注,它们催化类固醇底物中C-7位羟基的氧化或还原反应[124]。CA、UCA和DCA的12-OH基团可被12α-HSDH氧化,分别生成12-oxo-CDCA、12-oxo-UDCA和12-oxo-UDCA。这些酶能够进行高区域选择性和立体选择性的羟基化和脱羟基反应。P450单加氧酶、6α-羟化酶、7α-脱羟基酶和脂肪酶也已被表征。CYP107D1(OleP)是一种高度区域和立体选择性的P450单加氧酶,它可以羟基化LCA形成鼠脱氧胆酸(MDCA)作为唯一产物[125]。随后,Grobe等[126]改造了CYP107D(OleP)、S240A变体和三重突变体(F84Q/S240A/V291G)作为生物催化剂,对LCA进行区域和立体选择性7β-羟基化,以生成UDCA。6α-羟化酶(CYP4A21)催化CDCA的6α-羟基化,产生猪的主要胆汁酸HCA,它也用于从DCA生产HDCA [127]。7α-脱羟基酶负责CA和UDCA的7α-脱羟基化,分别形成DCA和LCA [128]。脂肪酶可催化HDCA,产生各种HDCA衍生物[129]。这些序列大部分已上传到美国国家生物技术信息中心(NCBI)GenBank数据库,已经开展许多研究,基于序列-结构-功能分析进行了合理设计,以提高酶活性。

但是,生物催化法生产的UDCA和CDCA成本较高,市场竞争力不强。化学-酶法合成兼具化学合成和生物合成的优点,立体选择性高、产率高、毒性低,是一种具有广阔工业前景的潜在方案。总体而言,目前已开发出多种廉价易得的胆汁酸作为化学-酶法合成胆汁酸的原料,包括CA、DCA、HDCA、UCA、脱氢胆酸(DHCA)、磷酸胆酸(PCA)(图5)。

5 结论和未来展望

根据致病源的不同,感染性疾病可以分为病毒性、细菌性、真菌性和寄生虫感染几种类型。药物疗效是药物与病原体之间一场由来已久且不断升级的“军备竞赛”。目前,耐药性的出现已成为全球性难题,因此,控制其发展恶化刻不容缓。特别是在细菌引起的感染性疾病中,细菌耐药性加强是后抗生素时代的严峻现实。抗生素长期以来被用于对抗致病细菌,而细菌对越来越多的抗生素逐渐产生长期耐药性。虽然真菌耐药性还不如细菌耐药性普遍,但有资料显示,光滑念珠菌对棘白菌素的耐药性以及烟曲霉对唑类药物的耐药性正在增加[130133]。由于抗真菌药物数量有限以及耐药性的出现,可用的药物非常有限。病毒和寄生虫也存在类似的情况,乙肝病毒(HBV)和人类免疫缺陷病毒(HIV)对拉米夫定的耐药性正在成为临床治疗的瓶颈[134135]。近年来,疟原虫被发现对奎宁和氯喹具有耐药性,而这两种药物都是一线抗疟药物[136]。为了解决这个问题,世界各地的科学家一直在寻找新的方法来消灭病原体,同时不产生耐药性。数百年来,研究人员获得了大量的抗感染药物,其中大多数针对病原体。与细菌对这些药物的反应相比,细菌不易对胆汁酸产生耐药性,这使得胆汁酸成为药物开发中有吸引力的候选药物。

随着天然产物的枯竭和耐药性的增加,新型抗菌药物的开发变得越来越困难。近年来,针对上市药物的病理生理学机制进行药物再利用一直是新药研发的热点。例如,瑞德西韦是吉利德公司开发的一种广谱抗病毒药物,最初研究用于治疗埃博拉病毒感染,2020年,瑞德西韦成为首个用于治疗COVID-19患者的药物[137]。沙利度胺是一种镇静镇痛药,最初用于治疗妊娠期早孕反应,但后来发现它会导致严重的出生缺陷。后来,沙利度胺被发现具有抗血管生成和免疫调节的活性,具有独特的抗骨髓瘤作用,因此它目前是治疗多发性骨髓瘤的常用药物之一[138139]。我们期望用于治疗肝胆疾病的胆汁酸药物可以在未来重新利用,成为新型抗感染药物,为预防和治疗传染性疾病、减少耐药性、缩短药物研发周期、降低成本和安全风险提供一种新的有效途径。

现阶段,抗微生物药物的疗效是依据美国临床和实验室标准协会(CLSI)的标准和指南进行评价的,仅适用于浮游细菌的评价。该标准和指南忽略了细菌在人体内通常以生物膜形式存在的事实,约80%的感染与细菌生物膜高度相关,而细菌生物膜的耐药性是浮游细菌的10~1000倍[140142]。我们前期的研究表明,CDCA等活性天然产物可以通过抑制和破坏病原菌的生物膜形成来增强杀菌能力[23]。此外,我们发现胆汁酸与氨基糖苷类和碳青霉烯类抗生素对MRSA有协同作用[2324]。考虑到协同抑制作用和机制,胆汁酸与现有抗生素联合使用是治疗多重耐药菌株感染的潜在研究方向。因此,胆汁酸及其衍生物未来可以开发为潜在的抗生素佐剂。

