[1] |
J. Ju, Z. Zhang, Z. Pan, D. Che, H. Li. Determination of mineral resources in China’s strategic emerging industries and analysis of the demand of the “14th Five Year Plan”. China Ming Mag, 31 (9) (2022), pp. 1-11
|
[2] |
X. Guo, Q. Tian, Y. Liu, H. Yan, D. Li, Q. Wang, et al. Progress in research and application of non-ferrous metal resources recycling. Chin J Nonferrous Met, 29 (9) (2019), pp. 1859-1901
|
[3] |
B. Xue, Q. Yang, K. Xia, Z. Li, G.Y. Chen, D. Zhang, et al. An AuNPs/mesoporous NiO/nickel foam nanocomposite as a miniaturized electrode for heavy metal detection in groundwater. Engineering, 27 (2023), pp. 199-208
|
[4] |
M. Cai, P. Li, W. Tan, F. Ren. Key engineering technologies to achieve green, intelligent, and sustainable development of deep metal mines in China. Engineering, 7 (11) (2021), pp. 1513-1517
|
[5] |
K.H. Vardhan, P.S. Kumar, R.C. Panda. A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives. J Mol Liq, 290 (2019), Article 111197
|
[6] |
M. Zaynab, R. Al-Yahyai, A. Ameen, Y. Sharif, L. Ali, M. Fatima, et al. Health and environmental effects of heavy metals. J King Saud Univ Sci, 34 (1) (2022), Article 101653
|
[7] |
S. Mitra, A.J. Chakraborty, A.M. Tareq, T.B. Emran, F. Nainu, A. Khusro, et al. Impact of heavy metals on the environment and human health: novel therapeutic insights to counter the toxicity. J King Saud Univ Sci, 34 (3) (2022), Article 101865
|
[8] |
X. Zheng, Z. Zhu, X. Lin, Y. Zhang, Y. He, H. Cao, et al. A mini-review on metal recycling from spent lithium ion batteries. Engineering, 4 (3) (2018), pp. 361-370
|
[9] |
V. Sahajwalla. Green processes: transforming waste into valuable resources. Engineering, 4 (3) (2018), pp. 309-310
|
[10] |
L. Yang, W. Hu, Z. Chang, T. Liu, D. Fang, P. Shao, et al. Electrochemical recovery and high value-added reutilization of heavy metal ions from wastewater: recent advances and future trends. Environ Int, 152 (2021), Article 106512
|
[11] |
H.I. Maarof, W. M.A.W. Daud, M.K. Aroua. Recent trends in removal and recovery of heavy metals from wastewater by electrochemical technologies. Rev Chem Eng, 33 (4) (2017), pp. 359-386
|
[12] |
A. Azimi, A. Azari, M. Rezakazemi, M. Ansarpour. Removal of heavy metals from industrial wastewaters: a review. Chembioeng Rev, 4 (1) (2017), pp. 37-59
|
[13] |
T.A. Saleh, M. Mustaqeem, M. Khaled. Water treatment technologies in removing heavy metal ions from wastewater: a review. Environ Nanotechnol Monit Manage, 17 (2022), Article 100617
|
[14] |
S.S. Bagali, B.S. Gowrishankar, A.S. Roy. Optimization, kinetics, and equilibrium studies on the removal of lead(II) from an aqueous solution using banana pseudostem as an adsorbent. Engineering, 3 (3) (2017), pp. 409-415
|
[15] |
R. Seeber, C. Zanardi, G. Inzelt. The inherent coupling of charge transfer and mass transport processes: the curious electrochemical reversibility. ChemTexts, 2 (2) (2016), p. 8
|
[16] |
V.M. Volgin, A.D. Davydov. Mass-transfer problems in the electrochemical systems. Russ J Electrochem, 48 (6) (2012), pp. 565-569
|
[17] |
R.A. Marcus. On the theory of oxidation-reduction reactions involving electron transfer. I. J Chem Phys, 24 (5) (2004), pp. 966-978
|
[18] |
D. Yu, Q. Lui, W. Su, L. Wang, Y. Sun, Z. Zhang. A review on research and application of electrodeposition for heavy metal wastewater treatment. Chem Ind Eng Progr, 39 (5) (2020), pp. 1938-1949
|
[19] |
Q. Ji, D. Yu, G. Zhang, H. Lan, H. Liu, J. Qu. Microfluidic flow through polyaniline supported by lamellar-structured graphene for mass-transfer-enhanced electrocatalytic reduction of hexavalent chromium. Environ Sci Technol, 49 (22) (2015), pp. 13534-13541
|
[20] |
X. Zhao, L. Guo, J. Qu. Photoelectrocatalytic oxidation of Cu-EDTA complex and electrodeposition recovery of Cu in a continuous tubular photoelectrochemical reactor. Chem Eng J, 239 (2014), pp. 53-59
|
[21] |
C. Zhang, Y. Jiang, Y. Li, Z. Hu, L. Zhou, M. Zhou. Three-dimensional electrochemical process for wastewater treatment: a general review. Chem Eng J, 228 (2013), pp. 455-467
|
[22] |
W. Jin, J. Su, S. Chen, P. Li, M.S. Moats, G. Maduraiveeran, et al. Efficient electrochemical recovery of fine tellurium powder from hydrochloric acid media via mass transfer enhancement. Separ Purif Tech, 203 (2018), pp. 117-123
|
[23] |
