作为钾筛分放大器的马太MXene(Ti3C2Tx)层状膜

卢纵, 武浩宇, 魏嫣莹, 王海辉

工程(英文) ›› 2024, Vol. 42 ›› Issue (11) : 213-222.

PDF(3448 KB)
PDF(3448 KB)
工程(英文) ›› 2024, Vol. 42 ›› Issue (11) : 213-222. DOI: 10.1016/j.eng.2023.11.025
研究论文

作为钾筛分放大器的马太MXene(Ti3C2Tx)层状膜

作者信息 +

A Matthew MXene (Ti3C2Tx) Lamellar Membrane as a Potassium-Sieving Amplifier

Author information +
History +

摘要

具有超高K+选择性的传输通道对生物起着至关重要的作用,但构建具有良好K+选择性和渗透性的离子通道仍然是一项挑战。在本次研究中,一种基于MXene(Ti3C2Tx)层状通道的不对称双层膜展现出了惊人的马太效应:放大K+的优先传输,从而实现出色的K+分离性能。由于优先亲和效应,1-氮杂-18-冠醚-6 改性的识别层会选择K+离子,随后基于限域效应,K+离子会以水合离子的形式通过促进层快速传输。K+优先占据冠醚,阻碍了其他非选择性离子(如Na+)进入识别层。基于MXene (Ti3C2Tx)的马太膜具有0.1-0.2 mol∙m-2∙h-1的高K+渗透率,且K+/Na+选择性高达5-9。深入研究了马太膜的离子分离机理,探讨了马太放大效应对K+筛分的本质机理,即膜内识别层和促进层的精确匹配决定了K+的快速渗透和良好的选择性。本研究所构建的马太膜的非对称结构是了解离子通道精确快速离子转运的生物学功能的关键,它将指导设计和合成高性能人工离子通道或膜材料。

Abstract

Transport channels with ultrahigh K+ selectivity over other ions play a crucial role for living beings, but constructing ionic channels with promising K+ selectivity and permeability remains a challenge. Here, an asymmetric bilayer membrane based on MXene (Ti3C2Tx) lamellar channels consisting of a recognition layer (RL) on top of an enhancement layer (EL) exhibits an amazing Matthew effect: amplification of the preferred transport of K+, resulting in an excellent K+-separation performance. The K+ ion is selected by the 1-aza-18-crown-6 ether-modified RL, owing to preferential affinity energy, and then rapidly transported as a hydrated ion through the EL, based on the confinement effect. Other undesired ions such as Na+ are hindered from entering the RL by the preferred K+ occupation of the crown ether. The MXene (Ti3C2Tx)-based Matthew membrane presents high K+-permeation rates of 0.1-0.2 mol∙m−2∙h−1, with a significant K+/Na+ selectivity of 5-9. The molecular separation mechanism of the Matthew membrane is investigated deeply to explore the nature of the Matthew amplification effect on K+ sieving, where the precise matching of the RL and EL within the membrane governs the fast K+ permeation with good selectivity. The asymmetric structure of our Matthew membrane is the key to understanding the biological function of ion channels for precise and fast ion transport, which will guide us in the creation of artificial ion channels or membranes.

关键词

MXene (Ti3C2Tx)膜 / 膜分离 / 离子筛分 / K+选择性

Keywords

MXene (Ti3C2Tx) membrane / Membrane separation / Ion sieving / K+ selectivity

引用本文

导出引用
卢纵, 武浩宇, 魏嫣莹. 作为钾筛分放大器的马太MXene(Ti3C2Tx)层状膜. Engineering. 2024, 42(11): 213-222 https://doi.org/10.1016/j.eng.2023.11.025