还有一点值得强调的是,在抗感染治疗中,宿主、病原体和药物是相互作用的。作用于宿主的药物的发现和开发是抗感染领域的新趋势和热点,其三大主要策略是,削弱病原体与宿主之间的相互作用、直接提高抗微生物效果以及支持抗微生物效果。文献中大多数研究都重点关注对病原体的影响,而忽略了宿主免疫。然而,最近有报道称,UDCA并不以SARS-CoV-2病毒为靶标,而是通过FXR调节人类细胞中的ACE2表达,这可能对未来预防SARS-CoV-2及其变体有用[62]。此外,6α-乙基-24-正- 5β-胆烷-3α,7α,23-三醇-23硫酸钠盐(INT-767)是FXR和GPBAR1受体的双重激动剂,可以在体外和体内抑制HBV感染。有研究表明,胆汁酸衍生物可作为抗HBV候选药物[143]。总之,本文总结了胆汁酸在预防和治疗传染性疾病方面的实验证据、潜在机制和可能的应用。

胆汁酸用于代谢性疾病的安全性和有效性已通过临床数据得到验证,包括用法、剂量、剂型和规格。鉴于其抗病毒、抗菌和抗炎作用,胆汁酸可能可以通过药物再利用,成为未来有前途的抗感染药物。然而,研究人员对感染性疾病的病理机制和过程了解不足,这严重限制了该领域的发展,因此,需要对胆汁酸在预防和治疗传染性疾病方面的基础研究和临床疗效进行更全面的研究。我们认为,胆汁酸可以通过靶向作用特定的受体或通路来治疗相关疾病,从而提供更精准的治疗方案。由于胆汁酸对免疫反应有影响,因此可用于治疗其他以免疫异常为特征的疾病。胆汁酸在维持肠道菌群平衡和肠道健康方面也具有广阔的应用前景。

迄今为止,抗感染药物的发展还没有跟上微生物进化的步伐。相比之下,中医药已被广泛使用了数千年,没有出现耐药性,其安全性和有效性也得到了证实。中医的基本原理是“扶正祛邪”,而不是直接杀死病原体。因此,我们推测中药不会刺激病原体发生变异,不太可能使它们产生耐药性。中医术语的定义列于附录A表S1中。中药可以被视为药物发现的生物活性化合物宝库。将中药与抗生素相结合的新型治疗策略已显示出对抗各种感染的独特优势。

参考文献

[1]

Antabe R, Ziegler B. Diseases, emerging and infectious. In: Kobayashi A, editor. International encyclopedia of human geography. Amsterdam: Elsevier; 2019. p. 389‒91. . 10.1016/b978-0-08-102295-5.10439-1

[2]

Arora G, Sajid A, Chuang YM, Dong Y, Gupta A, Gambardella K, et al. Immunomodulation by mosquito salivary protein AgSAP contributes to early host infection by plasmodium. MBio 2021;12(6):e0309121. . 10.1128/mbio.03091-21

[3]

Khanna K, Sabharwal S. Spinal tuberculosis: a comprehensive review for the modern spine surgeon. Spine J 2019;19(11):1858‒70. . 10.1016/j.spinee.2019.05.002

[4]

Hutson CL, Kondas AV, Mauldin MR, Doty JB, Grossi IM, Morgan CN, et al. Pharmacokinetics and efficacy of a potential Smallpox therapeutic, brincidofovir, in a lethal Monkeypox virus animal model. MSphere 2021;6(1):e00927‒1020. . 10.1128/msphere.00126-21

[5]

Takahashi E, Ochi S, Mizuno T, Morita D, Morita M, Ohnishi M, et al. Virulence of cholera toxin gene-positive Vibrio cholerae non-O1/non-O139 strains isolated from environmental water in Kolkata, India. Front Microbiol 2021;12:726273. . 10.3389/fmicb.2021.726273

[6]

Klunk J, Vilgalys TP, Demeure CE, Cheng X, Shiratori M, Madej J, et al. Evolution of immune genes is associated with the Black Death. Nature 2022;611(7935):312‒9. . 10.1038/s41586-022-05349-x

[7]

Choreño-Parra JA, Jiménez-Álvarez LA, Cruz-Lagunas A, Rodríguez-Reyna TS, Ramírez-Martínez G, Sandoval-Vega M, et al. Clinical and immunological factors that distinguish COVID-19 from pandemic influenza A (H1N1). Front Immunol 2021;12:593595. . 10.3389/fimmu.2021.593595

[8]

Leung LH, Pan HD, Huang YF, Fan XX, Wang WY, He F, et al. The scientific foundation of Chinese herbal medicine against COVID-19. Engineering 2020;6(10):1099‒107. . 10.1016/j.eng.2020.08.009

[9]

Ma Y, Chen M, Guo Y, Liu J, Chen W, Guan M, et al. Prevention and treatment of infectious diseases by traditional Chinese medicine: a commentary. APMIS 2019;127(5):372‒84. . 10.1111/apm.12928

[10]

Luan X, Zhang LJ, Li XQ, Rahnam K, Zhang H, Chen HZ, et al. Compound-based Chinese medicine formula: from discovery to compatibility mechanism. J Ethnopharmacol 2020;254:112687. . 10.1016/j.jep.2020.112687

[11]

Yu C, Huang Z, Xiu C, Wu S, Peng C, Xiong F, et al. Chinese dictionary of clinical drugs: volumes of Chinese medicine formulas. Beijing: China Medical Science Press; 2018. Chinese.

[12]

Yang Y, Sun J, Wang G, Peng Y. Research progress on the material basis and pharmacological effects of Pien Tze Huang. Acta Pharm Sin 2023;8:2155‒67. Chinese.

[13]

Wu Y. Research on the quality analysis method of Niuhuang Jiedu Wan. Chin Sci Technol Periodicals Database Med Health 2023;4:0154‒7. Chinese.

