[1] |
W.W. Shen, K.N. Chen. Three-dimensional integrated circuit (3D IC) key technology: through-silicon via (TSV). Nano Res Lett, 12 (1) (2017), p. 56
|
[2] |
Z.Y. Zhu, M. Yu, Y.F. Jin. Fabrication of integrated silicon PIN detector based on Al-Sn-Al bonding for ΔE-E telescope application. Microelectron Eng, 247 (2021), Article 111599
|
[3] |
F.C. Zhou, Y. Chai. Near-sensor and in-sensor computing. Nat Electron, 3 (2020), pp. 664-671
|
[4] |
T. Krihata, J. Golz, M. Wordeman, P. Batra, G.W. Maier, N. Robson, et al. Three-dimensional dynamic random access memories using through-silicon-vias. IEEE J Emerg Sel Top Circuits Syst, 6 (3) (2016), pp. 373-384
|
[5] |
M.J. Park, J. Lee, K. Cho, J. Park, J. Moon, S.H. Lee, et al. A 192-Gb 12-high 896-GB/s HBM3 DRAM with a TSV auto-calibration scheme and machine-learning-based layout optimization. IEEE J Solid-State Circuits, 58 (1) (2023), pp. 256-269
|
[6] |
Z. Wang. 3-D integration and through-silicon vias in MEMS and microsensors. J Microelectromech Syst, 24 (5) (2015), pp. 1211-1244
|
[7] |
Liu B, Satoh A, Tamahashi K, Sasajima Y, Onuki J. The protrusion behaviors in Cu-TSV during heating and cooling process. Trans Jpn Inst Electron Packag 2018; 11:E17-014-1-8.
|
[8] |
Dou H, Yang M, Chen Y, Qiao Y. Analysis of the structure evolution and crack propagation of Cu-filled TSV after thermal shock test. In: Proceedings of the 2017 18th International Conference on Electronic Packaging Technology (ICEPT); 2017 Aug 16-19; Harbin, China. Piscataway: IEEE; 2017. p. 611-4.
|
[9] |
S.H. Kee, W.J. Kim, J.P. Jung. Copper-silicon carbide composite plating for inhibiting the extrusion of through silicon via (TSV). Microelectron Eng, 214 (2019), pp. 5-14
|
[10] |
C. Okoro, J.W. Lau, F. Golshany, K. Hummler, Y.S. Obeng. A detailed failure analysis examination of the effect of thermal cycling on Cu TSV reliability. IEEE Trans Electron Devices, 61 (1) (2014), pp. 15-22
|
[11] |
E. Beyne. Reliable via-middle copper through-silicon via technology for 3-D integration. IEEE Trans Compon Packag Manuf Technol, 6 (7) (2016), pp. 983-992
|
[12] |
Lee K, Fukushima T, Tanaka T, Koyanagi M. Thermomechanical reliability challenges induced by high density Cu TSVs and metal micro-joining for 3-D ICs. In: Proceedings of the 2012 IEEE International Reliability Physics Symposium (IRPS); 2012 Apr 15-19; Anaheim, CA, USA. Piscataway: IEEE; 2012. p. 5F.2.1-2.4.
