折射率可调的紫外线压印用透明纳米复合光刻胶

刘莹璐, 王丹, 刘昌林, 郝倩倩, 李建, 王洁欣, 陈秀云, 钟鹏, 邵喜斌, 陈建峰

工程(英文) ›› 2024, Vol. 37 ›› Issue (6) : 106-114.

PDF(3064 KB)
PDF(3064 KB)
工程(英文) ›› 2024, Vol. 37 ›› Issue (6) : 106-114. DOI: 10.1016/j.eng.2023.12.014
研究论文
Article

折射率可调的紫外线压印用透明纳米复合光刻胶

作者信息 +

A Transparent Photoresist Made of Titanium Dioxide Nanoparticle-Embedded Acrylic Resin with a Tunable Refractive Index for UV-Imprint Lithography

Author information +
History +

摘要

在光学领域中,具有高折射率和高透明度的光刻胶展现出了广泛的应用前景。本文介绍了一种含有高折射率纳米氧化钛的丙烯酸树脂材料,可用于紫外光压印。经过紫外光固化后,复合膜在589 nm波长处表现出高达1.67的折射率,同时在可见光范围内保持了超过98%的高透过率和低于0.05%的低雾度。这种复合树脂可简便高效地用于微结构的精密加工,当用作导光板时,能够将光线从侧面引导至顶部,从而提高显示设备的节能效果。这些基于实验室和商业实验的初步研究为纳米复合树脂在光学性能方面的发展以及未来工业应用奠定了基础。

Abstract

Transparent photoresists with a high refractive index (RI) and high transmittance in visible wavelengths have promising functionalities in optical fields. This work reports a kind of tunable optical material composed of titanium dioxide nanoparticles embedded in acrylic resin with a high RI for ultraviolet (UV)-imprint lithography. The hybrid film exhibits a tunable RI of up to 1.67 (589 nm) after being cured by UV light, while maintaining both a high transparency of over 98% in the visible light range and a low haze of less than 0.05%. The precision machining of optical microstructures can be imprinted easily and efficiently using the hybrid resin, which acts as a light guide plate (LGP) to guide the light from the side to the top in order to conserve the energy of the display device. These preliminary studies based on both laboratory and commercial experiments pave the way for exploiting the unparalleled optical properties of nanocomposite resins and promoting their industrial application.

关键词

光刻胶 / 可调折射率 / 汉森溶解度 / 紫外光压印 / 有机-无机复合

Keywords

Photoresist / Tunable refractive index / Hanson solubility / Ultraviolet imprint / Organic-inorganic composites

引用本文

导出引用
刘莹璐, 王丹, 刘昌林. 折射率可调的纳米二氧化钛/丙烯酸酯复合材料的制备及其在紫外光压印透明光刻胶中的应用. Engineering. 2024, 37(6): 106-114 https://doi.org/10.1016/j.eng.2023.12.014

