苦木素类化合物的抗癌活性研究

Cai Lu, Si-Nan Lu, Di Di, Wei-Wei Tao, Lu Fan, Jin-Ao Duan, Ming Zhao, Chun-Tao Che

工程(英文) ›› 2024, Vol. 38 ›› Issue (7) : 27-38.

PDF(3146 KB)
PDF(3146 KB)
工程(英文) ›› 2024, Vol. 38 ›› Issue (7) : 27-38. DOI: 10.1016/j.eng.2023.11.022
研究论文
Review

苦木素类化合物的抗癌活性研究

作者信息 +

The Anticancer Potential of Quassinoids-A Mini-Review

Author information +
History +

Abstract

The anticancer potential of quassinoids has attracted a great deal of attention for decades, and scientific data revealing their possible applications in cancer management are continuously increasing in the literature. Aside from the potent cytotoxic and antitumor properties of these degraded triterpenes, several quassinoids have exhibited synergistic effects with anticancer drugs. This article provides an overview of the potential anticancer properties of quassinoids, including their cytotoxic and antitumor activities, mechanisms of action, safety evaluation, and potential benefits in combination with anticancer drugs.

Keywords

Quassinoid / Anticancer potential / Antiproliferative mechanism / Safety evaluation / Synergistical combination with anticancer / drugs

引用本文

导出引用
Cai Lu, Si-Nan Lu, Di Di. 苦木素类化合物的抗癌活性研究. Engineering. 2024, 38(7): 27-38 https://doi.org/10.1016/j.eng.2023.11.022