J.A. Yáñez-Varela, A. Alonzo-Garcia, I. González-Neria, V. Mendoza-Escamilla, G. Rivadeneyra-Romero, S.A. Martínez-Delgadillo. Experimental and numerical evaluation of the performance of the electrochemical reactor operated with static and dynamic electrodes in the reduction of hexavalent chromium. Chem Eng J, 390 (2020), Article 124575
|
[24] |
A.J. Bard, L.R. Faulkner. Electrochemical methods: fundamentals and applications. ( 2nd ed.), John Wiley and Sons, New York City (2001)
|
[25] |
D. Ning, C. Yang, H. Wu. Ultrafast Cu2+ recovery from waste water by jet electrodeposition. Separ Purif Tech, 220 (2019), pp. 217-221
|
[26] |
S. Behboudi-Khiavi, M. Javanbakht, S.A. Mozaffari, M. Ghaemi. Controllable pulse reverse electrodeposition of mesoporous LixMnO2 nano/microstructures with enhanced electrochemical performance for Li-ion storage. ACS Appl Mater Interfaces, 11 (24) (2019), pp. 21552-21566
|
[27] |
T. Kalliomäki, B.P. Wilson, J. Aromaa, M. Lundström. Diffusion coefficient of cupric ion in a copper electrorefining electrolyte containing nickel and arsenic. Miner Eng, 134 (2019), pp. 381-389
|
[28] |
J.O. Bockris, Z. Nagy. Symmetry factor and transfer coefficient. A source of confusion in electrode kinetics. J Chem Educ, 50 (12) (1973), p. 839
|
[29] |
C. Chandran, H.D. Singh, L.S. Leo, P. Shekhar, D. Rase, D. Chakraborty, et al. A covalent organic framework with electrodeposited copper nanoparticles—a desirable catalyst for the Ullmann coupling reaction. J Mater Chem A Mater Energy Sustain, 10 (29) (2022), pp. 15647-15656
|
[30] |
Gerischer H. Physical chemistry:an advanced treatise. New York City: Academic Press; 1971. p. 487-9.
|
[31] |
W. Tsai, C. Wan, Y. Wang. Mechanism of copper electrodeposition by pulse current and its relation to current efficiency. J Appl Electrochem, 32 (12) (2002), pp. 1371-1378
|
[32] |
L. Li, G. Li, Y. Zhang, Y. Yang, L. Zhang. Pulsed electrodeposition of large-area, ordered Bi1-xSbx nanowire arrays from aqueous solutions. J Phys Chem B, 108 (50) (2004), pp. 19380-19383
|
[33] |
A. Aryanfar, D. Brooks, B.V. Merinov, W.A. Goddard III, A.J. Colussi, M.R. Hoffmann. Dynamics of lithium dendrite growth and inhibition: pulse charging experiments and monte carlo calculations. J Phys Chem Lett, 5 (10) (2014), pp. 1721-1726
|
[34] |
J. Zou, H. Zhang, Z. Wu, J. Wang, B. Li, J. Cui, et al. Effects of an intermittent permanent magnet stirring on the melt flow and grain refinement of Al-4.5Cu alloy. J Mater Res Technol, 14 (2021), pp. 1585-1600
|
[35] |
W. Jin, M. Hu, J. Hu. Selective and efficient electrochemical recovery of dilute copper and tellurium from acidic chloride solutions. ACS Sustain Chem Eng, 6 (10) (2018), pp. 13378-13384
|
[36] |
Z. Cai, J. Wang, Z. Lu, R. Zhan, Y. Ou, L. Wang, et al. Ultrafast metal electrodeposition revealed by in situ optical imaging and theoretical modeling towards fast-charging Zn battery chemistry. Angew Chem Int Ed, 61 (14) (2022), p. e202116560
|
[37] |
Y. Yan, C. Shu, T. Zeng, X. Wen, S. Liu, D. Deng, et al.Surface-preferred crystal plane growth enabled by underpotential deposited monolayer toward dendrite-free zinc anode. ACS Nano, 16 (6) (2022), pp. 9150-9162
|
[38] |
M. Tan, X. Chen. Growth mechanism of single crystal nanowires of fcc metals (Ag, Cu, Ni) and hcp metal (Co) electrodeposited. J Electrochem Soc, 159 (1) (2011), pp. K15-K20
|
[39] |
B. Penkala, S. Gatla, D. Aubert, M. Ceretti, C. Tardivat, W. Paulus, et al. In situ generated catalyst: copper(II) oxide and copper(I) supported on Ca2Fe2O5 for CO oxidation. Catal Sci Technol, 8 (20) (2018), pp. 5236-5243
|
[40] |
X. Zhu, X. Gao, R. Qin, Y. Zeng, R. Qu, C. Zheng, et al. Plasma-catalytic removal of formaldehyde over Cu-Ce catalysts in a dielectric barrier discharge reactor. Appl Catal B, 170-171 (2015), pp. 293-300
|
[41] |
X. Bo, R.K. Hocking, S. Zhou, Y. Li, X. Chen, J. Zhuang, et al. Capturing the active sites of multimetallic (oxy)hydroxides for the oxygen evolution reaction. Energy Environ Sci, 13 (11) (2020), pp. 4225-4437
|
[42] |
S. Kawai, M. Ogawa, K. Ishibashi, Y. Kondo, T. Matsuoka, T. Homma, et al. Transient mass transfer rate of Cu2+ ion caused by copper electrodeposition with alternating electrolytic current. Electrochim Acta, 55 (12) (2010), pp. 3987-3994
|
[43] |
G.A. Tonini, L.A.M. Ruotolo. Heavy metal removal from simulated wastewater using electrochemical technology: optimization of copper electrodeposition in a membraneless fluidized bed electrode. Clean Technol Environ Policy, 19 (2) (2017), pp. 403-415
|