[1] |
Karlquist RK, Cutler LS, Ingman EM, Johnson JL, Parisek T. A low-profile high-performance crystal oscillator for timekeeping applications. In: Proceedings of International Frequency Control Symposium; 1997 May 30; Orlando, FL, USA. Piscataway: IEEE; 1997. p. 873-84.
|
[2] |
Andriy K, Georgiy S, Konstantin M, Patric H, Martin N, Richard R, et al. Cost-minimized 24 GHz pulse oscillator for short-range automotive radar applications. In: Proceedingof the 33rd European Microwave Conference; 2003. p. 2023 October 7; Munich, Germany. Piscataway: IEEE; 1131-4.
|
[3] |
Hang YJ, Li RB, Liu JY, Xing L, Wang Y.The acceleration sensitive coefficient calibration of the crystal oscillator based on the GPS carrier control principle. In: Sun JD, Jiao WH, Wu HT, Lu MQ, editors. China Satellite Navigation Conference (CSNC) 2014 Proceedings: Volume III; 2014 May 21- 23; Nanjing, China. Berlin, Springer; 2014. p. 511-21.
|
[4] |
D. Antonio, D.H. Zanette, D. López.Frequency stabilization in nonlinear micromechanical oscillators. Nat Commun, 3 (1) ( 2012), p. 806
|
[5] |
C.T. Nguyen. MEMS technology for timing and frequency control. IEEE Trans Ultrason Ferroelectr Freq Control, 54 (2) ( 2007), pp. 251-270
|
[6] |
B.P. Otis, J.M. Rabaey. A 300-μW 1.9-GHz CMOS oscillator utilizing micromachined resonators. IEEE J Solid-State Circuits, 38 (7) ( 2003), pp. 1271-1274
|
[7] |
C. Zuo, J. Van der Spiegel, G. Piazza. 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour-mode MEMS resonators. IEEE Trans Ultrason Ferroelectr Freq Control, 57 (1) ( 2010), pp. 82-87
|
[8] |
C.L. Dai. A capacitive humidity sensor integrated with micro heater and ring oscillator circuit fabricated by CMOS-MEMS technique. Sens Actuators B, 122 (2) ( 2007), pp. 375-380
|
[9] |
C.S. Li, L.J. Hou, S.S. Li. Advanced CMOS-MEMS resonator platform. IEEE Electr Device Lett, 33 (2) ( 2012), pp. 272-274
|
[10] |
Kourani A, Hegazi E, Ismail Y.RF MEMS reference oscillator platform with ±0.5ppm frequency stability for wireless handsets. In:Proceedings of the 2015 International Symposium on Signals, Circuits and Systems (ISSCS); 2015 Jul 9- 10 ; Iasi, Romania. Piscataway: IEEE; 2015. p. 1-4.
|
[11] |
M. Sansa, E. Sage, E.C. Bullard, M. Gély, T. Alava, E. Colinet, et al.. Frequency fluctuations in silicon nanoresonators. Nat Nanotechnol, 11 (6) ( 2016), pp. 552-558
|
[12] |
M. Li, H.X. Tang, M.L. Roukes. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat Nanotechnol, 2 (2) ( 2007), pp. 114-120
|
[13] |
J.J. Hall. Electronic effects in the elastic constants of n-type silicon. Phys Rev, 161 (3) ( 1967), pp. 756-761
|
[14] |
Parajuli M, Sobreviela G, Zhang HM, Seshia AA.Enhancement of frequency stability in injection locked bulk mode mems oscillators. In:Proceedings of the 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS); 2021 Jan 25- 29 ; Gainesville, FL, USA. Piscataway: IEEE; 2021. p. 941-4.
|
[15] |
S. Pourkamali, A. Hashimura, R. Abdolvand, G.K. Ho, A. Erbil, F. Ayazi. High-Q single crystal silicon HARPSS capacitive beam resonators with self-aligned sub-100-nm transduction gaps. J Microelectromech Syst, 12 (4) ( 2003), pp. 487-496
|
[16] |
S. Pourkamali, Z. Hao, F. Ayazi. VHF single crystal silicon capacitive elliptic bulk-mode disk resonators—part II: implementation and characterization. J Microelectromech Syst, 13 (6) ( 2004), pp. 1054-1062
|
[17] |
L. Villanueva, R. Karabalin, M. Matheny, E. Kenig, M.C. Cross, M.L. Roukes. A nanoscale parametric feedback oscillator. Nano Lett, 11 (11) ( 2011), pp. 5054-5059
|
[18] |
A. Leuch, L. Papariello, O. Zilberberg, C.L. Degen, R. Chitra, A. Eichler. Parametric symmetry breaking in a nonlinear resonator. Phys Rev Lett, 117 (21) ( 2016), Article 214101
|
[19] |
Sun BQ, Zhao C, Sobreviela-Falces G, Du SJ, Han FT, Zou XD.Enhanced frequency stability in a non-linear mems oscillator employing phase feedback. In:Proceedings of the 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS); 2017 Jan 22- 26 ; Las Vegas, NV, USA. Piscataway: IEEE; 2017. p. 1115-7.