参考文献

[1]
R.L. Siegel, K.D. Miller, N.S. Wagle, A. Jemal. Cancer statistics, 2023. CA Cancer J Clin, 73 (1) (2023), pp. 17-48
[2]
F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 68 (6) (2018), pp. 394-424
[3]
J. Remon, B. Besse, J.C. Soria. Successes and failures: what did we learn from recent first-line treatment immunotherapy trials in non-small cell lung cancer?. BMC Med, 15 (1) (2017), p. 55
[4]
D.O. Ochwang’i, C.N. Kimwele, J.A. Oduma, P.K. Gathumbi, J.M. Mbaria, S.G. Kiama. Medicinal plants used in treatment and management of cancer in Kakamega County, Kenya. J Ethnopharmacol, 151 (3) (2014), pp. 1040-1055
[5]
Z. Yan, Z. Lai, J. Lin. Anticancer properties of traditional Chinese medicine. Comb Chem High Throughput Screen, 20 (5) (2017), pp. 423-429
[6]
S. Jiwajinda, V. Santisopasri, A. Murakami, M. Kawanaka, H. Kawanaka, M. Gasquet, et al. In vitro anti-tumor promoting and anti-parasitic activities of the quassinoids from Eurycoma longifolia, a medicinal plant in southeast Asia. J Ethnopharmacol, 82 (1) (2002), pp. 55-58
[7]
Z.K. Duan, Z.J. Zhang, S.H. Dong, Y.X. Wang, S.J. Song, X.X. Huang. Quassinoids: phytochemistry and antitumor prospect. Phytochemistry, 187 (2021), Article 112769
[8]
G. Fiaschetti, M.A. Grotzer, T. Shalaby, D. Castelletti, A. Arcaro. Quassinoids: from traditional drugs to new cancer therapeutics. Curr Med Chem, 18 (3) (2011), pp. 316-328
[9]
S.M. Kupchan, R.W. Britton, M.F. Ziegler, C.W. Sigel. Bruceantin, a new potent antileukemic simaroubolide from Brucea antidysenterica. J Org Chem, 38 (1) (1973), pp. 178-179
[10]
C.L. Wiseman, H.Y. Yap, A.Y. Bedikian, G.P. Bodey, G.R. Blumenschein. Phase II trial of bruceantin in metastatic breast carcinoma. Am J Clin Oncol, 5 (4) (1982), pp. 389-391
[11]
J.C. Arseneau, J.M. Wolter, M. Kuperminc, J.C. Ruckdeschel. A phase II study of bruceantin (NSC-165, 563) in advanced malignant melanoma. Invest New Drugs, 1 (3) (1983), pp. 239-242
[12]
J. Xie, Z. Lai, X. Zheng, H. Liao, Y. Xian, Q. Li, et al. Apoptotic activities of brusatol in human non-small cell lung cancer cells: involvement of ROS-mediated mitochondrial-dependent pathway and inhibition of Nrf2-mediated antioxidant response. Toxicology, 451 (2021), Article 152680
[13]
M. Zhao, S.T. Lau, P.S. Leung, C.T. Che, Z.X. Lin. Seven quassinoids from Fructus Bruceae with cytotoxic effects on pancreatic adenocarcinoma cell lines. Phytother Res, 25 (12) (2011), pp. 1796-1800
[14]
P. Zhange, W. Tao, C. Lu, L. Fan, Q. Jiang, C. Yang, et al. Bruceine A induces cell growth inhibition and apoptosis through PFKFB4/GSK3β signaling in pancreatic cancer. Pharmacol Res, 169 (2021), Article 105658
[15]
N.N. Win, T. Ito, K.T. Ismail, Y.Y. Win, M. Tanaka, et al. Picrajavanicins H-M, new quassinoids from Picrasma javanica collected in Myanmar and their antiproliferative activities. Tetrahedron, 72 (5) (2016), pp. 746-752
[16]
Z.Q. Lai, S.P. Ip, H.J. Liao, Z. Lu, J.H. Xie, Z.R. Su, et al. Brucein D, a naturally occurring tetracyclic triterpene quassinoid, induces apoptosis in pancreatic cancer through ROS-associated PI3K/AKT signaling pathway. Front Pharmacol, 8 (2017), p. 936
[17]
M. Sonlimar, I. Dwiprahasto, J. Mustofa. Spectroscopic analysis and cytotoxic activity of quassinoid isolated from the seeds of Brucea javanica on Hela cell. Indones J Pharm, 22 (2) (2011), pp. 137-143
[18]
S.J. Moon, B.C. Jeong, H.J. Kim, J.E. Lim, H.J. Kim, G.Y. Kwon, et al. Bruceantin targets HSP 90 to overcome resistance to hormone therapy in castration-resistant prostate cancer. Theranostics, 11 (2) (2021), pp. 958-973
[19]
J.H. Liu, N. Zhao, G.J. Zhang, S.S. Yu, L.J. Wu, J. Qu, et al. Bioactive quassinoids from the seeds of Brucea javanica. J Nat Prod, 75 (4) (2012), pp. 683-688