[14]

Wu R, Liang J, Liang Y, Li X. A spectrum-effect based method for screening antibacterial constituents in Niuhuang Shangqing Pill using comprehensive two-dimensional liquid chromatography. J Chromatogr B 2022;1191:123121. . 10.1016/j.jchromb.2022.123121

[15]

Wang Y, Wang W, Qiao W. Determination of the concentration of bile acid in Meihua Dianshe Wan. Lishizhen Med Mater Med Res 2000;11(6):493‍‒‍4. Chinese.

[16]

Ma Q, Lei B, Chen R, Liu B, Lu W, Jiang H, et al. Liushen Capsules, a promising clinical candidate for COVID-19, alleviates SARS-CoV-2-induced pulmonary in vivo and inhibits the proliferation of the variant virus strains in vitro . Chin Med 2022;17(1):40. . 10.1186/s13020-022-00598-4

[17]

Deng M, Zhao C, Peng X, Yang J. Study on quality standard of bear gall pill. China Pharm 2012;23(3):3. Chinese.

[18]

Ding M, Jiang Y, Gao W, Li M, Chen L, Yang H, et al. Characterization and quantification of chemical constituents in Angong Niuhuang Pill using ultrahigh performance liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal 2023;228:115309. . 10.1016/j.jpba.2023.115309

[19]

Guo J, Hu H, Wang X, Cheng C, He H, Wu P. Experimental research of antiviral effects of xiongdaniuhuang capsules. Chin Arch Tradit Chin Med 2003;21(6):906‒7. Chinese.

[20]

Zhao Y, Xu Z, Wang T, Li Y, Yang L, Liu S, et al. Simultaneous quantitation of 23 bioactive compounds in Tanreqing Capsule by high-performance liquid chromatography electrospray ionization tandem mass spectrometry. Biomed Chromatogr 2019;33(7):e4531. . 10.1002/bmc.4531

[21]

Hu C, Li J, Tan YS, Liu Y, Bai C, Gao J, et al. Tanreqing Injection attenuates macrophage activation and the inflammatory response via the lncRNASNHG1/HMGB1 axis in lipopolysaccharide-induced acute lung injury. Front Immunol 2022;13:820718. . 10.3389/fimmu.2022.820718

[22]

Xiang Y, Zheng F, Zhang Q, Zhang RJ, Pan H, Pang Z, et al. Tanreqing injection regulates cell function of hypoxia-induced human pulmonary artery smooth muscle cells (HPASMCs) through TRPC1/CX3CL1 signaling pathway. Oxid Med Cell Longev 2022;2022:3235102. . 10.1155/2022/3235102

[23]

Cui K, Yang W, Liu S, Li D, Li L, Ren X, et al. Synergistic inhibition of MRSA by chenodeoxycholic acid and carbapenem antibiotics. Antibiotics 2022;12(1):71. . 10.3390/antibiotics12010071

[24]

Cui K, Yang W, Liu Z, Liu G, Li D, Sun Y, et al. Chenodeoxycholic acid and amikacin combination enhance eradication of Staphylococcus aureus . Microbiol Spectr 2023;11(1):e0243022. . 10.1128/spectrum.02430-22

[25]

Chávez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology 2017;152(7):1679‒94. . 10.1053/j.gastro.2017.01.055

[26]

Jiao TY, Ma YD, Guo XZ, Ye YF, Xie C. Bile acid and receptors: biology and drug discovery for nonalcoholic fatty liver disease. Acta Pharmacol Sin 2022;43(5):1103‒19. . 10.1038/s41401-022-00880-z

[27]

Shah RA, Kowdley KV. Current and potential treatments for primary biliary cholangitis. Lancet Gastroenterol Hepatol 2020;5(3):306‒15. . 10.1016/s2468-1253(19)30343-7

[28]

Pan L, Yu Z, Liang X, Yao J, Fu Y, He X, et al. Sodium cholate ameliorates nonalcoholic steatohepatitis by activation of FXR signaling. Hepatol Commun 2023;7(2):e0039. . 10.1097/hc9.0000000000000039

[29]

Fiorucci S, Distrutti E. Chenodeoxycholic acid: an update on its therapeutic applications. Handb Exp Pharmacol 2019;256:265‒82. . 10.1007/164_2019_226

[30]

Polak Y, Jacobs BAW, Kemper EM. Pharmacy compounded medicines for patients with rare diseases: lessons learned from chenodeoxycholic acid and cholic acid. Front Pharmacol 2021;12:758210. . 10.3389/fphar.2021.758210

[31]

Younossi ZM, Ratziu V, Loomba R, Rinella M, Anstee QM, Goodman Z, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 2019;394(10215):2184‒96.

[32]

Fiorucci S, Disreutti E. The pharmacology of bile acids and their receptors. Handb Exp Pharmacol 2019;256:3‒18. . 10.1007/164_2019_238

[33]

Šarenac TM, Mikov M. Bile acid synthesis: from nature to the chemical modification and synthesis and their applications as drugs and nutrients. Front Pharmacol 2018;9:939. . 10.3389/fphar.2018.00939

[34]

KEGG PATHWAY Database [Internet]. Kyoto: KEGG; 2018 Aug 10 [cited 2023 Mar 20]. Available from:

[35]

Tonin F, Arends IWCE. Latest development in the synthesis of ursodeoxycholic acid (UDCA): a critical review. Beilstein J Org Chem 2018;14:470‒83. . 10.3762/bjoc.14.33

[36]

Watanabe M, Fukiya S, Yokota A. Comprehensive evaluation of the bactericidal activities of free bile acids in the large intestine of humans and rodents. J Lipid Res 2017;58(6):1143‒52. . 10.1194/jlr.m075143

[37]

Schnfeld P, Meyer F. What the (abdominal) surgeon needs to know on novel insights regarding cholic acids and their interaction with the intestinal microbioma. Z Gastroenterol 2020;58(3):245‒53.

