[1] |
J. Daniels, S. Wadekar, K. DeCubellis, G.W. Jackson, A.S. Chiu, Q. Pagneux, et al. A mask-based diagnostic platform for point-of-care screening of COVID-19. Biosens Bioelectron, 192 (2021), Article 113486.
|
[2] |
J. Chen, C. Hu, L. Chen, L. Tang, Y. Zhu, X. Xu, et al. Clinical study of mesenchymal stem cell treatment for acute respiratory distress syndrome induced by epidemic influenza A (H7N9) infection: a hint for COVID-19 treatment. Engineering, 6 (10) (2020), pp. 1153-1161.
|
[3] |
M.D. Baaske, M.R. Foreman, F. Vollmer. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat Nanotechnol, 9 (11) (2014), pp. 933-939.
|
[4] |
J. Mertens, C. Rogero, M. Calleja, D. Ramos, J.A. Martín-Gago, C. Briones, et al. Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films. Nat Nanotechnol, 3 (2008), pp. 301-307.
|
[5] |
H. Altug, S.H. Oh, S.A. Maier, J. Homola. Advances and applications of nanophotonic biosensors. Nat Nanotechnol, 17 (1) (2022), pp. 5-16.
|
[6] |
Y. Du, B. Li, E. Wang. “Fitting” makes “Sensing” simple: label-free detection strategies based on nucleic acid aptamers. Acc Chem Res, 46 (2) (2013), pp. 203-213.
|
[7] |
B.G. Andryukov, N.N. Besednova, R.V. Romashko, T.S. Zaporozhets, T.A. Efimov. Label-free biosensors for laboratory-based diagnostics of infections: current achievements and new trends. Biosensors, 10 (2) (2020), p. 11.
|
[8] |
E.H. Koh, W.C. Lee, Y.J. Choi, J.I. Moon, J. Jang, S.G. Park, et al. A wearable surface-enhanced Raman scattering sensor for label-free molecular detection. ACS Appl Mater Interfaces, 13 (2) (2021), pp. 3024-3032.
|
[9] |
B. Yin, W.K.H. Ho, Q. Zhang, C. Li, Y. Huang, J. Yan, et al. Magnetic-responsive surface-enhanced Raman scattering platform with tunable hot spot for ultrasensitive virus nucleic acid detection. ACS Appl Mater Interfaces, 14 (3) (2022), pp. 4714-4724.
|
[10] |
J. Yoon, M. Shin, J.Y. Lee, S.N. Lee, J.H. Choi, J.W. Choi. RNA interference (RNAi)-based plasmonic nanomaterials for cancer diagnosis and therapy. J Control Release, 342 (2022), pp. 228-240.
|
[11] |
X. Zhang, Y. Liu, S. Du, Y. Yin, L. Kong, Y. Chang, et al. Engineering a rolling-circle strand displacement amplification mediated label-free ultrasensitive electrochemical biosensing platform. Anal Chem, 93 (27) (2021), pp. 9568-9574.
|
[12] |
C. Stagni, C. Guiducci, L. Benini, B. Ricco, S. Carrara, B. Samori, et al. CMOS DNA sensor array with integrated A/D conversion based on label-free capacitance measurement. IEEE J Solid-State Circuits, 41 (12) (2006), pp. 2956-2964.
|
[13] |
J. Zhou, X. Zhao, G. Huang, X. Yang, Y. Zhang, X. Zhan, et al. Molecule-specific terahertz biosensors based on an aptamer hydrogel-functionalized metamaterial for sensitive assays in aqueous environments. ACS Sens, 6 (5) (2021), pp. 1884-1890.
|
[14] |
R. Zhou, C. Wang, Y. Huang, K. Huang, Y. Wang, W. Xu, et al. Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures. Biosens Bioelectron, 188 (2021), Article 113336.
|
[15] |
K. Noi, K. Ikenaka, H. Mochizuki, Y. Goto, H. Ogi. Disaggregation behavior of amyloid β fibrils by anthocyanins studied by total-internal-reflection-fluorescence microscopy coupled with a wireless quartz-crystal microbalance biosensor. Anal Chem, 93 (32) (2021), pp. 11176-11183.
|
[16] |
S. Yousuf, J. Kim, A. Orozaliev, M.S. Dahlem, Y.A. Song, J. Viegas. Label-free detection of morpholino-DNA hybridization using a silicon photon suspended slab micro-ring resonator. IEEE Photon J, 13 (4) (2021), pp. 1-9.
|
[17] |
R. Ghayoor, S. Zangenehzadeh, A. Keshavarz. Design of high-sensitivity surface plasmon resonance sensor based on nanostructured thin films for effective detection of DNA hybridization. Plasmonics, 17 (4) (2022), pp. 1831-1841.
|
[18] |
S. Anwar, M.B. Khawar, M. Ovais, A. Afzal, X. Zhang. Gold nanocubes based optical detection of HIV-1 DNA via surface enhanced Raman spectroscopy. J Pharm Biomed Anal, 226 (2023), Article 115242.