[20]
H. Chen, J. Bai, Z.F. Fang, S.S. Yu, S.G. Ma, S. Xu, et al. Indole alkaloids and quassinoids from the stems of Brucea mollis. J Nat Prod, 74 (11) (2011), pp. 2438-2445
[21]
J. Fan, D. Ren, J. Wang, X. Liu, H. Zhang, M. Wu, et al. Bruceine D induces lung cancer cell apoptosis and autophagy via the ROS/MAPK signaling pathway in vitro and in vivo. Cell Death Dis, 11 (2) (2020), p. 126
[22]
P. Chumkaew, T. Srisawat. Antimalarial and cytotoxic quassinoids from the roots of Brucea javanica. J Asian Nat Prod Res, 19 (3) (2017), pp. 247-253
[23]
J. Zhou, J. Hou, J. Wang, J. Wang, J. Gao, Y. Bai. Brusatol inhibits laryngeal cancer cell proliferation and metastasis via abrogating JAK2/STAT3 signaling mediated epithelial-mesenchymal transition. Life Sci, 284 (2021), Article 119907
[24]
C. Cheng, F. Yuan, X.P. Chen, W. Zhang, X.L. Zhao, Z.P. Jiang, et al. Inhibition of Nrf2-mediated glucose metabolism by brusatol synergistically sensitizes acute myeloid leukemia to Ara-C. Biomed Pharmacother, 142 (2021), Article 111652
[25]
H. Chen, T. Jiang, H. Chen, J. Su, X. Wang, Y. Cao, et al. Brusatol reverses lipopolysaccharide-induced epithelial-mesenchymal transformation and induces apoptosis through PI3K/AKT/NF-кB pathway in human gastric cancer SGC-7901 cells. Anticancer Drugs, 32 (4) (2021), pp. 394-404
[26]
B.C. Cavalcanti, P.M. da Costa, A.A. Carvalho, F.A.R. Rodrigues, R.C.N. Amorim, E.C.C. Silva, et al. Involvement of intrinsic mitochondrial pathway in neosergeolide-induced apoptosis of human HL-60 leukemia cells: the role of mitochondrial permeability transition pore and DNA damage. Pharm Biol, 50 (8) (2012), pp. 980-993
[27]
D. Yeo, N. Huynh, J.A. Beutler, C. Christophi, A. Shulkes, G.S. Baldwin, et al. Glaucarubinone and gemcitabine synergistically reduce pancreatic cancer growth via down-regulation of p21-activated kinases. Cancer Lett, 346 (2) (2014), pp. 264-272
[28]
N.N. Win, T. Ito, K.T. Ismail, Y.Y. Win, M. Tanaka, et al. Picrajavanicins A-G, quassinoids from Picrasma javanica collected in Myanmar. J Nat Prod, 78 (12) (2015), pp. 3024-3030
[29]
Y. Chen, L. Zhu, X. Yang, C. Wei, C. Chen, Y. He, et al. Ailanthone induces G2/M cell cycle arrest and apoptosis of SGC-7901 human gastric cancer cells. Mol Med Rep, 16 (5) (2017), pp. 6821-6827
[30]
W.CP. Prema, A.E. Nugroho, M.D. Awouafack, Y.Y. Win, N.N. Win, et al. Two new quassinoids and other constituents from Picrasma javanica wood, and their biological activities. J Nat Med, 73 (3) (2019), pp. 589-596
[31]
N. Dukaew, K. Chairatvit, P. Pitchakarn, A. Imsumran, J. Karinchai, W. Tuntiwechapikul, et al. Inactivation of AKT/NF-κB signaling by eurycomalactone decreases human NSCLC cell viability and improves the chemosensitivity to cisplatin. Oncol Rep, 44 (4) (2020), pp. 1441-1454
[32]
R. Ye, N. Dai, Q. He, P. Guo, Y. Xiang, Q. Zhang, et al. Comprehensive anti-tumor effect of brusatol through inhibition of cell viability and promotion of apoptosis caused by autophagy via the PI3K/AKT/mTOR pathway in hepatocellular carcinoma. Biomed Pharmacother, 105 (2018), pp. 962-973
[33]
S. Guo, J. Zhang, C. Wei, Z. Lu, R. Cai, D. Pan, et al. Anticancer effects of brusatol in nasopharyngeal carcinoma through suppression of the AKT/mTOR signaling pathway. Cancer Chemother Pharmacol, 85 (6) (2020), pp. 1097-1108
[34]
J. Chandrasekaran, J. Balasubramaniam, A. Sellamuthu, A. Ravi. An in vitro study on the reversal of epithelial to mesenchymal transition by brusatol and its synergistic properties in triple-negative breast cancer cells. J Pharm Pharmacol, 73 (6) (2021), pp. 749-757
[35]
D. Meng, X. Li, L. Han, L. Zhang, W. An, X. Li. Four new quassinoids from the roots of Eurycoma longifolia Jack. Fitoterapia, 92 (2014), pp. 105-110