[38]

Floreani A, Franceschet I, Perini L, Cazzagon N, Gershwin ME, Bowlus C. New therapies for primary biliary cirrhosis. Clin Rev Allergy Immunol 2015;48(2‒3):263‒72.

[39]

Alejandro E. Physiology of bile secretion. World J Gastroenterol 2008;14(37):5641‒9. . 10.3748/wjg.14.5641

[40]

Zheng X, Chen T, Jiang R, Zhao A, Wu Q, Kuang J, et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metab 2021;33(4):791‒803. . 10.1016/j.cmet.2020.11.017

[41]

Li CX, Wang XQ, Cheng FF, Yan X, Luo J, Wang QG. Hyodeoxycholic acid protects the neurovascular unit against oxygen-glucose deprivation and reoxygenation-induced injury in vitro . Neural Regen Res 2019;14(11):1941‒9. . 10.4103/1673-5374.259617

[42]

Yang T, Shu T, Liu G, Mei H, Zhu X, Huang X, et al. Quantitative profiling of 19 bile acids in rat plasma, liver, bile and different intestinal section contents to investigate bile acid homeostasis and the application of temporal variation of endogenous bile acids. J Steroid Biochem Mol Biol 2017;172: 69‒78. . 10.1016/j.jsbmb.2017.05.015

[43]

Hofmann AF, Hagey LR. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J Lipid Res 2014;55(8):1553‒95. . 10.1194/jlr.r049437

[44]

Wang DQ, Carey MC. Therapeutic uses of animal biles in traditional Chinese medicine: an ethnopharmacological, biophysical chemical and medicinal review. World J Gastroenterol 2014;20(29):9952‒75. . 10.3748/wjg.v20.i29.9952

[45]

Hagey LR, Iida T, Ogawa S, Adachi Y, Une M, Mushiake K, et al. Biliary bile acids in birds of the cotingidae family: taurine-conjugated (24R,25R)- 3α,7α,24-trihydroxy-5β-cholestan-27-oic acid and two epimers (25R and 25S) of 3α,7α-dihydroxy-5β-cholestan-27-oic acid. Steroids 2011;76(10‒ 11):1126‒35.

[46]

Satoh R, Ogata H, Saito T, Zhou B, Omura K, Kurabuchi S, et al. Two major bile acids in the hornbills, (24R,25S)-3α,7α,24-trihydroxy-5β-cholestan-27-oyl taurine and its 12α-hydroxy derivative. Lipids 2016;51(6):757‒68. . 10.1007/s11745-016-4150-0

[47]

Kuroki S, Schteingart CD, Hagey LR, Cohen BI, Mosbach EH, Rossi SS, et al. Bile salts of the west Indian manatee, trichechus manatus latirostris: novel bile alcohol sulfates and absence of bile acids. J Lipid Res 1988;29(4):509‒22. . 10.1016/s0022-2275(20)38523-0

[48]

Hagey LR, Vidal N, Hofmann AF, Krasowski MD. Complex evolution of bile salts in birds. Auk 2010;127(4):820‒31. . 10.1525/auk.2010.09155

[49]

Li T, Chiang JY. Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev 2014;66(4):948‒83. . 10.1124/pr.113.008201

[50]

Zhang Y, LaCerte C, Kansra S, Jackson JP, Brouwer KR, Edwards JE. Comparative potency of obeticholic acid and natural bile acids on FXR in hepatic and intestinal invitro cell models. Pharmacol Res Perspect 2017;5(6): e00368. . 10.1002/prp2.368

[51]

Kusaczuk M. Tauroursodeoxycholate-bile acid with chaperoning activity: molecular and cellular effects and therapeutic perspectives. Cells 2019;8 (12):1471. . 10.3390/cells8121471

[52]

Khalaf K, Tornese P, Cocco A, Albanese A. Tauroursodeoxycholic acid: a potential therapeutic tool in neurodegenerative diseases. Transl Neurodegener 2022;11(1):33. . 10.1186/s40035-022-00307-z

[53]

Zangerolamo L, Vettorazzi JF, Rosa LR, Carneiro EM, Barbosa HCL. The bile acid TUDCA and neurodegenerative disorders: an overview. Life Sci 2021;272:119252. . 10.1016/j.lfs.2021.119252

[54]

Wu Y, Zhou A, Tang L, Lei Y, Tang B, Zhang L. Bile acids: key regulators and novel treatment targets for type 2 diabetes. J Diabetes Res 2020;2020:6138438. . 10.1155/2020/6138438

[55]

McGlone ER, Bloom SR. Bile acids and the metabolic syndrome. Ann Clin Biochem 2019;56(3):326‒37. . 10.1177/0004563218817798

[56]

Fiorucci S, Di Giorgio C, Distrutti E. Obeticholic acid: an update of its pharmacological activities in liver disorders. Handb Exp Pharmacol 2019;256:283‒95. . 10.1007/164_2019_227

[57]

Chapman RW, Lynch KD. Obeticholic acid—a new therapy in PBC and NASH. Br Med Bull 2020;133(1):95‒104. . 10.1093/bmb/ldaa006

[58]

Carino A, Moraca F, Fiorillo B, Marchianò S, Sepe V, Biagioli M, et al. Hijacking SARS-CoV-2/ACE2 receptor interaction by natural and semi-synthetic steroidal agents acting on functional pockets on the receptor binding domain. Front Chem 2020;8:572885. . 10.3389/fchem.2020.572885

[59]