|
[13] |
S.E. Thompson, G. Sun, Y.S. Choi, T. Nishida. Uniaxial-process-induced strained-Si: extending the CMOS roadmap. IEEE Trans Electron Devices, 53 (5) (2006), pp. 1010-1020
|
[14] |
C. Huang, D. Wu, Z. Wang. Thermal reliability tests of air-gap TSVs with combined air-SiO2 liners. IEEE Trans Compon Packag Manuf Technol, 6 (5) (2016), pp. 703-711
|
[15] |
F. Wang, Z. Zhu, Y. Yang, X. Yin, X. Liu, R. Ding. An effective approach of reducing the keep-out-zone induced by coaxial through-silicon-via. IEEE Trans Electron Devices, 61 (8) (2014), pp. 2928-2934
|
[16] |
C. Li, J. Zou, S. Liu, H. Zheng, P. Fei. Study of annular copper-filled TSVs of sensor and interposer chips for 3-D integration. IEEE Trans Compon Packag Manuf Technol, 9 (3) (2019), pp. 391-398
|
[17] |
B. Khorramdel, J. Liljeholm, M.M. Laurila, T. Lammi, G. Mårtensson, T. Ebefors, et al. Inkjet printing technology for increasing the I/O density of 3D TSV interposers. Microsyst Nanoeng, 3 (2017), p. 17002
|
[18] |
P.A. Thadesar, M.S. Bakir. Novel photo-defined polymer-enhanced through-silicon vias for silicon interposers. IEEE Trans Compon Packag Manuf Technol, 3 (7) (2013), pp. 1130-1137
|
[19] |
C. Huang, K. Wu, Z. Wang. Mechanical reliability testing of air-gap through-silicon vias. IEEE Trans Compon Packag Manuf Technol, 6 (5) (2016), pp. 712-721
|
[20] |
Blasa R, Mattis B, Martini D, Lanee S, Petteway C, Hong S, et al. High density backside tungsten TSV for 3D stacked ICs. In: Proceedings of the 2016 IEEE International 3D Systems Integration Conference (3DIC); 2016 Nov 08-11; San Francisco, CA, USA. Piscataway: IEEE; 2016. p. 1-4.
|
[21] |
H. Kikuchi, Y. Yamada, A. Mossad Ali, J. Liang, T. Fukushima, T. Tanaka, et al. Tungsten through-silicon via technology for three-dimensional LSIs. Jpn J Appl Phys, 47 (2008), p. 2801
|
[22] |
Pares G, Bresson N, Minoret S, Lapras V, Brianceau P, Sillon N, et al.Through silicon via technology using tungsten metallization. In:Proceedings of the 2011 IEEE International Conference on IC Design & Technology; 2011 May 2- 4 ; Kaohsiung, China. Piscataway: IEEE; 2011. p. 1-4.
|
[23] |
Joint Electron Device Engineering Council JEDEC. JESD22-A104F.01: Temperature cycling. JEDEC Standard. Arlington: JEDEC; 2020.
|
[24] |
M. Chandrakar, M.K. Majumder. Performance analysis using air gap defected through silicon via: impact on crosstalk and power. IEEE Trans Compon Packag Manuf Technol, 12 (11) (2022), pp. 1832-1840
|
[25] |
Liu F, Yu RR, Yong AM, Doyle JP, Wang X, Shi L, et al. A 300-mm wafer-level three-dimensional integration scheme using tungsten through-silicon via and hybrid Cu-adhesive bonding. In: Proceedings of the 2008 IEEE International Electron Devices Meeting; 2008 Dec 15-17; San Francisco, CA, USA. Piscataway: IEEE; 2008, p. 1-4.
|
[26] |
M. Hecker, L. Zhu, C. Georgi, I. Zienert, J. Rinderknecht, H. Geisler, et al. Analytics and metrology of strained silicon structures by Raman and nano-Raman spectroscopy. AIP Conf Proc, 931 (2007), pp. 435-444
|
[27] |
C. Jian, I. De Wolf. Theoretical and experimental Raman spectroscopy study of mechanical stress induced by electronic packaging. IEEE Trans Compon Packag Manuf Technol, 28 (3) (2005), pp. 484-492
|
[28] |
Murugesan M, Kino H, Nohira H, Bea JC, Horibe A, Koyanagi M, et al. Wafer thinning, bonding, and interconnects induced local strain/stress in 3D-LSIs with fine-pitch high-density microbumps and through-Si vias. In: Proceedings of the 2010 International Electron Devices Meeting; 2010 Dec 6-8; San Francisco, CA, USA. Piscataway: IEEE; 2010. p. 2.3.1-4.
