[1] |
G. McNicol, J. Jeliazovski, J.J. François, S. Kramer, R. Ryals. Climate change mitigation potential in sanitation via off-site composting of human waste. Nat Clim Change, 10 (6) ( 2020), pp. 545-549
|
[2] |
F.F. Nerini, B. Sovacool, N. Hughes, L. Cozzi, E. Cosgrave, M. Howells, et al.. Connecting climate action with other sustainable development goals. Nat Sustainability, 2 (8) ( 2019), pp. 674-680
|
[3] |
N. Zhou, N. Khanna, W. Feng, J. Ke, M. Levine. Scenarios of energy efficiency and CO2 emissions reduction potential in the buildings sector in China to year 2050. Nat Energy, 3 (11) ( 2018), pp. 978-984
|
[4] |
G. Sabia, L. Petta, F. Avolio, E. Caporossi. Energy saving in wastewater treatment plants: a methodology based on common key performance indicators for the evaluation of plant energy performance, classification and benchmarking. Energy Convers Manage, 220 ( 2020), Article 113067
|
[5] |
Edenhofer O, Pichs-Madruga R, Sokona Y, Minx JC, Farahani E, Kadner S, et al. Climate change 2014: mitigation of climate change. Cambridge: Cambridge University Press; 2014.
|
[6] |
E.R. Jones, M.T.H. van Vliet, M. Qadir, M.F.P. Bierkens. Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth Syst Sci Data, 13 (2) ( 2021), pp. 237-254
|
[7] |
M.C.M. Van Loosdrecht,D. Brdjanovic. Water treatment. Anticipating the next century of wastewater treatment. Science, 344 (6191) ( 2014), pp. 1452-1453
|
[8] |
L. Shao, G.Q. Chen. Water footprint assessment for wastewater treatment: method, indicator, and application. Environ Sci Technol, 47 (14) ( 2013), pp. 7787-7794
|
[9] |
S.G.S.A. Rothausen, D. Conway. Greenhouse-gas emissions from energy use in the water sector. Nat Clim Change, 1 (4) ( 2011), pp. 210-219
|
[10] |
D. Shindell, C.J. Smith. Climate and air-quality benefits of a realistic phase-out of fossil fuels. Nature, 573 (7774) ( 2019), pp. 408-411
|
[11] |
T.K.L. Nguyen, H.H. Ngo, W. Guo, S.W. Chang, D.D. Nguyen, L.D. Nghiem, et al.. Insight into greenhouse gases emissions from the two popular treatment technologies in municipal wastewater treatment processes. Sci Total Environ, 671 ( 2019), pp. 1302-1313
|
[12] |
Y.Q. Wang, H.C. Wang, Y.P. Song, S.Q. Zhou, Q.N. Li, B. Liang, et al.. Machine learning framework for intelligent aeration control in wastewater treatment plants: automatic feature engineering based on variation sliding layer. Water Res, 246 ( 2023), Article 120676
|
[13] |
W.J. Du, J.Y. Lu, Y.R. Hu, J. Xiao, C. Yang, J. Wu, et al.. Spatiotemporal pattern of greenhouse gas emissions in China’s wastewater sector and pathways towards carbon neutrality. Nat Water, 1 (2) ( 2023), pp. 166-175
|
[14] |
H. Wang, X. Lu, Y. Deng, Y. Sun, C.P. Nielsen, Y. Liu, et al.. China’s CO2 peak before 2030 implied from characteristics and growth of cities. Nat Sustainability, 2 (8) ( 2019), pp. 748-754
|
[15] |
A. Ramaswami, K. Tong, A. Fang, R.M. Lal, A.S. Nagpure, Y. Li, et al.. Urban cross-sector actions for carbon mitigation with local health co-benefits in China. Nat Clim Change, 7 (10) ( 2017), pp. 736-742
|
[16] |
X. Liang, S. Zhang, Y. Wu, J. Xing, X. He, K.M. Zhang, et al.. Air quality and health benefits from fleet electrification in China. Nat Sustainability, 2 (10) ( 2019), pp. 962-971
|
[17] |
X. Hao, R. Liu, X. Huang. Evaluation of the potential for operating carbon neutral WWTPs in China. Water Res, 87 ( 2015), pp. 424-431
|
[18] |
G. Skouteris, G. Rodriguez-Garcia, S.F. Reinecke, U. Hampel. The use of pure oxygen for aeration in aerobic wastewater treatment: a review of its potential and limitations. Bioresour Technol, 312 ( 2020), Article 123595
|
[19] |