Biagioli M, Marchianò S, Roselli R, Di Giorgio C, Bellini R, Bordoni M, et al. GLP-1 mediates regulation of colonic ACE2 expression by the bile acid receptor GPBAR1 in inflammation. Cells 2022;11(7):1187. . 10.3390/cells11071187

[60]

Bourgonje AR, Abdulle AE, Timens W, Hillebrands JL, Navis FJ, Gordijn SJ, et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol 2020;251(3):228‒48. . 10.1002/path.5471

[61]

Batiha GE, Al-Kuraishy HM, Al-Gareeb AI, Youssef FS, El-Sherbeni SA, Negm WA. A perspective study of the possible impact of obeticholic acid against SARS-CoV-2 infection. Inflammopharmacology 2023;31(1):9‒19. . 10.1007/s10787-022-01111-x

[62]

Brevini T, Maes M, Webb GJ, John BV, Fuchs CD, Buescher G, et al. FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2. Nature 2023;615(7950):134‒42. . 10.1038/s41586-022-05594-0

[63]

Thuy PX, Bao TDD, Moon EY. Ursodeoxycholic acid ameliorates cell migration retarded by the SARS-CoV-2 spike protein in BEAS-2B human bronchial epithelial cells. Biomed Pharma 2022;150:113021. . 10.1016/j.biopha.2022.113021

[64]

Subramanian S, Iles T, Ikramuddin S, Steer CJ. Merit of an ursodeoxycholic acid clinical trial in COVID-19 patients. Vaccines 2020;8(2):320. . 10.3390/vaccines8020320

[65]

Javanian M, Barary M, Ghebrehewet S, Koppolu V, Vasigala V, Ebrahimpour S. A brief review of influenza virus infection. J Med Virol 2021;93(8):4638‒46. . 10.1002/jmv.26990

[66]

Luo L, Han W, Du J, Yang X, Duan M, Xu C, et al. Chenodeoxycholic acid from bile inhibits influenza A virus replication via blocking nuclear export of viral ribonucleoprotein complexes. Molecules 2018;23(12):3315. . 10.3390/molecules23123315

[67]

Li N, Zhang Y, Wu S, Xu R, Li Z, Zhou J, et al. Tauroursodeoxycholic acid (TUDCA) inhibits influenza A viral infection by disrupting viral proton channel M2. Sci Bull 2019;64(3):180‒8. . 10.1016/j.scib.2018.08.013

[68]

Su A, Wang H, Zheng D, Wu Z. TUDCA inhibits HSV-1 replication by the modulating unfolded protein response pathway. J Med Virol 2020;92(12):3628‒37. . 10.1002/jmv.25963

[69]

Murtaugh W, Mahaman L, Healey B, Peters H, Anderson B, Tran M, et al. Evaluation of three influenza neuraminidase inhibition assays for use in a public health laboratory setting during the 2011‒2012 Influenza Season. Public Health Rep 2013;128():75‒87. . 10.1177/00333549131280s212

[70]

Kong F, Niu X, Liu M, Wang Q. Bile acids LCA and CDCA inhibited porcine deltacoronavirus replication in vitro . Vet Microbiol 2021;257:109097. . 10.1016/j.vetmic.2021.109097

[71]

Weingarden AR, Chen C, Zhang N, Graiziger CT, Dosa PI, Steer CJ, et al. Ursodeoxycholic acid inhibits Clostridium difficile spore germination and vegetative growth, and prevents the recurrence of ileal pouchitis associated with the infection. J Clin Gastroenterol 2016;50(8):624‒30. . 10.1097/mcg.0000000000000427

[72]

Winston JA, Rivera AJ, Cai J, Thanissery R, Montgomery SA, Patterson AD, et al. Ursodeoxycholic acid (UDCA) mitigates the host inflammatory response during Clostridioides difficile infection by altering gut bile acids. Infect Immun 2020;88(6):e00045‒e120. . 10.1128/iai.00045-20

[73]

He Z, Ma Y, Yang S, Zhang S, Liu S, Xiao J, et al. Gut microbiota-derived ursodeoxycholic acid from neonatal dairy calves improves intestinal homeostasis and colitis to attenuate extended-spectrum β‍-lactamaseproducing enteroaggregative Escherichia coli infection. Microbiome 2022;10(1):79. . 10.1186/s40168-022-01269-0

[74]

Yang X, Stein KR, Hang HC. Anti-infective bile acids bind and inactivate a Salmonella virulence regulator. Nat Chem Biol 2023;19(1):91‒100. . 10.1038/s41589-022-01122-3

[75]

Palace SG, Fryling KE, Li Y, Wentworth AJ, Traverso G, Grad YH. Identification of bile acid and fatty acid species as candidate rapidly bactericidal agents for topical treatment of gonorrhoea. J Antimicrob Chemother 2021;76 (10):2569‒77. . 10.1093/jac/dkab217

[76]

Quillin SJ, Seifert HS. Neisseria gonorrhoeae host adaptation and pathogenesis. Nat Rev Microbiol 2018;16(4):226‒40. . 10.1038/nrmicro.2017.169

[77]

Rashid SA, Norman N, Teo SH, Tong WY, Leong CR, Tan WN, et al. Cholic acid: a novel steroidal uncompetitive inhibitor against β-lactamase produced by multidrug-resistant isolates. World J Microbiol Biotechnol 2021;37(9):152. . 10.1007/s11274-021-03118-y

[78]

Sato Y, Atarashi K, Plichta DR, Arai Y, Sasajima S, Kearney SM, et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature 2021;599(7885):458‒64. . 10.1038/s41586-021-03832-5

