基于同步微机械谐振器的MEMS惠更斯钟

Xueyong Wei, Mingke Xu, Qiqi Yang, Liu Xu, Yonghong Qi, Ziming Ren, Juan Ren, Ronghua Huan, Zhuangde Jiang

工程(英文) ›› 2024, Vol. 36 ›› Issue (5) : 124-131.

PDF(3859 KB)
PDF(3859 KB)
工程(英文) ›› 2024, Vol. 36 ›› Issue (5) : 124-131. DOI: 10.1016/j.eng.2023.12.013
研究论文
Article

基于同步微机械谐振器的MEMS惠更斯钟

作者信息 +

MEMS Huygens Clock Based on Synchronized Micromechanical Resonators

Author information +
History +

摘要

随着电子器件的不断小型化,与集成电路兼容的微机电系统(MEMS)振荡器受到了越来越多的关注。基于惠更斯发现的同步原理,本文提出了一种新型的MEMS惠更斯钟。利用两个盘式振荡器的互耦合同步,将时钟的短时稳定性提升3.73倍,即Allan方差从同步前的19.3 ppb@1 s 降低到5.17 ppb@1 s。进一步利用MEMS振荡器的温度-频率特性,研发了基于焦耳热效应的温度补偿系统,通过调控谐振器本体的导通电流来补偿时钟的频率漂移,提升振荡器的长期稳定性。调控后的长期稳定性提升了1.6343 × 105倍,达到30.9 ppt@6000 s,且补偿功耗仅为2.85 mW∙°C−1。本文的工作为实现高精度MEMS振荡器提供了一种新思路,也拓展了同步效应在微机电系统中的应用。

Abstract

With the continuous miniaturization of electronic devices, microelectromechanical system (MEMS) oscillators that can be combined with integrated circuits have attracted increasing attention. This study reports a MEMS Huygens clock based on the synchronization principle, comprising two synchronized MEMS oscillators and a frequency compensation system. The MEMS Huygens clock improved short-time stability, improving the Allan deviation by a factor of 3.73 from 19.3 to 5.17 ppb at 1 s. A frequency compensation system based on the MEMS oscillator’s temperature-frequency characteristics was developed to compensate for the frequency shift of the MEMS Huygens clock by controlling the resonator current. This effectively improved the long-term stability of the oscillator, with the Allan deviation improving by 1.6343 × 105 times to 30.9 ppt at 6000 s. The power consumption for compensating both oscillators simultaneously is only 2.85 mW∙°C−1. Our comprehensive solution scheme provides a novel and precise engineering solution for achieving high-precision MEMS oscillators and extends synchronization applications in MEMS.

关键词

频率稳定性 / 惠更斯钟 / 振荡器 / 同步效应 /

Keywords

Frequency stability / Huygens clock / MEMS / Oscillator / Synchronization

引用本文

导出引用
Xueyong Wei, Mingke Xu, Qiqi Yang. 基于同步微机械谐振器的MEMS惠更斯钟. Engineering. 2024, 36(5): 124-131 https://doi.org/10.1016/j.eng.2023.12.013