E. Pittoors, Y. Guo, S.W.H. van Hulle. Modeling dissolved oxygen concentration for optimizing aeration systems and reducing oxygen consumption in activated sludge processes: a review. Chem Eng Commun, 201 (8) ( 2014), pp. 983-1002
|
[20] |
L. Åmand, G. Olsson, B. Carlsson. Aeration control—a review. Water Sci Technol, 67 (11) ( 2013), pp. 2374-2398
|
[21] |
G. Crini, E. Lichtfouse. Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett, 17 (1) ( 2019), pp. 145-155
|
[22] |
Y. Sun, Y. Guan, M. Pan, X. Zhan, Z. Hu, G. Wu. Enhanced biological nitrogen removal and N2O emission characteristics of the intermittent aeration activated sludge process. Rev Environ Sci Bio Technol, 16 (4) ( 2017), pp. 761-780
|
[23] |
A. Fenu, G. Guglielmi, J. Jimenez, M. Spèrandio, D. Saroj, B. Lesjean, et al.. Activated sludge model (ASM) based modelling of membrane bioreactor (MBR) processes: a critical review with special regard to MBR specificities. Water Res, 44 (15) ( 2010), pp. 4272-4294
|
[24] |
C. Sutton, M. Boley, L.M. Ghiringhelli, M. Rupp, J. Vreeken, M. Scheffler.Identifying domains of applicability of machine learning models for materials science. Nat Commun, 11 (1) ( 2020), p. 4428
|
[25] |
M.H.S. Segler, M. Preuss, M.P. Waller. Planning chemical syntheses with deep neural networks and symbolic AI. Nature, 555 (7698) ( 2018), pp. 604-610
|
[26] |
D.T. Jones, J.M. Thornton.The impact of AlphaFold2 one year on. Nat Methods, 19 (1) ( 2022), pp. 15-20
|
[27] |
S. Eggimann, L. Mutzner, O. Wani, M.Y. Schneider, D. Spuhler, M.M. de Vitry, et al.. The potential of knowing more: a review of data-driven urban water management. Environ Sci Technol, 51 (5) ( 2017), pp. 2538-2553
|
[28] |
K.B. Newhart, R.W. Holloway, A.S. Hering, T.Y. Cath. Data-driven performance analyses of wastewater treatment plants: a review. Water Res, 157 ( 2019), pp. 498-513
|
[29] |
J. Rodriguez-Perez, C. Leigh, B. Liquet, C. Kermorvant, E. Peterson, D. Sous, et al.. Detecting technical anomalies in high-frequency water-quality data using artificial neural networks. Environ Sci Technol, 54 (21) ( 2020), pp. 13719-13730
|
[30] |
T.H. Miller, M.D. Gallidabino, J.I. MacRae, C. Hogstrand, N.R. Bury, L.P. Barron, et al.. Machine learning for environmental toxicology: a call for integration and innovation. Environ Sci Technol, 52 (22) ( 2018), pp. 12953-12955
|
[31] |
M. Garrido-Baserba, S. Vinardell, M. Molinos-Senante, D. Rosso, M. Poch. The economics of wastewater treatment decentralization: a techno-economic evaluation. Environ Sci Technol, 52 (15) ( 2018), pp. 8965-8976
|
[32] |
F. Hernández-del-Olmo, E. Gaudioso, R. Dormido, N. Duro. Energy and environmental efficiency for the N-ammonia removal process in wastewater treatment plants by means of reinforcement learning. Energies, 9 (9) ( 2016), p. 755
|
[33] |
A. Asadi, A. Verma, K. Yang, B. Mejabi. Wastewater treatment aeration process optimization: a data mining approach. J Environ Manage, 203 (Pt 2) ( 2017), pp. 630-639
|
[34] |
J.J. Zhu, L. Kang, P.R. Anderson. Predicting influent biochemical oxygen demand: balancing energy demand and risk management. Water Res, 128 ( 2018), pp. 304-313
|
[35] |
K. Lotfi, H. Bonakdari, I. Ebtehaj, F.S. Mjalli, M. Zeynoddin, R. Delatolla, et al.. Predicting wastewater treatment plant quality parameters using a novel hybrid linear-nonlinear methodology. J Environ Manage, 240 ( 2019), pp. 463-474
|
[36] |
J. Wang, K. Wan, X. Gao, X. Cheng, Y. Shen, Z. Wen, et al.. Energy and materials-saving management via deep learning for wastewater treatment plants. IEEE. Access, 8 ( 2020), pp. 191694-191705
|
[37] |