[79]

Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile . Nature 2015;517(7533):205‒8. . 10.1038/nature13828

[80]

Begley M, Gahan CGM, Hill C. The interaction between bacteria and bile. FEMS Microbiol Rev 2005;29(4):625‒51. . 10.1016/j.femsre.2004.09.003

[81]

Aguirre AM, Yalcinkaya N, Wu Q, Swennes A, Tessier ME, Roberts P, et al. Bile acid-independent protection against Clostridioides difficile infection. PLoS Pathog 2021;17(10):e1010015. . 10.1371/journal.ppat.1010015

[82]

Thanissery R, Winston JA, Theriot CM. Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids. Anaerobe 2017;45:86‒100. . 10.1016/j.anaerobe.2017.03.004

[83]

Theriot CM, Petri WA Jr Role of microbiota-derived bile acids in enteric infections. Cell 2020;181(7):1452‒4. . 10.1016/j.cell.2020.05.033

[84]

Garcia CC, Guabiraba R, Soriani FM, Teixeira MM. The development of antiinflammatory drugs for infectious diseases. Discov Med 2010;10(55):479‒88.

[85]

Ko WK, Lee SH, Kim SJ, Jo MJ, Kumar H, Han IB, et al. Anti-inflammatory effects of ursodeoxycholic acid by lipopolysaccharide-stimulated inflammatory responses in RAW 264.7 macrophages. PLoS One 2017;12(6):e0180673. . 10.1371/journal.pone.0180673

[86]

Huang F, Pariante CM, Borsini A. From dried bear bile to molecular investigation: a systematic review of the effect of bile acids on cell apoptosis, oxidative stress and inflammation in the brain. Brain Behav Immun 2022;99:132‒46. . 10.1016/j.psyneuen.2021.105483

[87]

Zhou C, Wang Y, Li C, Xie Z, Dai L. Amelioration of colitis by a gut bacterial consortium producing anti-inflammatory secondary bile acids. Microbiol Spectr 2023;11(2):e0333022. . 10.1128/spectrum.03330-22

[88]

Ward JBJ, Lajczak NK, Kelly OB, O’Dwyer AM, Giddam AK, Gabhann JN, et al. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am J Physiol Gastrointest Liver Physiol 2017;312(6):G550‒8. . 10.1152/ajpgi.00256.2016

[89]

Huang Y, Lin L, Yang Y, Duan F, Yuan M, Lou B, et al. Effect of tauroursodeoxycholic acid on inflammation after ocular alkali burn. Int J Mol Sci 2022;23(19):11717. . 10.3390/ijms231911717

[90]

Hang S, Paik D, Yao L, Kim E, Trinath J, Lu J, et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 2019;576(7785):143‒8. . 10.1038/s41586-019-1785-z

[91]

Paik D, Yao L, Zhang Y, Bae S, D’Agostino GD, Zhang M, et al. Human gut bacteria produce TH17-modulating bile acid metabolites. Nature 2022;603(7903):907‒12. . 10.1038/s41586-022-04480-z

[92]

Sun H, Guo Y, Wang H, Yin A, Hu J, Yuan T, et al. Gut commensal Parabacteroides distasonis alleviates inflammatory arthritis. Gut 2023;72(9):1664‒77. . 10.1136/gutjnl-2022-327756

[93]

Luan M, Wang H, Wang J, Zhang X, Zhao F, Liu Z, et al. Advances in antiinflammatory activity, mechanism and therapeutic spplication of ursolic acid. Mini Rev Med Chem 2022;22(3):422‒36. . 10.2174/1389557521666210913113522

[94]

Shihabudeen MS, Roy D, James J, Thirumurugan K. Chenodeoxycholic acid, an endogenous FXR ligand alters adipokines and reverses insulin resistance. Mol Cell Endocrinol 2015;414:19‒28. . 10.1016/j.mce.2015.07.012

[95]

Sinha SR, Haileselassie Y, Nguyen LP, Tropini C, Wang M, Becker LS, et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host Microbe 2020;27(4):659‒70. . 10.1016/j.chom.2020.01.021

[96]

Zhao W, Wang J, Li X, Li Y, Ye C. Deoxycholic acid inhibits Staphylococcus aureus-induced endometritis through regulating TGR5/PKA/NF-κB signaling pathway. Int Immunopharmacol 2023;118:110004. . 10.1016/j.intimp.2023.110004

[97]

Zhao C, Wu K, Hao H, Zhao Y, Bao L, Qiu M, et al. Gut microbiota-mediated secondary bile acid alleviates Staphylococcus aureus-induced mastitis through the TGR5-cAMP-PKA-NF-‍κB/NLRP3 pathways in mice. NPJ Biofilms Microbiomes 2023;9(1):8. . 10.1038/s41522-023-00374-8

[98]

Zheng Y, Yue C, Zhang H, Chen H, Liu Y, Li J. Deoxycholic acid and lithocholic acid alleviate liver injury and inflammation in mice with Klebsiella pneumoniae-induced liver abscess and bacteremia. J Inflamm Res 2021;14:777‒89. . 10.2147/jir.s298495

[99]

Li W, Hang S, Fang Y, Bae S, Zhang Y, Zhang M, et al. A bacterial bile acid metabolite modulates Treg activity through the nuclear hormone receptor NR4A1. Cell Host Microbe 2021;29(9):1366‒77. . 10.1016/j.chom.2021.07.013

[100]

Ikegami T, Honda A. Reciprocal interactions between bile acids and gut microbiota in human liver diseases. Hepatol Res 2018;48(1):15‒27. . 10.1111/hepr.13001

[101]