|
[29] |
J. Gambino, D. Vanslette, B. Webb, C. Luce, T. Ueda, T. Ishigaki, et al. Stress characterization of tungsten-filled through silicon via arrays using very high resolution multi-wavelength raman spectroscopy. ECS Trans, 35 (2011), p. 105
|
[30] |
W.S. Kwon, D.T. Alastair, K.H. Teo, S. Gao, T. Ueda, T. Ishigaki, et al. Stress evolution in surrounding silicon of Cu-filled through-silicon via undergoing thermal annealing by multiwavelength micro-Raman spectroscopy. Appl Phys Lett, 98 (2011), Article 232106
|
[31] |
A.D. Trigg, L.H. Yu, C.K. Cheng, R. Kumar, D.L. Kwong, T. Ueda, et al. Three dimensional stress mapping of silicon surrounded by copper filled through silicon vias using polychromator-based multi-wavelength micro Raman spectroscopy. Appl Phys Express, 3 (2010), Article 086601
|
[32] |
X. Yin, Z. Zhu, Y. Yang, R. Ding. Metal proportion optimization of annular through-silicon via considering temperature and keep-out zone. IEEE Trans Compon Packag Manuf Technol, 5 (8) (2015), pp. 1093-1099
|
[33] |
F. Wang, Z. Zhu, Y. Yang, X. Liu, R. Ding. Analytical models for the thermal strain and stress induced by annular through-silicon-via (TSV). IEICE Electronics Expr, 10 (20) (2013), p. 20130666
|
[34] |
K. Ghosh, J. Zhang, L. Zhang, Y. Dong, H. Li, C.M. Tan, et al. Integration of low-κ dielectric liner in through silicon via and thermomechanical stress relief. Appl Phys Express, 5 (2012), Article 126601
|
[35] |
Lee S, Sugawara Y, Ito M, Kino H, Tanaka T, Fukushima T. TSV liner dielectric technology with spin-on low-k polymer. In: Proceedings of the 2018 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC); 2018 Apr 17-21; Mie, Japan. Piscataway: IEEE; 2018. p. 346-9.
|
[36] |
Wei F, Watanabe N, Shimamoto H, Kikuchi K, Aoyagi M. Analysis of thermal stress distribution for TSV with novel structure. In: Proceedings of the 2014 International 3D Systems Integration Conference (3DIC); 2014 Dec 1-3; Kinsdale, Ireland. Piscataway: IEEE; 2014. p. 1-4.
|
[37] |
Luo R, Ren K, Ma S, Yan J, Xia Y, Jin Y, et al. Fabrication and characterization of low stress Si interposer with air-gapped Si interconnection for hermetical system-in-package. In: Proceedings of the 2016 IEEE 66th Electronic Components and Technology Conference (ECTC); 2016 May 31-Jun 3; Las Vegas, NV, USA. Piscataway: IEEE; 2016. p. 1758-64.
|
[38] |
W. Feng, T.T. Bui, N. Watanabe, H. Shimamoto, M. Aoyagi, K. Kikuchi. Fabrication and stress analysis of annular-trench-isolated TSV. Microelectron Reliab, 63 (2016), pp. 142-147
|
[39] |
Chui K, Wang I T, Che F, Ji L, Yao Z. High aspect ratio (>10:1) via-middle TSV with high-k dielectric liner oxide. In: Proceedings of the 2019 IEEE 21st Electronics Packaging Technology Conference (EPTC); 2019 Dec 4-6; Singapore. Piscataway: IEEE; 2019. p. 721-4.
|
[40] |
Wang F, Qu X, Yu N. An effective method of reducing TSV thermal stress by STI. In: Proceedings of the 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC); 2019 Jun 12-14; Xiamen, China. Piscataway: IEEE; 2019. p. 1-3.
|
[41] |
Liao S, Huang C, Zhang H, Liu S. Thermal stress study of 3D IC based on TSV and verification of thermal dissipation of STI. In:Proceedings of the 2021 22nd International Conference on Electronic Packaging Technology (ICEPT); 2021 Sep 14-17; Xiamen, China. Piscataway: IEEE; 2021. p. 1-5.
|