O. Icke, D.M. van Es, M.F. de Koning, J.J.G. Wuister, J. Ng, K.M. Phua, et al.. Performance improvement of wastewater treatment processes by application of machine learning. Water Sci Technol, 82 (12) ( 2020), pp. 2671-2680
|
[38] |
Z. Guo, B. Du, J. Wang, Y. Shen, Q. Li, D. Feng, et al.. Data-driven prediction and control of wastewater treatment process through the combination of convolutional neural network and recurrent neural network. RSC Adv, 10 (23) ( 2020), pp. 13410-13419
|
[39] |
N. Khatri, K.K. Khatri, A. Sharma. Artificial neural network modelling of faecal coliform removal in an intermittent cycle extended aeration system-sequential batch reactor based wastewater treatment plant. J Water Process Eng, 37 ( 2020), Article 101477
|
[40] |
K.B. Newhart, C.A. Marks, T. Rauch-Williams, T.Y. Cath, A.S. Hering. Hybrid statistical-machine learning ammonia forecasting in continuous activated sludge treatment for improved process control. J Water Process Eng, 37 ( 2020), Article 101389
|
[41] |
M.S. Zaghloul, O.T. Iorhemen, R.A. Hamza, J.H. Tay, G. Achari. Development of an ensemble of machine learning algorithms to model aerobic granular sludge reactors. Water Res, 189 ( 2021), Article 116657
|
[42] |
A.S. Sangeeta, A. Sharafati, P. Sihag, N. Al-Ansari, K.W. Chau. Machine learning model development for predicting aeration efficiency through Parshall flume. Eng Appl Comput Fluid Mech, 15 (1) ( 2021), pp. 889-901
|
[43] |
Y. Pan, M. Dagnew. A new approach to estimating oxygen off-gas fraction and dynamic alpha factor in aeration systems using hybrid machine learning and mechanistic models. J Water Process Eng, 48 ( 2022), Article 102924
|
[44] |
A.S. Qambar, M.M. Al Khalidy. Optimizing dissolved oxygen requirement and energy consumption in wastewater treatment plant aeration tanks using machine learning. J Water Process Eng, 50 ( 2022), Article 103237
|
[45] |
H.C. Croll, K. Ikuma, S.K. Ong, S. Sarkar. Reinforcement learning applied to wastewater treatment process control optimization: approaches, challenges, and path forward. Crit Rev Environ Sci Technol, 53 (20) ( 2023), pp. 1775-1794
|
[46] |
M. Schwarz, J. Trippel, M. Engelhart, M. Wagner. Dynamic alpha factor prediction with operating data—a machine learning approach to model oxygen transfer dynamics in activated sludge. Water Res, 231 ( 2023), Article 119650
|
[47] |
H. Visser, N. Evers, A. Bontsema, J. Rost, A. de Niet, P. Vethman, et al.. What drives the ecological quality of surface waters? A review of 11 predictive modeling tools. Water Res, 208 ( 2022), Article 117851
|
[48] |
T. Jia, Z. Kapelan, R. de Vries, P. Vriend, E.C. Peereboom, I. Okkerman, et al.. Deep learning for detecting macroplastic litter in water bodies: a review. Water Res, 231 ( 2023), Article 119632
|
[49] |
N. Gnann, B. Baschek, T.A. Ternes. Close-range remote sensing-based detection and identification of macroplastics on water assisted by artificial intelligence: a review. Water Res, 222 ( 2022), Article 118902
|
[50] |
X. Zhou, Z. Tang, W. Xu, F. Meng, X. Chu, K. Xin, et al.. Deep learning identifies accurate burst locations in water distribution networks. Water Res, 166 ( 2019), Article 115058
|
[51] |
A. Voulodimos, N. Doulamis, A. Doulamis, E. Protopapadakis.Deep learning for computer vision: a brief review. Comput Intell Neurosci, 2018 ( 2018), p. 7068349
|
[52] |
Z. Li, F. Liu, W. Yang, S. Peng, J. Zhou. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Trans Neural Networks Learn Syst, 33 (12) ( 2022), pp. 6999-7019
|
[53] |
S. Mallat.Understanding deep convolutional networks. Philos Trans R Soc A, 374 ( 2065) ( 2016), p. 20150203
|
[54] |
Wang CY, Bochkovskiy A, Liao HYM.YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. 2022. arXiv:2207.02696.