[36]
W.Q. Yang, W. Tang, X.J. Huang, J.G. Song, Y.Y. Li, Y. Xiong, et al. Quassinoids from the roots of Eurycoma longifolia and their anti-proliferation activities. Molecules, 26 (19) (2021), p. 5939
[37]
B. Tan, Y. Huang, L. Lan, B. Zhang, L. Ye, W. Yan, et al. Bruceine D induces apoptosis in human non-small cell lung cancer cells through regulating JNK pathway. Biomed Pharmacother, 117 (2019), Article 109089
[38]
C.D. Mohan, Y.Y. Liew, Y.Y. Jung, S. Rangappa, H.D. Preetham, A. Chinnathambi, et al. Brucein D modulates MAPK signaling cascade to exert multi-faceted anti-neoplastic actions against breast cancer cells. Biochimie, 182 (2021), pp. 140-151
[39]
R. Huang, L. Zhang, J. Jin, Y. Zhou, H. Zhang, C. Lv, et al. Bruceine D inhibits HIF-1α-mediated glucose metabolism in hepatocellular carcinoma by blocking ICAT/β-catenin interaction. Acta Pharm Sin B, 11 (11) (2021), pp. 3481-3492
[40]
Y. Wang, W.J. Wwang, C. Su, D.M. Zhang, L.P. Xu, R.R. He, et al. Cytotoxic quassinoids from Ailanthus altissima. Bioorg Med Chem Lett, 23 (3) (2013), pp. 654-657
[41]
L. Zhao, Q. Wen, G. Yang, Z. Huang, T. Shen, H. Li, et al. Apoptosis induction of dehydrobruceine B on two kinds of human lung cancer cell lines through mitochondrial-dependent pathway. Phytomedicine, 23 (2) (2016), pp. 114-122
[42]
J. Xu, D. Xiao, W.W. Song, L. Chen, W.Y. Liu, N. Xie, et al. Quassinoids from the stems of Picrasma quassioides and their cytotoxic and NO production-inhibitory activities. Fitoterapia, 110 (2016), pp. 13-19
[43]
J.Y. Zhang, M.T. Lin, H.Y. Tung, S.L. Tang, T. Yi, Y.Z. Zhang, et al. Bruceine D induces apoptosis in human chronic myeloid leukemia K 562 cells via mitochondrial pathway. Am J Cancer Res, 6 (4) (2016), pp. 819-826
[44]
M.E. Issa, S. Berndt, G. Carpentier, J.M. Pezzuto, M. Cuendet. Bruceantin inhibits multiple myeloma cancer stem cell proliferation. Cancer Biol Ther, 17 (9) (2016), pp. 966-975
[45]
Z. Su, J. Hao, Z. Xu, R. Huang, N. Zhang, S. Qiu. A new quassinoid from fruits of Brucea javanica. Nat Prod Res, 27 (21) (2013), pp. 2016-2021
[46]
Q.M. Ye, L.L. Bai, S.Z. Hu, H.Y. Tian, L.J. Ruan, Y.F. Tan, et al. Isolation, chemotaxonomic significance and cytotoxic effects of quassinoids from Brucea javanica. Fitoterapia, 105 (2015), pp. 66-72
[47]
Z. Zhuo, J. Hu, X. Yang, M. Chen, X. Lei, L. Deng, et al. Ailanthone inhibits Huh 7 cancer cell growth via cell cycle arrest and apoptosis in vitro and in vivo. Sci Rep, 5 (1) (2015), p. 16185
[48]
L. Liu, Z.X. Lin, P.S. Leung, L.H. Chen, M. Zhao, J. Liang. Involvement of the mitochondrial pathway in bruceine D-induced apoptosis in Capan-2 human pancreatic adenocarcinoma cells. Int J Mol Med, 30 (1) (2012), pp. 93-99
[49]
X.L. Yang, Y.L. Yuan, D.M. Zhang, F. Li, W.C. Ye. Shinjulactone O, a new quassinoid from the root bark of Ailanthus altissima. Nat Prod Res, 28 (18) (2014), pp. 1432-1437
[50]
Z. Lu, Z.Q. Lai, A.W.N. Leung, P.S. Leung, Z.S. Li, Z.X. Lin. Exploring brusatol as a new anti-pancreatic cancer adjuvant: biological evaluation and mechanistic studies. Oncotarget, 8 (49) (2017), pp. 84974-84985
[51]
C. Lu, L. Fan, P.F. Zhang, W.W. Tao, C.B. Yang, E.X. Shang, et al. A novel P38α MAPK activator bruceine A exhibits potent anti-pancreatic cancer activity. Comput Struct Biotechnol J, 19 (2021), pp. 3437-3450
[52]
J.P. Evans, B.K. Winiarski, P.A. Sutton, R.P. Jones, L. Ressel, C.A. Duckworth, et al. The Nrf 2 inhibitor brusatol is a potent antitumour agent in an orthotopic mouse model of colorectal cancer. Oncotarget, 9 (43) (2018), pp. 27104-27116
[53]
D. Ren, N.F. Villeneuve, T. Jiang, T. Wu, A. Lau, H.A. Toppin, et al. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc Natl Acad Sci USA, 108 (4) (2011), pp. 1433-1438
