用于高密度互连的低应力TSV阵列

Binbin Jiao, Jingping Qiao, Shiqi Jia, Ruiwen Liu, Xueyong Wei, Shichang Yun, Yanmei Kong, Yuxin Ye, Xiangbin Du, Lihang Yu, Bo Cong

工程(英文) ›› 2024, Vol. 38 ›› Issue (7) : 201-208.

PDF(2422 KB)
PDF(2422 KB)
工程(英文) ›› 2024, Vol. 38 ›› Issue (7) : 201-208. DOI: 10.1016/j.eng.2023.11.023
研究论文
Article

用于高密度互连的低应力TSV阵列

作者信息 +

Low Stress TSV Arrays for High-Density Interconnection

Author information +
History +

Abstract

In three-dimensional (3D) stacking, the thermal stress of through-silicon via (TSV) has a significant influence on chip performance and reliability, and this problem is exacerbated in high-density TSV arrays. In this study, a novel hollow tungsten TSV (W-TSV) is presented and developed. The hollow structure provides space for the release of thermal stress. Simulation results showed that the hollow W-TSV structure can release 60.3% of thermal stress within the top 2 μm from the surface, and thermal stress can be decreased to less than 20 MPa in the radial area of 3 μm. The ultra-high-density (1600 TSV∙mm−2) TSV array with a size of 640 × 512, a pitch of 25 μm, and an aspect ratio of 20.3 was fabricated, and the test results demonstrated that the proposed TSV has excellent electrical and reliability performances. The average resistance of the TSV was 1.21 Ω. The leakage current was 643 pA and the breakdown voltage was greater than 100 V. The resistance change is less than 2% after 100 temperature cycles from −40 to 125 °C. Raman spectroscopy showed that the maximum stress on the wafer surface caused by the hollow W-TSV was 31.02 MPa, which means that there was no keep-out zone (KOZ) caused by the TSV array. These results indicate that this structure has great potential for applications in large-array photodetectors and 3D integrated circuits.

Keywords

Thermal stress / Through-silicon via (TSV) / High-density integration

引用本文

导出引用
Binbin Jiao, Jingping Qiao, Shiqi Jia. 高密度低应力硅通孔互联技术研究. Engineering. 2024, 38(7): 201-208 https://doi.org/10.1016/j.eng.2023.11.023