参考文献

[1]
Prindle J. Liu M. Asally S. Ly J. Garcia-Ojalvo G.M. Süel. Ion channels enable electrical communication in bacterial communities. Nature, 527 (7576) (2015), pp. 59-63
[2]
E.R. Kandel, J.H. Schwartz, T.M. Jessell.Principles of neural science. ( 4th ed.), McGraw-Hill, New York City (2000)
[3]
J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, et al. Single-layer MoS 2 nanopores as nanopower generators. Nature, 536 (7615) (2016), pp. 197-200
[4]
J. Gao, Y. Feng, W. Guo, L. Jiang. Nanofluidics in two-dimensional layered materials: inspirations from nature. Chem Soc Rev, 46 (17) (2017), pp. 5400-5424
[5]
J. Lao, S. Wu, J. Gao, A. Dong, G. Li, J. Luo. Electricity generation based on a photothermally driven Ti3C2Tx MXene nanofluidic water pump. Nano Energy, 70 (2020), Article 104481
[6]
J. Yang, B. Tu, G. Zhang, P. Liu, K. Hu, J. Wang, et al. Advancing osmotic power generation by covalent organic framework monolayer. Nat Nanotechnol, 17 (6) (2022), pp. 622-628
[7]
W.H. Zhang, M.J. Yin, Q. Zhao, C.G. Jin, N. Wang, S. Ji, et al. Graphene oxide membranes with stable porous structure for ultrafast water transport. Nat Nanotechnol, 16 (3) (2021), pp. 337-343
[8]
S. Goutham, A. Keerthi, A. Ismail, A. Bhardwaj, H. Jalali, Y. You, et al. Beyond steric selectivity of ions using ångström-scale capillaries. Nat Nanotechnol, 18 (6) (2023), pp. 596-601
[9]
W. Xin, C. Lin, L. Fu, X.Y. Kong, L. Yang, Y. Qian, et al. Nacre-like mechanically robust heterojunction for lithium-ion extraction. Matter, 4 (2) (2021), pp. 737-754
[10]
F. Chen, J. Shen, N. Li, A. Roy, R. Ye, C. Ren, et al. Pyridine/oxadiazole-based helical foldamer ion channels with exceptionally high K+/Na+ selectivity. Angew Chem Int Ed Engl, 59 (4) (2020), pp. 1440-1444
[11]
C.J. Pedersen. Cyclic polyethers and their complexes with metal salts. J Am Chem Soc, 89 (26) (1967), pp. 7017-7036
[12]
C. Ren, F. Chen, R. Ye, Y.S. Ong, H. Lu, S.S. Lee, et al. Molecular swings as highly active ion transporters. Angew Chem Int Ed Engl, 58 (24) (2019), pp. 8034-8038
[13]
R. Ye, C. Ren, J. Shen, N. Li, F. Chen, A. Roy, et al. Molecular ion fishers as highly active and exceptionally selective K+ transporters. J Am Chem Soc, 141 (25) (2019), pp. 9788-9792
[14]
N. Li, F. Chen, J. Shen, H. Zhang, T. Wang, R. Ye, et al. Buckyball-based spherical display of crown ethers for de novo custom design of ion transport selectivity. J Am Chem Soc, 142 (50) (2020), pp. 21082-21090
[15]
W. Xin, J. Fu, Y. Qian, L. Fu, X.Y. Kong, T. Ben, et al. Biomimetic KcsA channels with ultra-selective K+ transport for monovalent ion sieving. Nat Commun, 13 (1) (2022), p. 1701
[16]
B. Gong, Z. Shao. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics. Acc Chem Res, 46 (12) (2013), pp. 2856-2866
[17]
Y. Huo, H. Zeng. “Sticky”-ends-guided creation of functional hollow nanopores for guest encapsulation and water transport. Acc Chem Res, 49 (5) (2016), pp. 922-930
[18]
T. Ye, G. Hou, W. Li, C. Wang, K. Yi, N. Liu, et al. Artificial sodium-selective ionic device based on crown-ether crystals with subnanometer pores. Nat Commun, 12 (1) (2021), p. 5231
[19]
S. Kim, H. Choi, B. Kim, G. Lim, T. Kim, M. Lee, et al. Extreme ion-transport inorganic 2D membranes for nanofluidic applications. Adv Mater, 35 (43) (2023), Article 2206354
[20]