Ramírez-Pérez O, Cruz-Ramón V, Chinchilla-López P, Méndez-Sánchez N. The role of the gut microbiota in bile acid metabolism. Ann Hepatol 2017;16 ():S15‒20. . 10.5604/01.3001.0010.5672

[102]

Sun R, Xu C, Feng B, Gao X, Liu Z. Critical roles of bile acids in regulating intestinal mucosal immune responses. Therap Adv Gastroenterol 2021;14:17562848211018098. . 10.1177/17562848211018098

[103]

Fiorucci S, Biagioli M, Zampella A, Distrutti E. Bile acids activated receptors regulate innate immunity. Front Immunol 2018;9:1853. . 10.3389/fimmu.2018.01853

[104]

Biagioli M, Carino A. Signaling from intestine to the host: how bile acids regulate intestinal and liver immunity. Handb Exp Pharmacol 2019;256:95‒108. . 10.1007/164_2019_225

[105]

Fiorucci S, Zampella A, Ricci P, Distrutti E, Biagioli M. Immunomodulatory functions of FXR. Mol Cell Endocrinol 2022;551:111650. . 10.1016/j.mce.2022.111650

[106]

Venkatesh M, Mukherjee S, Wang H, Li H, Sun K, Benechet AP, et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 2014;41(2):296‒310. . 10.1016/j.immuni.2014.06.014

[107]

Huang K, Mukherjee S, DesMarais V, Albanese JM, Rafti E, Draghi Ii A, et al. Targeting the PXR‒TLR4 signaling pathway to reduce intestinal inflammation in an experimental model of necrotizing enterocolitis. Pediatr Res 2018;83(5):1031‒40. . 10.1038/pr.2018.14

[108]

Shah YM, Ma X, Morimura K, Kim I, Gonzalez FJ. Pregnane X receptor activation ameliorates DSS-induced inflammatory bowel disease via inhibition of NF-κB target gene expression. Am J Physiol Gastrointest Liver Physiol 2007;292(4):G1114‒22. . 10.1152/ajpgi.00528.2006

[109]

Terc J, Hansen A, Alston L, Hirota SA. Pregnane X receptor agonists enhance intestinal epithelial wound healing and repair of the intestinal barrier following the induction of experimental colitis. Eur J Pharm Sci 2014;55:12‒9. . 10.1016/j.ejps.2014.01.007

[110]

Cheng J, Shah YM, Gonzalez FJ. Pregnane X receptor as a target for treatment of inflammatory bowel disorders. Trends Pharmacol Sci 2012;33(6):323‒30. . 10.1016/j.tips.2012.03.003

[111]

Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol 2009;27(1):485‒517. . 10.1146/annurev.immunol.021908.132710

[112]

Huang S, Paik D, Yao L, Kim E, Trinath J, Lu J, et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 2019;576(7785):143‒8. . 10.1038/s41586-019-1785-z

[113]

Wang X, Mohammad IS, Fan L, Zhao Z, Nurunnabi M, Sallam MA, et al. Delivery strategies of amphotericin B for invasive fungal infections. Acta Pharm Sin B 2021;11(8):2585‒604. . 10.1016/j.apsb.2021.04.010

[114]

Jiao N, Baker SS, Chapa-Rodriguez A, Liu W, Nugent CA, Tsompana M, et al. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut 2018;67(10):1881‒91. . 10.1136/gutjnl-2017-314307

[115]

Scalia S, Williams JR, Shim JH, Law B, Morgan ED. Supercritical fluid extraction of bile acids from bovine bile raw materials. Chromatographia 1998;48(11‒12):785‒9.

[116]

Zhou Y. Study on the operation of non-vessel fistula of black bear [dissertation]. Harbin: Northeast Forestry University; 2012. Chinese.

[117]

Struecker B, Hillebrandt K, Raschzok N, Jöhrens K, Butter A, Tang P, et al. Implantation of a tissue-engineered neo-bile duct in domestic pigs. Eur Surg Res 2016;56(1‒2):61‒75.

[118]

Li P, Hasi S, Guan H, Cao J. Abstraction of CDCA and TCDCA from chicken bile and study on their antibacterial effects. J Inner Mongolia Agric Univ 2000;21(4):68‒71. Chinese.

[119]

Liu X, Li P. Contrast on extraction techniques of taurocholic acid from cattle bile and sheep bile. J Baotou Medical College 2011;27(5):3‒7. Chinese.

[120]

Zan B, Liu X, Zhao Y, Shi R, Sun X, Wang T, et al. A validated surrogate analyte UPLC-MS/MS assay for quantitation of TUDCA, TCDCA, UDCA and CDCA in rat plasma: application in a pharmacokinetic study of cultured bear bile powder. Biomed Chromatogr 2020;34(7):e4835. . 10.1002/bmc.4835

[121]

Li XY, Su FF, Jiang C, Zhang W, Wang F, Zhu Q, et al. Efficacy evolution of bear bile and related research on components. China J Chin Mater Med 2022;47(18):4846‒53.

