面向波束自动跟踪双向无线通信的CMOS反向阵芯片

郭嘉诚, 沈一竹, 董国庆, 韩壮, 胡三明

工程(英文) ›› 2024, Vol. 37 ›› Issue (6) : 212-223.

PDF(4604 KB)
PDF(4604 KB)
工程(英文) ›› 2024, Vol. 37 ›› Issue (6) : 212-223. DOI: 10.1016/j.eng.2023.12.010
研究论文
Article

面向波束自动跟踪双向无线通信的CMOS反向阵芯片

作者信息 +

A Retrodirective Array Enabled by CMOS Chips for Two-Way Wireless Communication with Automatic Beam Tracking

Author information +
History +

Highlight

• This article proposed a highly integrated retrodirective array (RDA) for two-way wireless communication.

• The proposed RDA features automatic beam tracking and reduced beam pointing error.

• Notably, this implementation of the RDA is the first to utilize fully customized CMOS chips.

Abstract

This article proposes and demonstrates a retrodirective array (RDA) for two-way wireless communication with automatic beam tracking. The proposed RDA is enabled by specifically designed chips made using a domestic complementary metal-oxide semiconductor (CMOS) process. The highly integrated CMOS chip includes a receiving (Rx) chain, a transmitting (Tx) chain, and a unique tracking phase-locked loop (PLL) for the crucial conjugated phase recovery in the RDA. This article also proposes a method to reduce the beam pointing error (BPE) in a conventional RDA. To validate the above ideas simply yet without loss of generality, a 2.4 GHz RDA is demonstrated through two-way communication links between the Rx and Tx chains, and an on-chip quadrature coupler is designed to achieve a non-retrodirective signal suppression of 23 dBc. The experimental results demonstrate that the proposed RDA, which incorporates domestically manufactured low-cost 0.18 μm CMOS chips, is capable of automatically tracking beams covering ±40° with a reduced BPE. Each CMOS chip in the RDA has a compact size of 4.62 mm2 and a low power consumption of 0.15 W. To the best of the authors’ knowledge, this is the first research to demonstrate an RDA with a fully customized CMOS chip for wireless communication with automatic beam tracking.

Keywords

Automatic beam tracking / CMOS / Retrodirective array / Two-way communication

引用本文

导出引用
郭嘉诚, 沈一竹, 董国庆. 面向波束自动跟踪双向无线通信的CMOS反向阵芯片. Engineering. 2024, 37(6): 212-223 https://doi.org/10.1016/j.eng.2023.12.010