[54]
Z. Xiao, C.S. Ching, C.H. Li, S.C. Tang, S.K.W. Tsui, Z. Lin, et al. Role of microRNA-95 in the anticancer activity of Brucein D in hepatocellular carcinoma. Eur J Pharmacol, 728 (2014), pp. 141-150
[55]
G. Robert, V. Jullian, A. Jacquel, C. Ginet, M. Dufies, S. Torino, et al. Simalikalactone E (SkE), a new weapon in the armamentarium of drugs targeting cancers that exhibit constitutive activation of the ERK pathway. Oncotarget, 3 (12) (2012), pp. 1688-1699
[56]
M. Wang, G. Shi, C. Bian, M.F. Nisar, Y. Guo, Y. Wu, et al. UVA irradiation enhances brusatol-mediated inhibition of melanoma growth by downregulation of the Nrf2-mediated antioxidant response. Oxid Med Cell Longev, 2018 (2018), p. 9742154
[57]
C.M. Wang, H.F. Li, X.K. Wang, W. Li, Q. Su, X. Xiao, et al. Ailanthus Altissima-derived ailanthone enhances gastric cancer cell apoptosis by inducing the repression of base excision repair by downregulating p23 expression. Int J Biol Sci, 17 (11) (2021), pp. 2811-2825
[58]
Z. Wu, Y. Xu, J. Xu, J. Lu, L. Cai, Q. Li, et al. Brusatol inhibits tumor growth and increases the efficacy of cabergoline against pituitary adenomas. Oxid Med Cell Longev, 2021 (2021), p. 6696015
[59]
X. Liu, H. Xu, Y. Zhang, P. Wang, W. Gao. Brusatol inhibits amyloid-β-induced neurotoxicity in U-251 cells via regulating the Nrf2/HO-1 pathway. J Cell Biochem, 120 (6) (2019), pp. 10556-10563
[60]
Y. Xiang, W. Ye, C. Huang, B. Lou, J. Zhang, D. Yu, et al. Brusatol inhibits growth and induces apoptosis in pancreatic cancer cells via JNK/p 38 MAPK/NF-κB/Stat3/Bcl-2 signaling pathway. Biochem Biophys Res Commun, 487 (4) (2017), pp. 820-826
[61]
J.H. Lee, S. Rangappa, C.D. Mohan, S.G. Basappa, Z.X. Lin, et al. Brusatol, a Nrf 2 inhibitor targets STAT3 signaling cascade in head and neck squamous cell carcinoma. Biomolecules, 9 (10) (2019), p. 550
[62]
R. Wang, Q. Xu, L. Liu, X. Liang, L. Cheng, M. Zhang, et al. Antitumour activity of 2-dihydroailanthone from the bark of Ailanthus altissima against U251. Pharm Biol, 54 (9) (2016), pp. 1641-1648
[63]
S. Hajjouli, S. Chateauvieux, M.H. Teiten, B. Orlikova, M. Schumacher, M. Dicato, et al. Eurycomanone and eurycomanol from Eurycoma longifolia Jack as regulators of signaling pathways involved in proliferation, cell death and inflammation. Molecules, 19 (9) (2014), pp. 14649-14666
[64]
P.F. Wong, W.F. Cheong, M.H. Shu, C.H. Teh, K.L. Chan, S. AbuBakar. Eurycomanone suppresses expression of lung cancer cell tumor markers, prohibitin, annexin 1 and endoplasmic reticulum protein 28. Phytomedicine, 19 (2) (2012), pp. 138-144
[65]
M.H. Kang, C.P. Reynolds. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res, 15 (4) (2009), pp. 1126-1132
[66]
S.J. Cai, Y. Liu, S. Han, C. Yang. Brusatol, an NRF2 inhibitor for future cancer therapeutic. Cell Biosci, 9 (1) (2019), p. 45
[67]
Y. Pei, N. Hwang, F. Lang, L. Zhou, J.H. Wong, R.K. Singh, et al. Quassinoid analogs with enhanced efficacy for treatment of hematologic malignancies target the PI3Kγ isoform. Commun Biol, 3 (1) (2020), p. 267
[68]
H. Li, H. Zhu, C.J. Xu, J. Yuan. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell, 94 (4) (1998), pp. 491-501
[69]
H. Urra, E. Dufey, T. Avril, E. Chevet, C. Hetz. Endoplasmic reticulum stress and the hallmarks of cancer. Trends Cancer, 2 (5) (2016), pp. 252-262
[70]
S.D. Shnyder, J.E. Mangum, M.J. Hubbard. Triplex profiling of functionally distinct chaperones (ERp29/PDI/BiP) reveals marked heterogeneity of the endoplasmic reticulum proteome in cancer. J Proteome Res, 7 (8) (2008), pp. 3364-3372
[71]
Y.P. Yang, M. Li, B. Xu, G. Wei, J.R. Cui, K. Wang. Allicin induces apoptosis, cell cycle arrest and microtubule disassembly in human nasopharyngeal carcinoma KB cells. J Chin Pharm Sci, 18 (2) (2009), pp. 114-120