[122]

Kollerov VV, Monti D, Deshcherevskaya NO, Lobastova TF, Ferrandi EE, Larovere A, et al. Hydroxylation of lithocholic acid by selected actinobacteria and filamentous fungi. Steroids 2013;78(3):370‒8. . 10.1016/j.steroids.2012.12.010

[123]

Lou D, Long Q, Luo C, Zhang X, Zhou Z, Zhang C, et al. A novel NAD(H)- dependent 3α-HSDH with enhanced activity by magnesium or manganese ions. Int J Biol Macromol 2022;204:34‒40. . 10.1016/j.ijbiomac.2022.01.198

[124]

Kim KH, Lee CW, Pardhe BD, Hwang J, Do H, Lee YM, et al. Crystal structure of an apo 7α-hydroxysteroid dehydrogenase reveals key structural changes induced by substrate and co-factor binding. J Steroid Biochem Mol Biol 2021;212:105945. . 10.1016/j.jsbmb.2021.105945

[125]

Grobe S, Wszolek A, Brundiek H, Fekete M, Bornscheuer UT. Highly selective bile acid hydroxylation by the multifunctional bacterial P450 monooxygenase CYP107D1 (OleP). Biotechnol Lett 2020;42(5):819‒24. . 10.1007/s10529-020-02813-4

[126]

Grobe S, Badenhorst CPS, Bayer T, Hamnevik E, Wu S, Grathwol CW, et al. Engineering regioselectivity of a P450 monooxygenase enables the synthesis of ursodeoxycholic acid via 7β‍-hydroxylation of lithocholic acid. Angew Chem Int Ed Engl 2021;60(2):753‒7. . 10.1002/anie.202012675

[127]

Lundell K, Hansson R, Wikvall K. Cloning and expression of a pig liver taurochenodeoxycholic acid 6α‍-hydroxylase (CYP4A21): a novel member of the CYP4A subfamily. J Biol Chem 2001;276(13):9606‒12. . 10.1074/jbc.m006584200

[128]

Thomas LA, King A, French GL, Murphy GM, Dowling RH. Cholylglycine hydrolase and 7α-dehydroxylase optimum assay conditions in vitro and caecal enzyme activities ex vivo . Clin Chim Acta 1997;268(1‒2):61‒72.

[129]

Chanquia SN, Ripani E, Baldessari A, García LG. Bile acids: lipase-catalyzed synthesis of new hyodeoxycholic acid derivatives. Steroids 2018;140:45‒51. . 10.1016/j.steroids.2018.09.004

[130]

Arendrup MC, Patterson T. Multidrug-resistant candida: epidemiology, molecular mechanisms, and treatment. J Infect Dis 2017;216(): S445‒51. . 10.1093/infdis/jix131

[131]

Vale-Silva LA, Sanglard D. Tipping the balance both ways: drug resistance and virulence in Candida glabrata . FEMS Yeast Res 2015;15(4):fov025. . 10.1093/femsyr/fov025

[132]

Burks C, Darby A, Gómez Londoño L, Momany M, Brewer MT. Azole-resistant Aspergillus fumigatus in the environment: identifying key reservoirs and hotspots of antifungal resistance. PLoS Pathog 2021;17(7):e1009711. . 10.1371/journal.ppat.1009711

[133]

Pérez-Cantero A, López-Fernández L, Guarro J, Capilla J. Azole resistance mechanisms in Aspergillus: update and recent advances. Int J Antimicrob Agents 2020;5(1):105807. . 10.1016/j.ijantimicag.2019.09.011

[134]

Patel D, Ono SK, Bassit L, Verma K, Amblard F, Schinazi RF. Assessment of a computational approach to predict drug resistance mutations for HIV, HBV and SARS-CoV-2. Molecules 2022;27(17):5413. . 10.3390/molecules27175413

[135]

Yasutake Y, Hattori SI, Tamura N, Matsude K, Kohgo S, Maeda K, et al. Structural features in common of HBV and HIV-1 resistance against chirallydistinct nucleoside analogues entecavir and lamivudine. Sci Rep 2020;10(1):3021. . 10.1038/s41598-020-59775-w

[136]

Fairhurst RM, Dondorp AM. Artemisinin-resistant Plasmodium falciparum malaria. Microbiol Spectr 2016;4(3):10‒128. . 10.1128/microbiolspec.ei10-0013-2016

[137]

Nili A, Farbod A, Neishabouri A, Mozafarihashijn M, Tavakolpour S, Mahmoudi H. Remdesivir: a beacon of hope from Ebola virus disease to COVID-19. Rev Med Virol 2020;30(6):1‒13. . 10.1002/rmv.2133

[138]

Barbarossa A, Iacopetta D, Sinicropi MS, Franchini C, Carocci A. Recent advances in the development of thalidomide-related compounds as anticancer drugs. Curr Med Chem 2022;29(1):19‒40. . 10.2174/0929867328666210623143526

[139]

Morgan GJ, Davies FE. Role of thalidomide in the treatment of patients with multiple myeloma. Crit Rev Oncol Hematol 2013;88():S14‒22. . 10.1016/j.critrevonc.2013.05.012

[140]

Chen XN, Shen YN, Li PY, Zou YQ, Hu HY. Bacterial biofilms: characteristics and combat strategies. Acta Pharm Sin 2018;53(12):2040‒9.

[141]

Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, et al. Bacterial biofilm and associated infections. J Chin Med Assoc 2018;81(1):7‒11. . 10.1016/j.jcma.2017.07.012

[142]

Gupta P, Sarkar S, Das B, Bhattacharjee S, Tribedi P. Biofilm, pathogenesis and prevention—a journey to break the wall: a review. Arch Microbiol 2016;198(1):1‒15. . 10.1007/s00203-015-1148-6

[143]

Ito K, Okumura A, Takeuchi JS, Watashi K, Inoue R, Yamauchi T, et al. Dual agonist of farnesoid X receptor and takeda G protein-coupled receptor 5 Inhibits hepatitis B virus infection in vitro and in vivo . Hepatology 2021;74(1):83‒98. . 10.1002/hep.31712

AI Summary AI Mindmap
PDF (5036KB)

4602

访问

0

被引

详细

导航
相关文章

AI思维导图

/