参考文献

[1]
W.W. Shen, K.N. Chen. Three-dimensional integrated circuit (3D IC) key technology: through-silicon via (TSV). Nano Res Lett, 12 (1) (2017), p. 56
[2]
Z.Y. Zhu, M. Yu, Y.F. Jin. Fabrication of integrated silicon PIN detector based on Al-Sn-Al bonding for ΔE-E telescope application. Microelectron Eng, 247 (2021), Article 111599
[3]
F.C. Zhou, Y. Chai. Near-sensor and in-sensor computing. Nat Electron, 3 (2020), pp. 664-671
[4]
T. Krihata, J. Golz, M. Wordeman, P. Batra, G.W. Maier, N. Robson, et al. Three-dimensional dynamic random access memories using through-silicon-vias. IEEE J Emerg Sel Top Circuits Syst, 6 (3) (2016), pp. 373-384
[5]
M.J. Park, J. Lee, K. Cho, J. Park, J. Moon, S.H. Lee, et al. A 192-Gb 12-high 896-GB/s HBM3 DRAM with a TSV auto-calibration scheme and machine-learning-based layout optimization. IEEE J Solid-State Circuits, 58 (1) (2023), pp. 256-269
[6]
Z. Wang. 3-D integration and through-silicon vias in MEMS and microsensors. J Microelectromech Syst, 24 (5) (2015), pp. 1211-1244
[7]
Liu B, Satoh A, Tamahashi K, Sasajima Y, Onuki J. The protrusion behaviors in Cu-TSV during heating and cooling process. Trans Jpn Inst Electron Packag 2018; 11:E17-014-1-8.
[8]
Dou H, Yang M, Chen Y, Qiao Y. Analysis of the structure evolution and crack propagation of Cu-filled TSV after thermal shock test. In: Proceedings of the 2017 18th International Conference on Electronic Packaging Technology (ICEPT); 2017 Aug 16-19; Harbin, China. Piscataway: IEEE; 2017. p. 611-4.
[9]
S.H. Kee, W.J. Kim, J.P. Jung. Copper-silicon carbide composite plating for inhibiting the extrusion of through silicon via (TSV). Microelectron Eng, 214 (2019), pp. 5-14
[10]
C. Okoro, J.W. Lau, F. Golshany, K. Hummler, Y.S. Obeng. A detailed failure analysis examination of the effect of thermal cycling on Cu TSV reliability. IEEE Trans Electron Devices, 61 (1) (2014), pp. 15-22
[11]
E. Beyne. Reliable via-middle copper through-silicon via technology for 3-D integration. IEEE Trans Compon Packag Manuf Technol, 6 (7) (2016), pp. 983-992
[12]
Lee K, Fukushima T, Tanaka T, Koyanagi M. Thermomechanical reliability challenges induced by high density Cu TSVs and metal micro-joining for 3-D ICs. In: Proceedings of the 2012 IEEE International Reliability Physics Symposium (IRPS); 2012 Apr 15-19; Anaheim, CA, USA. Piscataway: IEEE; 2012. p. 5F.2.1-2.4.
[13]
S.E. Thompson, G. Sun, Y.S. Choi, T. Nishida. Uniaxial-process-induced strained-Si: extending the CMOS roadmap. IEEE Trans Electron Devices, 53 (5) (2006), pp. 1010-1020
[14]
C. Huang, D. Wu, Z. Wang. Thermal reliability tests of air-gap TSVs with combined air-SiO2 liners. IEEE Trans Compon Packag Manuf Technol, 6 (5) (2016), pp. 703-711
[15]
F. Wang, Z. Zhu, Y. Yang, X. Yin, X. Liu, R. Ding. An effective approach of reducing the keep-out-zone induced by coaxial through-silicon-via. IEEE Trans Electron Devices, 61 (8) (2014), pp. 2928-2934
[16]
C. Li, J. Zou, S. Liu, H. Zheng, P. Fei. Study of annular copper-filled TSVs of sensor and interposer chips for 3-D integration. IEEE Trans Compon Packag Manuf Technol, 9 (3) (2019), pp. 391-398
[17]
B. Khorramdel, J. Liljeholm, M.M. Laurila, T. Lammi, G. Mårtensson, T. Ebefors, et al. Inkjet printing technology for increasing the I/O density of 3D TSV interposers. Microsyst Nanoeng, 3 (2017), p. 17002
[18]
P.A. Thadesar, M.S. Bakir. Novel photo-defined polymer-enhanced through-silicon vias for silicon interposers. IEEE Trans Compon Packag Manuf Technol, 3 (7) (2013), pp. 1130-1137
[19]
C. Huang, K. Wu, Z. Wang. Mechanical reliability testing of air-gap through-silicon vias. IEEE Trans Compon Packag Manuf Technol, 6 (5) (2016), pp. 712-721
[20]
Blasa R, Mattis B, Martini D, Lanee S, Petteway C, Hong S, et al. High density backside tungsten TSV for 3D stacked ICs. In: Proceedings of the 2016 IEEE International 3D Systems Integration Conference (3DIC); 2016 Nov 08-11; San Francisco, CA, USA. Piscataway: IEEE; 2016. p. 1-4.
[21]
H. Kikuchi, Y. Yamada, A. Mossad Ali, J. Liang, T. Fukushima, T. Tanaka, et al. Tungsten through-silicon via technology for three-dimensional LSIs. Jpn J Appl Phys, 47 (2008), p. 2801
[22]
Pares G, Bresson N, Minoret S, Lapras V, Brianceau P, Sillon N, et al.Through silicon via technology using tungsten metallization. In:Proceedings of the 2011 IEEE International Conference on IC Design & Technology; 2011 May 2- 4 ; Kaohsiung, China. Piscataway: IEEE; 2011. p. 1-4.
[23]
Joint Electron Device Engineering Council JEDEC. JESD22-A104F.01: Temperature cycling. JEDEC Standard. Arlington: JEDEC; 2020.
[24]