[72]
K. Vermeulen, D.R. Van Bockstaele, Z.N. Berneman. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif, 36 (3) (2003), pp. 131-149
[73]
S. Lamouille, J. Xu, R. Derynck. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol, 15 (3) (2014), pp. 178-196
[74]
J. Seo, J. Ha, E. Kang, H. Yoon, S. Lee, S.Y. Ryu, et al. Anti-cancer effects of glaucarubinone in the hepatocellular carcinoma cell line Huh7 via regulation of the epithelial-to-mesenchymal transition-associated transcription factor twist1. Int J Mol Sci, 22 (4) (2021), p. 1700
[75]
Y. Xiang, W. Ye, C. Huang, D. Yu, H. Chen, T. Deng, et al. Brusatol enhances the chemotherapy efficacy of gemcitabine in pancreatic cancer via the Nrf 2 signalling pathway. Oxid Med Cell Longev, 2018 (2018), p. 2360427
[76]
Y. Murakami, K. Sugiyama, H. Ebinuma, N. Nakamoto, K. Ojiro, P. Chu, et al. Dual effects of the Nrf 2 inhibitor for inhibition of hepatitis C virus and hepatic cancer cells. BMC Cancer, 18 (1) (2018), p. 680
[77]
H.M. Chen, Z.Q. Lai, H.J. Liao, J.H. Xie, Y.F. Xian, Y.L. Chen, et al. Synergistic antitumor effect of brusatol combined with cisplatin on colorectal cancer cells. Int J Mol Med, 41 (3) (2018), pp. 1447-1454
[78]
Z. Huang, G. Yang, T. Shen, X. Wang, H. Li, D. Ren. Dehydrobruceine B enhances the cisplatin-induced cytotoxicity through regulation of the mitochondrial apoptotic pathway in lung cancer A549 cells. Biomed Pharmacother, 89 (2017), pp. 623-631
[79]
S. Karthikeyan, S.L. Hoti, Y. Nazeer, H.V. Hegde. Glaucarubinone sensitizes KB cells to paclitaxel by inhibiting ABC transporters via ROS-dependent and p53-mediated activation of apoptotic signaling pathways. Oncotarget, 7 (27) (2016), pp. 42353-42373
[80]
J.D. Hayes, M. Mcmahon. NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci, 34 (4) (2009), pp. 176-188
[81]
A. Lau, N.F. Villeneuve, Z. Sun, P. Wong, D. Zhang. Dual roles of Nrf2 in cancer. Pharmacol Res, 58 (5-6) (2008), pp. 262-270
[82]
D.D. Zhang. Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev, 38 (4) (2006), pp. 769-789
[83]
T.W. Kensler, N. Wakabayashi, S. Biswal. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol, 47 (1) (2007), pp. 89-116
[84]
A. Verma, K. Mehta. Tissue transglutaminase-mediated chemoresistance in cancer cells. Drug Resist Updat, 10 (4-5) (2007), pp. 144-151
[85]
T. Mashima, T. Tsuruo. Defects of the apoptotic pathway as therapeutic target against cancer. Drug Resist Updat, 8 (6) (2005), pp. 339-343
[86]
Y. He, S. Peng, J. Wang, H. Chen, X. Cong, A. Chen, et al. Ailanthone targets p 23 to overcome MDV3100 resistance in castration-resistant prostate cancer. Nat Commun, 7 (1) (2016), p. 13122
[87]
X. Sun, Q. Wang, Y. Wang, L. Du, C. Xu, Q. Liu. Brusatol enhances the radiosensitivity of A549 cells by promoting ROS production and enhancing DNA damage. Int J Mol Sci, 17 (7) (2016), p. 997
[88]
J. Zhang, X. Fang, Z. Li, H.F. Chan, Z. Lin, Y. Wang, et al. Redox-sensitive micelles composed of disulfide-linked Pluronic-linoleic acid for enhanced anticancer efficiency of brusatol. Int J Nanomedicine, 13 (2018), pp. 939-956
[89]
W. Tao, N. Wang, J. Ruan, X. Cheng, L. Fan, P. Zhang, et al. Enhanced ROS-boosted phototherapy against pancreatic cancer via Nrf2-mediated stress-defense pathway suppression and ferroptosis induction. ACS Appl Mater Interfaces, 14 (5) (2022), pp. 6404-6416
[90]
W. Tao, X. Cheng, D. Sun, Y. Guo, N. Wang, J. Ruan, et al. Synthesis of multi-branched Au nanocomposites with distinct plasmon resonance in NIR-II window and controlled CRISPR-Cas 9 delivery for synergistic gene-photothermal therapy. Biomaterials, 287 (2022), Article 121621
PDF(3146 KB)

Accesses

Citation

Detail

段落导航
相关文章

/