|
[55] |
C. Chen, Z. Zheng, T. Xu, S. Guo, S. Feng, W. Yao, et al.. YOLO-based UAV technology: a review of the research and its applications. Drones, 7 (3) ( 2023), p. 190
|
[56] |
J. Holler, S.C. Levinson. Multimodal language processing in human communication. Trends Cognit Sci, 23 (8) ( 2019), pp. 639-652
|
[57] |
S.R. Stahlschmidt, B. Ulfenborg, J. Synnergren. Multimodal deep learning for biomedical data fusion: a review. Briefings Bioinf, 23 (2) ( 2022), p. bbab569
|
[58] |
Li M, Zareian A, Zeng Q, Whitehead S, Lu D, Ji H, et al. Jurafsky D, Chai J, Schluter N, Tetreault J, editors. Cross-media structured common space for multimedia event extraction. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics; 2020 Jul 5- 10 ; Stroudsburg, PA, USA. Kerrville: Association for Computational Linguistics; 2020. p. 2557-68.
|
[59] |
J. Gao, P. Li, Z. Chen, J. Zhang. A survey on deep learning for multimodal data fusion. Neural Comput, 32 (5) ( 2020), pp. 829-864
|
[60] |
Zhang Y, Chen M, Shen J, Wang C. Tailor versatile multi-modal learning for multi-label emotion recognition. 2022. arXiv:2201.05834.
|
[61] |
M.A. Azam, K.B. Khan, S. Salahuddin, E. Rehman, S.A. Khan, M.A. Khan, et al.. A review on multimodal medical image fusion: compendious analysis of medical modalities, multimodal databases, fusion techniques and quality metrics. Comput Biol Med, 144 ( 2022), Article 105253
|
[62] |
Huo Y, Zhang M, Liu G, Lu H, Gao Y, Yang G, et al. WenLan: bridging vision and language by large-scale multi-modal pre-training. 2021. arXiv:2103.06561.
|
[63] |
B. Yang, Z. Xiao, Q. Meng, Y. Yuan, W. Wang, H. Wang, et al.. Deep learning-based prediction of effluent quality of a constructed wetland. Environ Sci Ecotechnol, 13 ( 2022), Article 100207
|
[64] |
S. Zhong, K. Zhang, M. Bagheri, J.G. Burken, A. Gu, B. Li, et al.. Machine learning: new ideas and tools in environmental science and engineering. Environ Sci Technol, 55 (19) ( 2021), pp. 12741-12754
|
[65] |
S. Gupta, D. Aga, A. Pruden, L. Zhang, P. Vikesland. Data analytics for environmental science and engineering research. Environ Sci Technol, 55 (16) ( 2021), pp. 10895-10907
|
[66] |
K. Chen, H. Chen, C. Zhou, Y. Huang, X. Qi, R. Shen, et al.. Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data. Water Res, 171 ( 2020), Article 115454
|
[67] |
G. Wang, Q.S. Jia, M. Zhou, J. Bi, J. Qiao, A. Abusorrah. Artificial neural networks for water quality soft-sensing in wastewater treatment: a review. Artif Intell Rev, 55 (1) ( 2022), pp. 565-587
|
[68] |
S. Zhu, H. Lu, M. Ptak, J. Dai, Q. Ji. Lake water-level fluctuation forecasting using machine learning models: a systematic review. Environ Sci Pollut Res, 27 (36) ( 2020), pp. 44807-44819
|
[69] |
Lundberg SM, Lee SI. Von Luxburg U, Guyon I, Bengio S, Wallach H, Fergus R, editors.A unified approach to interpreting model predictions. In: Proceedings of the 31st International Conference on Neural Information Processing Systems; 2017 Dec 4- 9 ; Long Beach, CA, USA. Red Hook: Curran Associates Inc.; 2017. p. 4768-77.
|
[70] |
Y. Meng, N. Yang, Z. Qian, G. Zhang. What makes an online review more helpful: an interpretation framework using XGBoost and SHAP values. J Theor Appl Electron Commer Res, 16 (3) ( 2021), pp. 466-490
|
[71] |
J. Zhang, X. Ma, J. Zhang, D. Sun, X. Zhou, C. Mi, et al.. Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model. J Environ Manage, 332 ( 2023), p. 117357
|
[72] |
K. Futagami, Y. Fukazawa, N. Kapoor, T. Kito. Pairwise acquisition prediction with SHAP value interpretation. J Finance Data Sci, 7 ( 2021), pp. 22-44
|