D.L. Gin, R.D. Noble. Designing the next generation of chemical separation membranes. Science, 332 (6030) (2011), pp. 674-766
[21]
R. Tan, A. Wang, R. Malpass-Evans, R. Williams, E.W. Zhao, T. Liu, et al. Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nat Mater, 19 (2) (2020), pp. 195-202
[22]
R. Xu, Y. Kang, W. Zhang, X. Zhang, B. Pan. Oriented UiO-67 metal-organic framework membrane with fast and selective lithium-ion transport. Angew Chem Int Ed Engl, 61 (3) (2022), Article e202115443
[23]
J. Lu, H. Zhang, J. Hou, X. Li, X. Hu, Y. Hu, et al. Efficient metal ion sieving in rectifying subnanochannels enabled by metal-organic frameworks. Nat Mater, 19 (7) (2020), pp. 767-774
[24]
S. Bing, W. Xian, S. Chen, Y. Song, L. Hou, X. Liu, et al. Bio-inspired construction of ion conductive pathway in covalent organic framework membranes for efficient lithium extraction. Matter, 4 (6) (2021), pp. 2027-2038
[25]
F. Sheng, B. Wu, X. Li, T. Xu, M.A. Shehzad, X. Wang, et al. Efficient ion sieving in covalent organic framework membranes with sub-2-nanometer channels. Adv Mater, 33 (44) (2021), Article 2104404
[26]
T. Xu, B. Wu, L. Hou, Y. Zhu, F. Sheng, Z. Zhao, et al. Highly ion-permselective porous organic cage membranes with hierarchical channels. J Am Chem Soc, 144 (23) (2022), pp. 10220-10229
[27]
J. Abraham, K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su, C.T. Cherian, et al. Tunable sieving of ions using graphene oxide membranes. Nat Nanotechnol, 12 (6) (2017), pp. 546-550
[28]
L. Chen, G. Shi, J. Shen, B. Peng, B. Zhang, Y. Wang, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature, 550 (7676) (2017), pp. 380-383
[29]
Y.H. Xi, Z. Liu, J. Ji, Y. Wang, Y. Faraj, Y. Zhu, et al. Graphene-based membranes with uniform 2D nanochannels for precise sieving of mono-/multi-valent metal ions. J Membr Sci, 550 (2018), pp. 208-218
[30]
J.Q. Hu, Z. Liu, K. Deng, Z.H. Chen, Q.W. Cai, Y. Faraj, et al. A novel membrane with ion-recognizable copolymers in graphene-based nanochannels for facilitated transport of potassium ions. J Membr Sci, 591 (2019), Article 117345
[31]
S. Hong, F. Al Marzooqi, J.K. El-Demellawi, N. Al Marzooqi, H.A. Arafat, H.N. Alshareef. Ion-selective separation using MXene-based membranes: a review. ACS Mater Lett, 5 (2) (2023), pp. 341-356
[32]
C. Xing, M. Zhang, L. Liu, Z. Zheng, M. Zhou, S. Zhang, et al. Constructing and regulating nanochannels in two-dimensional-material-based membranes for specified separation applications. Microstructures, 3 (4) (2023), Article 2023031
[33]
R.K. Merton. The Matthew effect in science: the reward and communication systems of science are considered. Science, 159 (3810) (1968), pp. 56-63
[34]
Z. Sun, M. Barboiu, Y.M. Legrand, E. Petit, A. Rotaru. Highly selective artificial cholesteryl crown ether K+-channels. Angew Chem Int Ed Engl, 54 (48) (2015), pp. 14473-14477
[35]
J. Lu, G. Jiang, H. Zhang, B. Qian, H. Zhu, Q. Gu, et al. An artificial sodium-selective subnanochannel. Sci Adv, 9 (4) (2023), Article eabq1369
[36]
E.S. Zofchak, Z. Zhang, B.K. Wheatle, R. Sujanani, S.J. Warnock, T.J. Dilenschneider, et al. Origins of lithium/sodium reverse permeability selectivity in 12-crown-4-functionalized polymer membranes. ACS Macro Lett, 10 (9) (2021), pp. 1167-1173
[37]