|
[20] |
R.B. Karabalin, R. Lifshitz, M.C. Cross, M.H. Matheny, S.C. Masmanidis, M.L. Roukes. Signal amplification by sensitive control of bifurcation topology. Phys Rev Lett, 106 (9) ( 2011), Article 094102
|
[21] |
H. Okamoto, N. Kitajima, K. Onomitsu, R. Kometani, S.I. Warisawa, S. Ishihara, et al.. High-sensitivity charge detection using antisymmetric vibration in coupled micromechanical oscillators. Appl Phys Lett, 98 (1) ( 2011), Article 014103
|
[22] |
M. Sato, B.E. Hubbard, A.J. Sievers, B. Ilic, D.A. Czaplewski, H.G. Craighead. Observation of locked intrinsic localized vibrational modes in a micromechanical oscillator array. Phys Rev Lett, 90 (4) ( 2003), Article 044102
|
[23] |
D. Pu, R.H. Huan, X.Y. Wei. Frequency stability improvement for piezoresistive micromechanical oscillators via synchronization. AIP Adv, 7 (3) ( 2017), Article 035204
|
[24] |
A. Pikovsky, M. Rosenblum, J. Kurths. Synchronization:a universal concept in nonlinear sciences. Cambridge University Press, Cambridge ( 2003)
|
[25] |
D.K. Agrawal, J. Woodhouse, A.A. Seshia. Observation of locked phase dynamics and enhanced frequency stability in synchronized micromechanical oscillators. Phys Rev Lett, 111 (8) ( 2013), Article 084101
|
[26] |
O. Shoshani, D. Heywood, Y.S. Yang, T.W. Kenny, S.W. Shaw. Phase noise reduction in an MEMS oscillator using a nonlinearly enhanced synchronization domain. J Microelectromech Syst, 25 (5) ( 2016), pp. 870-876
|
[27] |
R.H. Huan, D. Pu, X.F. Wang, X.Y. Wei. Effects of phase delay on synchronization in a nonlinear micromechanical oscillator. Appl Phys Lett, 114 (23) ( 2019), Article 233501
|
[28] |
A. Buonomo, M.P. Kennedy, A. Lo Schiavo. On the synchronization condition for superharmonic coupled QVCOs. IEEE Trans Circuits Syst I, 58 (7) ( 2011), pp. 1637-1646
|
[29] |
A. Velichko, M. Belyaev, V. Putrolaynen, V. Perminov, A. Pergament. Thermal coupling and effect of subharmonic synchronization in a system of two VO2 based oscillators. Solid-State Electron, 141 ( 2018), pp. 40-49
|
[30] |
L.C. Ortiz, H.K. Kwon, J. Rodriguez, Y. Chen, G.D. Vukasin, D.B. Heinz, et al.. Low-power dual mode MEMS resonators with PPB stability over temperature. J Microelectromech Syst, 29 (2) ( 2020), pp. 190-201
|
[31] |
L. Xu, S. Wang, Z. Jiang,X. Wei. Programmable synchronization enhanced MEMS resonant accelerometer. Microsystem Nanoeng, 6 (1) ( 2020), p. 63
|
[32] |
D. Antonio, D.A. Czaplewski, J.R. Guest, D. López, S.I. Arroyo, D.H. Zanette. Nonlinearity-induced synchronization enhancement in micromechanical oscillators. Phys Rev Lett, 114 (3) ( 2015), Article 034103
|
[33] |
Y. Wang, Q. Jin, R. Zhang. Improved fuzzy PID controller design using predictive functional control structure. ISA Trans, 71 (Pt 2) ( 2017), pp. 354-363
|
[34] |
T. Nuchkrua, T. Leephakpreeda. Fuzzy self-tuning PID control of hydrogen-driven pneumatic artificial muscle actuator. J Bionic Eng, 10 (3) ( 2013), pp. 329-340
|