M. Chandrakar, M.K. Majumder. Performance analysis using air gap defected through silicon via: impact on crosstalk and power. IEEE Trans Compon Packag Manuf Technol, 12 (11) (2022), pp. 1832-1840
[25]
Liu F, Yu RR, Yong AM, Doyle JP, Wang X, Shi L, et al. A 300-mm wafer-level three-dimensional integration scheme using tungsten through-silicon via and hybrid Cu-adhesive bonding. In: Proceedings of the 2008 IEEE International Electron Devices Meeting; 2008 Dec 15-17; San Francisco, CA, USA. Piscataway: IEEE; 2008, p. 1-4.
[26]
M. Hecker, L. Zhu, C. Georgi, I. Zienert, J. Rinderknecht, H. Geisler, et al. Analytics and metrology of strained silicon structures by Raman and nano-Raman spectroscopy. AIP Conf Proc, 931 (2007), pp. 435-444
[27]
C. Jian, I. De Wolf. Theoretical and experimental Raman spectroscopy study of mechanical stress induced by electronic packaging. IEEE Trans Compon Packag Manuf Technol, 28 (3) (2005), pp. 484-492
[28]
Murugesan M, Kino H, Nohira H, Bea JC, Horibe A, Koyanagi M, et al. Wafer thinning, bonding, and interconnects induced local strain/stress in 3D-LSIs with fine-pitch high-density microbumps and through-Si vias. In: Proceedings of the 2010 International Electron Devices Meeting; 2010 Dec 6-8; San Francisco, CA, USA. Piscataway: IEEE; 2010. p. 2.3.1-4.
[29]
J. Gambino, D. Vanslette, B. Webb, C. Luce, T. Ueda, T. Ishigaki, et al. Stress characterization of tungsten-filled through silicon via arrays using very high resolution multi-wavelength raman spectroscopy. ECS Trans, 35 (2011), p. 105
[30]
W.S. Kwon, D.T. Alastair, K.H. Teo, S. Gao, T. Ueda, T. Ishigaki, et al. Stress evolution in surrounding silicon of Cu-filled through-silicon via undergoing thermal annealing by multiwavelength micro-Raman spectroscopy. Appl Phys Lett, 98 (2011), Article 232106
[31]
A.D. Trigg, L.H. Yu, C.K. Cheng, R. Kumar, D.L. Kwong, T. Ueda, et al. Three dimensional stress mapping of silicon surrounded by copper filled through silicon vias using polychromator-based multi-wavelength micro Raman spectroscopy. Appl Phys Express, 3 (2010), Article 086601
[32]
X. Yin, Z. Zhu, Y. Yang, R. Ding. Metal proportion optimization of annular through-silicon via considering temperature and keep-out zone. IEEE Trans Compon Packag Manuf Technol, 5 (8) (2015), pp. 1093-1099
[33]
F. Wang, Z. Zhu, Y. Yang, X. Liu, R. Ding. Analytical models for the thermal strain and stress induced by annular through-silicon-via (TSV). IEICE Electronics Expr, 10 (20) (2013), p. 20130666
[34]
K. Ghosh, J. Zhang, L. Zhang, Y. Dong, H. Li, C.M. Tan, et al. Integration of low-κ dielectric liner in through silicon via and thermomechanical stress relief. Appl Phys Express, 5 (2012), Article 126601
[35]
Lee S, Sugawara Y, Ito M, Kino H, Tanaka T, Fukushima T. TSV liner dielectric technology with spin-on low-k polymer. In: Proceedings of the 2018 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC); 2018 Apr 17-21; Mie, Japan. Piscataway: IEEE; 2018. p. 346-9.
[36]
Wei F, Watanabe N, Shimamoto H, Kikuchi K, Aoyagi M. Analysis of thermal stress distribution for TSV with novel structure. In: Proceedings of the 2014 International 3D Systems Integration Conference (3DIC); 2014 Dec 1-3; Kinsdale, Ireland. Piscataway: IEEE; 2014. p. 1-4.
[37]
Luo R, Ren K, Ma S, Yan J, Xia Y, Jin Y, et al. Fabrication and characterization of low stress Si interposer with air-gapped Si interconnection for hermetical system-in-package. In: Proceedings of the 2016 IEEE 66th Electronic Components and Technology Conference (ECTC); 2016 May 31-Jun 3; Las Vegas, NV, USA. Piscataway: IEEE; 2016. p. 1758-64.
[38]
W. Feng, T.T. Bui, N. Watanabe, H. Shimamoto, M. Aoyagi, K. Kikuchi. Fabrication and stress analysis of annular-trench-isolated TSV. Microelectron Reliab, 63 (2016), pp. 142-147
[39]
Chui K, Wang I T, Che F, Ji L, Yao Z. High aspect ratio (>10:1) via-middle TSV with high-k dielectric liner oxide. In: Proceedings of the 2019 IEEE 21st Electronics Packaging Technology Conference (EPTC); 2019 Dec 4-6; Singapore. Piscataway: IEEE; 2019. p. 721-4.
[40]
Wang F, Qu X, Yu N. An effective method of reducing TSV thermal stress by STI. In: Proceedings of the 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC); 2019 Jun 12-14; Xiamen, China. Piscataway: IEEE; 2019. p. 1-3.
[41]
Liao S, Huang C, Zhang H, Liu S. Thermal stress study of 3D IC based on TSV and verification of thermal dissipation of STI. In:Proceedings of the 2021 22nd International Conference on Electronic Packaging Technology (ICEPT); 2021 Sep 14-17; Xiamen, China. Piscataway: IEEE; 2021. p. 1-5.
PDF(2422 KB)

Accesses

Citation

Detail

段落导航
相关文章

/