参考文献

[1]
Karlquist RK, Cutler LS, Ingman EM, Johnson JL, Parisek T. A low-profile high-performance crystal oscillator for timekeeping applications. In: Proceedings of International Frequency Control Symposium; 1997 May 30; Orlando, FL, USA. Piscataway: IEEE; 1997. p. 873-84.
[2]
Andriy K, Georgiy S, Konstantin M, Patric H, Martin N, Richard R, et al. Cost-minimized 24 GHz pulse oscillator for short-range automotive radar applications. In: Proceedingof the 33rd European Microwave Conference; 2003. p. 2023 October 7; Munich, Germany. Piscataway: IEEE; 1131-4.
[3]
Hang YJ, Li RB, Liu JY, Xing L, Wang Y.The acceleration sensitive coefficient calibration of the crystal oscillator based on the GPS carrier control principle. In: Sun JD, Jiao WH, Wu HT, Lu MQ, editors. China Satellite Navigation Conference (CSNC) 2014 Proceedings: Volume III; 2014 May 21- 23; Nanjing, China. Berlin, Springer; 2014. p. 511-21.
[4]
D. Antonio, D.H. Zanette, D. López.Frequency stabilization in nonlinear micromechanical oscillators. Nat Commun, 3 (1) ( 2012), p. 806
[5]
C.T. Nguyen. MEMS technology for timing and frequency control. IEEE Trans Ultrason Ferroelectr Freq Control, 54 (2) ( 2007), pp. 251-270
[6]
B.P. Otis, J.M. Rabaey. A 300-μW 1.9-GHz CMOS oscillator utilizing micromachined resonators. IEEE J Solid-State Circuits, 38 (7) ( 2003), pp. 1271-1274
[7]
C. Zuo, J. Van der Spiegel, G. Piazza. 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour-mode MEMS resonators. IEEE Trans Ultrason Ferroelectr Freq Control, 57 (1) ( 2010), pp. 82-87
[8]
C.L. Dai. A capacitive humidity sensor integrated with micro heater and ring oscillator circuit fabricated by CMOS-MEMS technique. Sens Actuators B, 122 (2) ( 2007), pp. 375-380
[9]
C.S. Li, L.J. Hou, S.S. Li. Advanced CMOS-MEMS resonator platform. IEEE Electr Device Lett, 33 (2) ( 2012), pp. 272-274
[10]
Kourani A, Hegazi E, Ismail Y.RF MEMS reference oscillator platform with ±0.5ppm frequency stability for wireless handsets. In:Proceedings of the 2015 International Symposium on Signals, Circuits and Systems (ISSCS); 2015 Jul 9- 10 ; Iasi, Romania. Piscataway: IEEE; 2015. p. 1-4.
[11]
M. Sansa, E. Sage, E.C. Bullard, M. Gély, T. Alava, E. Colinet, et al.. Frequency fluctuations in silicon nanoresonators. Nat Nanotechnol, 11 (6) ( 2016), pp. 552-558
[12]
M. Li, H.X. Tang, M.L. Roukes. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat Nanotechnol, 2 (2) ( 2007), pp. 114-120
[13]
J.J. Hall. Electronic effects in the elastic constants of n-type silicon. Phys Rev, 161 (3) ( 1967), pp. 756-761
[14]
Parajuli M, Sobreviela G, Zhang HM, Seshia AA.Enhancement of frequency stability in injection locked bulk mode mems oscillators. In:Proceedings of the 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS); 2021 Jan 25- 29 ; Gainesville, FL, USA. Piscataway: IEEE; 2021. p. 941-4.
[15]
S. Pourkamali, A. Hashimura, R. Abdolvand, G.K. Ho, A. Erbil, F. Ayazi. High-Q single crystal silicon HARPSS capacitive beam resonators with self-aligned sub-100-nm transduction gaps. J Microelectromech Syst, 12 (4) ( 2003), pp. 487-496
[16]
S. Pourkamali, Z. Hao, F. Ayazi. VHF single crystal silicon capacitive elliptic bulk-mode disk resonators—part II: implementation and characterization. J Microelectromech Syst, 13 (6) ( 2004), pp. 1054-1062
[17]
L. Villanueva, R. Karabalin, M. Matheny, E. Kenig, M.C. Cross, M.L. Roukes. A nanoscale parametric feedback oscillator. Nano Lett, 11 (11) ( 2011), pp. 5054-5059