Fang K. Kroenlein D. Riccardi A. Smolyanitsky. Highly mechanosensitive ion channels from graphene-embedded crown ethers. Nat Mater, 18 (1) (2019), pp. 76-81
[38]
E.T. Acar, S.F. Buchsbaum, C. Combs, F. Fornasiero, Z.S. Siwy. Biomimetic potassium-selective nanopores. Sci Adv, 5 (2) (2019), Article eaav2568
[39]
X. Wu, X. Cui, W. Wu, J. Wang, Y. Li, Z. Jiang. Elucidating ultrafast molecular permeation through well-defined 2D nanochannels of lamellar membranes. Angew Chem Int Ed Engl, 58 (51) (2019), pp. 18524-18529
[40]
Z.K. Li, Y. Wei, X. Gao, L. Ding, Z. Lu, J. Deng, et al. Antibiotics separation with MXene membranes based on regularly stacked high-aspect-ratio nanosheets. Angew Chem Int Ed Engl, 59 (24) (2020), pp. 9751-9756
[41]
L. Ding, L. Li, Y. Liu, Y. Wu, Z. Lu, J. Deng, et al. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat Sustain, 3 (4) (2020), pp. 296-302
[42]
Z. Lu, Y. Wei, J. Deng, L. Ding, Z.K. Li, H. Wang. Self-crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion. ACS Nano, 13 (9) (2019), pp. 10535-10544
[43]
Z. Lu, Y. Wu, L. Ding, Y. Wei, H. Wang. A lamellar MXene (Ti3C2Tx)/PSS composite membrane for fast and selective lithium-ion separation. Angew Chem Int Ed, 133 (41) (2021), pp. 22439-22443
[44]
Ihsanullah. MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: progress, challenges and prospects. Chem Eng J, 388 (2020), Article 124340
[45]
Ihsanullah M. Bilal. Potential of MXene-based membranes in water treatment and desalination: a critical review. Chemosphere, 303 (Pt 3) (2022), Article 135234
[46]
Ahmed M.A. Hashmi K. Ayub. Permeation selectivity of alkali metal ions through crown ether based ion channels. J Mol Liq, 302 (2020), Article 112577
[47]
Z. Jing, G. Wang, Y. Zhou, D. Pang, F. Zhu, H. Liu. Selectivity of 18-crown-6 ether to alkali ions by density functional theory and molecular dynamics simulation. J Mol Liq, 311 (2020), Article 113305
[48]
J. Lin, P. Li, Y. Liu, Z. Wang, Y. Wang, X. Ming, et al. The origin of the sheet size predicament in graphene macroscopic papers. ACS Nano, 15 (3) (2021), pp. 4824-4832
[49]
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater, 23 (37) (2011), pp. 4248-4253
[50]
W. Bao, L. Liu, C. Wang, S. Choi, D. Wang, G. Wang. Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv Energy Mater, 8 (13) (2018), Article 1702485
[51]
Y. Qian, J. Shang, D. Liu, G. Yang, X. Wang, C. Chen, et al. Enhanced ion sieving of graphene oxide membranes via surface amine functionalization. J Am Chem Soc, 143 (13) (2021), pp. 5080-5090
[52]
X. Shi, H. Wang, X. Xie, Q. Xue, J. Zhang, S. Kang, et al. Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale “brick-and-mortar” architecture. ACS Nano, 13 (1) (2019), pp. 649-659
[53]
Feofanov A. Ianoul V. Oleinikov S. Gromov O. Fedorova M. Alfimov, et al. Surface-enhanced resonance Raman spectra of photochromic crown ether styryl dyes, their model chromophores, and their complexes with Mg2+. J Phys Chem, 100 (6) (1996), pp. 2154-2160
[54]
L. Baudino, A. Pedico, S. Bianco, M. Periolatto, C.F. Pirri, A. Lamberti. Crown-ether functionalized graphene oxide membrane for lithium recovery from water. Membranes, 12 (2) (2022), p. 233
[55]
L. Ding, Y. Wei, L. Li, T. Zhang, H. Wang, J. Xue, et al. MXene molecular sieving membranes for highly efficient gas separation. Nat Commun, 9 (1) (2018), p. 155
PDF(3448 KB)

Accesses

Citation

Detail

段落导航
相关文章

/