参考文献

[1]
Y. Yu, Z. Chen, C. Zhao, H. Liu, Y. Wu, W.Y. Yin, et al. A 39 GHz dual-channel transceiver chipset with an advanced LTCC package for 5G multi-beam MIMO systems. Engineering, 22 (2023), pp. 125-140.
[2]
R. Mittra, A. Nasri, R.K. Arya. Wide-angle scanning antennas for millimeter-wave 5G applications. Engineering, 11 (2022), pp. 60-71.
[3]
Z.X. Wang, H. Yang, R. Shao, J.W. Wu, G. Liu, F. Zhai, et al. A planar 4-bit reconfigurable antenna array based on the design philosophy of information metasurfaces. Engineering, 17 (2022), pp. 64-74.
[4]
Y. Wang, R. Wu, J. Pang, D. You, A.A. Fadila, R. Saengchan, et al. A 39-GHz 64-element phased-array transceiver with built-in phase and amplitude calibrations for large-array 5G NR in 65-nm CMOS. IEEE J Solid State Circuits, 55 (5) (2020), pp. 1249-1269.
[5]
T. Chi, J.S. Park, S. Li, H. Wang. A millimeter-wave polarization-division-duplex transceiver front-end with an on-chip multifeed self-interference-canceling antenna and an all-passive reconfigurable canceller. IEEE J Solid State Circuits, 53 (12) (2018), pp. 3628-3639.
[6]
X. Guan, H. Hashemi, A. Hajimiri. A fully integrated 24-GHz eight-element phased-array receiver in silicon. IEEE J Solid State Circuits, 39 (12) (2004), pp. 2311-2320.
[7]
H. Hashemi, X. Guan, A. Komijani, A. Hajimiri. A 24-GHz SiGe phased-array receiver-LO phase-shifting approach. IEEE Trans Microw Theory Tech, 53 (2) (2005), pp. 614-626.
[8]
K. Kibaroglu, M. Sayginer, G.M. Rebeiz. A low-cost scalable 32-element 28-GHz phased array transceiver for 5G communication links based on a 2 × 2 beamformer flip-chip unit cell. IEEE J Solid State Circuits, 53 (5) (2018), pp. 1260-1274.
[9]
V.F. Fusco, S.L. Karode. Self-phasing antenna array techniques for mobile communications applications. IEE. Electron Commun Eng J, 11 (6) (1999), pp. 279-286.
[10]
M. Skolnik, D. King. Self-phasing array antennas. IEEE Trans Antennas Propag, 12 (2) (1964), pp. 142-149.
[11]
Malyuskin V.F. Fusco. Ultracompact retrodirective antenna arrays with superdirective radiation patterns. IEEE Trans Antennas Propag, 64 (7) (2016), pp. 2923-2935.
[12]
V. Fusco, N. Buchanan. Developments in retrodirective array technology. IET Microw Antennas Propag, 7 (2) (2013), pp. 131-140.
[13]
R.Y. Miyamoto, T. Itoh. Retrodirective arrays for wireless communications. IEEE Microw Mag, 3 (1) (2002), pp. 71-79.
[14]
L.D. DiDomenico, G.M. Rebeiz. Digital communications using self-phased arrays. IEEE Trans Microw Theory Tech, 49 (4) (2001), pp. 677-684.
[15]
N.B. Buchanan, V.F. Fusco, M. van der Vorst. SATCOM retrodirective array. IEEE Trans Microw Theory Tech, 64 (5) (2016), pp. 1614-1621.
[16]
P.V. Brennan. An experimental and theoretical study of self-phased arrays in mobile satellite communications. IEEE Trans Antennas Propag, 37 (11) (1989), pp. 1370-1376.
[17]
Y. Ding, N.B. Buchanan, V.F. Fusco, R. Baggen, M. Martínez-Vázquez, M. van der Vorst. Analog/digital hybrid delay-locked-loop for K/Ka band satellite retrodirective arrays. IEEE Trans Microw Theory Tech, 66 (7) (2018), pp. 3323-3331.
[18]
Chan P, Fusco V. Bi-static 5.8 GHz RFID range enhancement using retrodirective techniques. In: Proceedings of 2011 41st European Microwave Conference; 2011 Oct 10-13; Manchester, UK; 2011.
[19]
A.B. Numan, J.F. Frigon, J.J. Laurin. Wide field of view retrodirective millimeter wave antenna array with pulse modulation and orthogonal polarization states. IEEE Access, 8 (2022), pp. 221127-221137.
[20]
H. Zhou, W. Hong, L. Tian, X. Jiang, X. Zhu, M. Jiang, et al. A retrodirective antenna array with polarization rotation property. IEEE Trans Antennas Propag, 62 (8) (2014), pp. 4081-4088.
[21]
D.S. Goshi, K.M.K.H. Leong, T. Itoh. A secure high-speed retrodirective communication link. IEEE Trans Microw Theory Tech, 53 (11) (2005), pp. 3548-3556.
[22]
V.F. Fusco, N.B. Buchanan. Retrodirective antenna spatial data protection. IEEE Antennas Wirel Propag Lett, 8 (2009), pp. 490-493.
[23]
E. Sharp, M. Diab. Van Atta reflector array. IRE Trans Antennas Propag, 8 (4) (1960), pp. 436-438.
[24]
C. Pon. Retrodirective array using the heterodyne technique. IEEE Trans Antennas Propag, 12 (2) (1964), pp. 176-180.
[25]
L. Chen, Y.C. Guo, X.W. Shi, T.L. Zhang. Overview on the phase conjugation techniques of the retrodirective array. Int J Antennas Propag, 2010 (2010), Article 564357.
[26]
J. Guo, Y. Shen, K. Ye, S. Hu. Differential retrodirective array with integrated circuits in low-cost 0.18 μm CMOS for automatic tracking. IEEE Trans Antennas Propag, 70 (2) (2022), pp. 1587-1590.
[27]
P.D.H. Re, S.K. Podilchak, S.A. Rotenberg, G. Goussetis, J. Lee. Circularly polarized retrodirective antenna array for wireless power transmission. IEEE Trans Antennas Propag, 68 (4) (2020), pp. 2743-2752.
[28]
G.S. Shiroma, R.Y. Miyamoto, W.A. Shiroma. A full-duplex dual-frequency self-steering array using phase detection and phase shifting. IEEE Trans Microw Theory Tech, 54 (1) (2006), pp. 128-134.
[29]
Guo J, Wang J, Hu S. Circularly polarized retrodirective array for far-field wireless power transfer. In: Proceedings of 2019 IEEE Asia-Pacific Microwave Conference; 2019 Dec 10-13; Singapore; 2019.
[30]
V. Fusco, N.B. Buchanan. High-performance IQ modulator-based phase conjugator for modular retrodirective antenna array implementation. IEEE Trans Microw Theory Tech, 57 (10) (2009), pp. 2301-2306.
[31]
Chepala V. Fusco N. Buchanan. Active circular retro-directive array. IEEE Trans Antennas Propag, 67 (10) (2019), pp. 6677-6679.
[32]
H. Shahi, N. Masoumi, M. Mohammad-Taheri, S. Safavi-Naeini. Dual-mode phase-conjugating/active Van Atta array design based on dual-band mixer/reflection amplifier. IEEE Trans Microw Theory Tech, 70 (7) (2022), pp. 3629-3639.
[33]
M. Ettorre, W.A. Alomar, A. Grbic. 2-D Van Atta array of wideband, wideangle slots for radiative wireless power transfer systems. IEEE Trans Antennas Propag, 66 (9) (2018), pp. 4577-4585.
[34]
B.Y. Toh, V.F. Fusco, N.B. Buchanan. Assessment of performance limitations of Pon retrodirective arrays. IEEE Trans Antennas Propag, 50 (10) (2002), pp. 1425-1432.
[35]
B.Y. Toh, V.F. Fusco, N.B. Buchanan. Retrodirective array tracking prediction using active element characterisation. Electron Lett, 37 (12) (2001), pp. 727-728.
[36]
W. Zhuo, X. Li, S. Shekhar, S.H.K. Embabi, J.P. de Gyvez, D.J. Allstot, et al. A capacitor cross-coupled common-gate low-noise amplifier. IEEE Trans Circuits Syst II, 52 (12) (2005), pp. 875-879.
[37]
S.G. Lee, J.K. Choi. Current-reuse bleeding mixer. Electron Lett, 36 (8) (2000), pp. 696-697.
[38]
C.H. Park, B. Kim. A low-noise, 900-MHz VCO in 0.6-μm CMOS. IEEE J Solid State Circuits, 34 (5) (1999), pp. 586-591.
PDF(4604 KB)

Accesses

Citation

Detail

段落导航
相关文章

/