[18]
A. Leuch, L. Papariello, O. Zilberberg, C.L. Degen, R. Chitra, A. Eichler. Parametric symmetry breaking in a nonlinear resonator. Phys Rev Lett, 117 (21) ( 2016), Article 214101
[19]
Sun BQ, Zhao C, Sobreviela-Falces G, Du SJ, Han FT, Zou XD.Enhanced frequency stability in a non-linear mems oscillator employing phase feedback. In:Proceedings of the 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS); 2017 Jan 22- 26 ; Las Vegas, NV, USA. Piscataway: IEEE; 2017. p. 1115-7.
[20]
R.B. Karabalin, R. Lifshitz, M.C. Cross, M.H. Matheny, S.C. Masmanidis, M.L. Roukes. Signal amplification by sensitive control of bifurcation topology. Phys Rev Lett, 106 (9) ( 2011), Article 094102
[21]
H. Okamoto, N. Kitajima, K. Onomitsu, R. Kometani, S.I. Warisawa, S. Ishihara, et al.. High-sensitivity charge detection using antisymmetric vibration in coupled micromechanical oscillators. Appl Phys Lett, 98 (1) ( 2011), Article 014103
[22]
M. Sato, B.E. Hubbard, A.J. Sievers, B. Ilic, D.A. Czaplewski, H.G. Craighead. Observation of locked intrinsic localized vibrational modes in a micromechanical oscillator array. Phys Rev Lett, 90 (4) ( 2003), Article 044102
[23]
D. Pu, R.H. Huan, X.Y. Wei. Frequency stability improvement for piezoresistive micromechanical oscillators via synchronization. AIP Adv, 7 (3) ( 2017), Article 035204
[24]
A. Pikovsky, M. Rosenblum, J. Kurths. Synchronization:a universal concept in nonlinear sciences. Cambridge University Press, Cambridge ( 2003)
[25]
D.K. Agrawal, J. Woodhouse, A.A. Seshia. Observation of locked phase dynamics and enhanced frequency stability in synchronized micromechanical oscillators. Phys Rev Lett, 111 (8) ( 2013), Article 084101
[26]
O. Shoshani, D. Heywood, Y.S. Yang, T.W. Kenny, S.W. Shaw. Phase noise reduction in an MEMS oscillator using a nonlinearly enhanced synchronization domain. J Microelectromech Syst, 25 (5) ( 2016), pp. 870-876
[27]
R.H. Huan, D. Pu, X.F. Wang, X.Y. Wei. Effects of phase delay on synchronization in a nonlinear micromechanical oscillator. Appl Phys Lett, 114 (23) ( 2019), Article 233501
[28]
A. Buonomo, M.P. Kennedy, A. Lo Schiavo. On the synchronization condition for superharmonic coupled QVCOs. IEEE Trans Circuits Syst I, 58 (7) ( 2011), pp. 1637-1646
[29]
A. Velichko, M. Belyaev, V. Putrolaynen, V. Perminov, A. Pergament. Thermal coupling and effect of subharmonic synchronization in a system of two VO2 based oscillators. Solid-State Electron, 141 ( 2018), pp. 40-49
[30]
L.C. Ortiz, H.K. Kwon, J. Rodriguez, Y. Chen, G.D. Vukasin, D.B. Heinz, et al.. Low-power dual mode MEMS resonators with PPB stability over temperature. J Microelectromech Syst, 29 (2) ( 2020), pp. 190-201
[31]
L. Xu, S. Wang, Z. Jiang,X. Wei. Programmable synchronization enhanced MEMS resonant accelerometer. Microsystem Nanoeng, 6 (1) ( 2020), p. 63
[32]
D. Antonio, D.A. Czaplewski, J.R. Guest, D. López, S.I. Arroyo, D.H. Zanette. Nonlinearity-induced synchronization enhancement in micromechanical oscillators. Phys Rev Lett, 114 (3) ( 2015), Article 034103
[33]
Y. Wang, Q. Jin, R. Zhang. Improved fuzzy PID controller design using predictive functional control structure. ISA Trans, 71 (Pt 2) ( 2017), pp. 354-363
[34]
T. Nuchkrua, T. Leephakpreeda. Fuzzy self-tuning PID control of hydrogen-driven pneumatic artificial muscle actuator. J Bionic Eng, 10 (3) ( 2013), pp. 329-340
PDF(3859 KB)

Accesses

Citation

Detail

段落导航
相关文章

/