参考文献

[1]
C. Feng, C.P.H. Rajapaksha, A. Jákli. Ionic elastomers for electric actuators and sensors. Engineering, 7 (5) (2021), pp. 581-602.
[2]
D. Kim, D. Ndaya, R. Bosire, F.K. Masese, W. Li, S.M. Thompson, et al. Dynamic magnetic field alignment and polarized emission of semiconductor nanoplatelets in a liquid crystal polymer. Nat Commun, 13 (1) (2022), p. 2507.
[3]
Q. Zhou, Z. Bai, W.G. Lu, Y. Wang, B. Zou, H. Zhong. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights. Adv Mater, 28 (41) (2016), pp. 9163-9168.
[4]
H. Na, S. Hong, J. Kim, J. Hwang, B. Joo, K. Yoon, et al. Analysis of roll-stamped light guide plate fabricated with laser-ablated stamper. Opt Laser Technol, 97 (2017), pp. 346-353.
[5]
Z. Jiang, Y. Ye, J. Guo, J. Pan, X. Cao, T. Guo, et al. Optimal dimension of edge-lit light guide plate based on light conduction analysis. Opt Express, 29 (12) (2021), pp. 18705-18719.
[6]
H. Li, Y. Gao, X. Ying, Y. Feng, M. Zhu, D. Zhang, et al. In-situ reacted multiple-anchoring ligands to produce highly photo-thermal resistant CsPbI3 quantum dots for display backlights. Chem Eng J, 454 (Pt 1) (2023), Article 140038.
[7]
W. Peng, H. Wu. Flexible and stretchable photonic sensors based on modulation of light transmission. Adv Opt Mater, 7 (12) (2019), p. 1900329.
[8]
F. Han, S. Gu, A. Klimas, N. Zhao, Y. Zhao, S.C. Chen. Three-dimensional nanofabrication via ultrafast laser patterning and kinetically regulated material assembly. Science, 378 (6626) (2022), pp. 1325-1331.
[9]
S. Wang, C. Li, Y. Xiang, H. Qi, Y. Fang, A. Wang, et al. Light extraction from quantum dot light emitting diodes by multiscale nanostructures. Nanoscale Adv, 2 (5) (2020), pp. 1967-1972.
[10]
Y.E. Panfil, M. Oded, U. Banin. Colloidal quantum nanostructures: emerging materials for display applications. Angew Chem Int Ed Engl, 57 (16) (2018), pp. 4274-4295.
[11]
T. Zhao, J. Cao, X. Li, M. Xia, B. Xue, H. Yuan. A network-based visco-hyperelastic constitutive model for optically clear adhesives. Extreme Mech Lett, 51 (2022), Article 101594.
[12]
S.S. Baek, S.H. Hwang. Preparation of biomass-based transparent pressure sensitive adhesives for optically clear adhesive and their adhesion performance. Eur Polym J, 92 (2017), pp. 97-104.
[13]
D. Lim, M.J. Baek, H.S. Kim, C. Baig, D.W. Lee. Carboxyethyl acrylate incorporated optically clear adhesives with outstanding adhesion strength and immediate strain recoverability for stretchable electronics. Chem Eng J, 437 (Pt 2) (2022), Article 135390.
[14]
L. Duan, H. Zhou, J. Duan. Micro-groove manufacturing via a femtosecond laser on optically clear adhesive films. Appl Surf Sci, 604 (2022), Article 154439.
[15]
A. Sikora, G. Coustillier, T. Sarnet, M. Sentis. Laser engraving optimization for achieving smooth sidewalls. Appl Surf Sci, 492 (2019), pp. 382-391.
[16]
Y.S. Ye, Y.J. Huang, F.C. Chang, Z.G. Xue, X.L. Xie. Synthesis and characterization of thermally cured polytriazole polymers incorporating main or side chain benzoxazine crosslinking moieties. Polym Chem, 5 (8) (2014), pp. 2863-2871.
[17]
D. Wang, P. Garra, J.P. Fouassier, B. Graff, Y. Yagci, J. Lalevée. Indole- based charge transfer complexes as versatile dual thermal and photochemical polymerization initiators for 3D printing and composites. Polym Chem, 10 (36) (2019), pp. 4991-5000.
[18]
J.M. Stormonth-Darling, A. Saeed, P.M. Reynolds, N. Gadegaard. Injection molding micro- and nanostructures in thermoplastic elastomers. Macromol Mater Eng, 301 (8) (2016), pp. 964-971.
[19]
M. Wang, S. Kee, P. Baek, M.S. Ting, Z. Zujovic, D. Barker, et al. Photo-patternable, stretchable and electrically conductive graft copolymers of poly(3-hexylthiophene). Polym Chem, 10 (46) (2019), pp. 6278-6289.
[20]
T.S. Kristufek, S.L. Kristufek, L.A. Link, A.C. Weems, S. Khan, S.M. Lim, et al. Rapidly-cured isosorbide-based cross-linked polycarbonate elastomers. Polym Chem, 7 (15) (2016), pp. 2639-2644.
[21]
S.Y. Chou, P.R. Krauss, P.J. Renstrom. Imprint lithography with 25-nanometer resolution. Science, 272 (5258) (1996), pp. 85-87.
[22]
W.J. Joo, J. Kyoung, M. Esfandyarpour, S.H. Lee, H. Koo, S. Song, et al. Metasurface-driven OLED displays beyond 10,000 pixels per inch. Science, 370 (6515) (2020), pp. 459-463.
[23]
G. Yoon, K. Kim, D. Huh, H. Lee, J. Rho. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat Commun, 11 (1) (2020), p. 2268.
[24]
T. Wang, F. Shen, H. Deng, F. Cai, S. Chen. Smartphone imaging spectrometer for egg/meat freshness monitoring. Anal Methods, 14 (5) (2022), pp. 508-517.
[25]
F. Shen, H. Deng, L. Yu, F. Cai. Open-source mobile multispectral imaging system and its applications in biological sample sensing. Spectrochim Acta A, 280 (2022), Article 121504.
[26]
Y. Li, F. Shen, L. Hu, Z. Lang, Q. Liu, F. Cai, et al. A stare-down video-rate high-throughput hyperspectral imaging system and its applications in biological sample sensing. IEEE Sens J, 23 (19) (2023), pp. 23629-23637.
[27]
J.H. Jeong, K. Park, H. Kim, I. Park, J. Choi, S.S. Lee. Multiplexed electrospraying of water in cone-jet mode using a UV-embossed pyramidal micronozzle film. Microsyst Nanoeng, 8 (1) (2022), p. 110.
[28]
Z. Li, P. Lin, Y.W. Huang, J.S. Park, W.T. Chen, Z. Shi, et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci Adv, 7 (5) (2021), p. abe4458.
[29]
E. Arbabi, A. Arbabi, S.M. Kamali, Y. Horie, A. Faraon. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica, 4 (6) (2017), pp. 625-632.
[30]
M.R. Beaulieu, N.R. Hendricks, J.J. Watkins. Large-area printing of optical gratings and 3D photonic crystals using solution-processable nanoparticle/polymer composites. ACS Photonics, 1 (9) (2014), pp. 799-805.
[31]
J. Ko, R. Berger, H. Lee, H. Yoon, J. Cho, K. Char. Electronic effects of nano-confinement in functional organic and inorganic materials for optoelectronics. Chem Soc Rev, 50 (5) (2021), pp. 3585-3628.
[32]
X. He, Z. Wang, Y. Pu, D. Wang, R. Tang, S. Cui, et al. High- gravity-assisted scalable synthesis of zirconia nanodispersion for light emitting diodes encapsulation with enhanced light extraction efficiency. Chem Eng Sci, 195 (2019), pp. 1-10.
[33]
Y.H. Kim, J.Y. Bae, J. Jin, B.S. Bae. Sol-gel derived transparent zirconium-phenyl siloxane hybrid for robust high refractive index LED encapsulant. ACS Appl Mater Interfaces, 6 (5) (2014), pp. 3115-3121.
[34]
X. He, Z. Wang, D. Wang, F. Yang, R. Tang, J.X. Wang, et al. Sub-kilogram-scale synthesis of highly dispersible zirconia nanoparticles for hybrid optical resins. Appl Surf Sci, 491 (2019), pp. 505-516.
[35]
R. Tang, X. Yao, J. Chen, S. Sridar, X. He, Y. Pu, et al. A highly controlled organic-inorganic encapsulation nanocomposite with versatile features toward wearable device applications. Macromol Rapid Commun, 42 (17) (2021), p. 2100134.
[36]
M. Modaresialam, Z. Chehadi, T. Bottein, M. Abbarchi, D. Grosso. Nanoimprint lithography processing of inorganic-based materials. Chem Mater, 33 (14) (2021), pp. 5464-5482.
[37]
X. He, Y. Pu, J.X. Wang, D. Wang, J.F. Chen. Surface engineering of titanium dioxide nanoparticles for silicone-based transparent hybrid films with ultrahigh refractive indexes. Langmuir, 37 (8) (2021), pp. 2707-2713.
[38]
T.T. Huang, C.L. Tsai, S. Tateyama, T. Kaneko, G.S. Liou. Highly transparent and flexible bio-based polyimide/TiO2 and ZrO2 hybrid films with tunable refractive index, Abbe number, and memory properties. Nanoscale, 8 (25) (2016), pp. 12793-12802.
[39]
L.M.S. Colpini, H.J. Alves, O.A.A. dos Santos, C.M.M. Costa. Discoloration and degradation of textile dye aqueous solutions with titanium oxide catalysts obtained by the sol-gel method. Dyes Pigm, 76 (2) (2008), pp. 525-529.
[40]
S. Gårdebjer, M. Andersson, J. Engström, P. Restorp, M. Persson, A. Larsson. Using Hansen solubility parameters to predict the dispersion of nano-particles in polymeric films. Polym Chem, 7 (9) (2016), pp. 1756-1764.
[41]
S.H. Wang, J.H. Liu, C.T. Pai, C.W. Chen, P.T. Chung, A.S.T. Chiang, et al. Hansen solubility parameter analysis on the dispersion of zirconia nanocrystals. J Colloid Interface Sci, 407 (2013), pp. 140-147.
[42]
B.M. Novak. Hybrid nanocomposite materials—between inorganic glasses and organic polymers. Adv Mater, 5 (6) (1993), pp. 422-433.
[43]
M.M. Demir, K. Koynov, Ü. Akbey, C. Bubeck, I. Park, I. Lieberwirth, et al. Optical properties of composites of PMMA and surface-modified zincite nanoparticles. Macromolecules, 40 (4) (2007), pp. 1089-1100.
[44]
X.F. Zeng, X.R. Kong, J.L. Ge, H.T. Liu, C. Gao, Z.G. Shen, et al. Effective solution mixing method to fabricate highly transparent and optical functional organic-inorganic nanocomposite film. Ind Eng Chem Res, 50 (6) (2011), pp. 3253-3258.
PDF(3064 KB)

Accesses

Citation

Detail

段落导航
相关文章

/