|
[19] |
A. Lomae, P. Preechakasedkit, O. Hanpanich, T. Ozer, C.S. Henry, A. Maruyama, et al. Label free electrochemical DNA biosensor for COVID-19 diagnosis. Talanta, 253 (2023), Article 123992.
|
[20] |
P.H. Lai, L.S. Tseng, C.M. Yang, M.S.C. Lu. Design and characterization of a 16×16 CMOS capacitive DNA sensor array. IEEE Sens J, 23 (8) (2023), pp. 8120-8127.
|
[21] |
N. Li, F. Zhang. THz-PCR based on resonant coupling between middle infrared and DNA carbonyl vibrations. ACS Appl Mater Interfaces, 15 (6) (2023), pp. 8224-8231.
|
[22] |
A. Salim, S. Lim. Recent advances in noninvasive flexible and wearable wireless biosensors. Biosens Bioelectron, 141 (2019), Article 111422.
|
[23] |
G. Balakrishnan, J. Song, C. Mou, C.J. Bettinger. Recent progress in materials chemistry to advance flexible bioelectronics in medicine. Adv Mater, 34 (10) (2022), Article 2106787.
|
[24] |
Y. Yang, W. Gao. Wearable and flexible electronics for continuous molecular monitoring. Chem Soc Rev, 48 (6) (2019), pp. 1465-1491.
|
[25] |
Y. Ma, Y. Zhang, S. Cai, Z. Han, X. Liu, F. Wang, et al. Flexible hybrid electronics for digital healthcare. Adv Mater, 32 (15) (2020), Article 1902062.
|
[26] |
J. Gao, K. Shang, Y. Ding, Z. Wen. Material and configuration design strategies towards flexible and wearable power supply devices: a review. J Mater Chem A, 9 (14) (2021), pp. 8950-8965.
|
[27] |
Q. He, Y. Cheng, Y. Deng, F. Wen, Y. Lai, H. Li. Conductive hydrogel for flexible bioelectronic device: current progress and future perspective. Adv Funct Mater, 34 (1) (2023), Article 2308974.
|
[28] |
P.J. Jandas, K. Prabakaran, J. Luo, M.G. Holaday. Effective utilization of quartz crystal microbalance as a tool for biosensing applications. Sens Actuator A Phys, 331 (2021), Article 113020.
|
[29] |
R.M.R. Pinto, V. Chu, J.P. Conde. Label-free biosensing of DNA in microfluidics using amorphous silicon capacitive micro-cantilevers. IEEE Sens J, 20 (16) (2020), pp. 9018-9028.
|
[30] |
J. Zhou, D. Zhang, Y. Liu, F. Zhuo, L. Qian, H. Li, et al. Record-breaking frequency of 44 GHz based on the higher order mode of surface acoustic waves with LiNbO3/SiO2/SiC heterostructures. Engineering, 20 (2023), pp. 112-119.
|
[31] |
M. Bharati, L. Rana, R. Gupta, A. Sharma, P.K. Jha, M. Tomar. Realization of a DNA biosensor using inverted Lamb wave MEMS resonator based on ZnO/SiO2/Si/ZnO membrane. Anal Chim Acta, 1249 (2023), Article 340929.
|
[32] |
Y. Zhang, J. Luo, A.J. Flewitt, Z. Cai, X. Zhao. Film bulk acoustic resonators (FBARs) as biosensors: a review. Biosens Bioelectron, 116 (2018), pp. 1-15.
|
[33] |
F. Pop, B. Herrera, M. Rinaldi. Lithium niobate piezoelectric micromachined ultrasonic transducers for high data-rate intrabody communication. Nat Commun, 13 (1) (2022), p. 1782.
|
[34] |
E. Şennik, F. Erden, N. Constantino, Y.Y. Oh, R.A. Dean, Ö. Oralkan. Electronic nose system based on a functionalized capacitive micromachined ultrasonic transducer (CMUT) array for selective detection of plant volatiles. Sens Actuators B Chem, 341 (2021), Article 130001.
|
[35] |
S. Park, I. Yoon, S. Lee, H. Kim, J.W. Seo, Y.Y. Chung, et al. CMUT-based resonant gas sensor array for VOC detection with low operating voltage. Sens Actuators B Chem, 273 (2018), pp. 1556-1563.
|
[36] |
L. Zhao, Z. Jiang, Z. Li, Y. Zhao. Huang ( Ed.),Modeling of electrostatically actuated microplates. Q.A. Micro electro mechanical systems, Springer, Singapore (2018), pp. 99-153.
|
[37] |
D. Virzonis, G. Vanagas, A. Ramanaviciene, A. Makaraviciute, D. Barauskas, A. Ramanavicius, et al. Resonant gravimetric immunosensing based on capacitive micromachined ultrasound transducers. Mikrochim Acta, 181 (13-14) (2014), pp. 1749-1757.
|
[38] |
W. Pang, H. Zhao, E.S. Kim, H. Zhang, H. Yu, X. Hu. Piezoelectric microelectromechanical resonant sensors for chemical and biological detection. Lab Chip, 12 (1) (2012), pp. 29-44.
|
[39] |
M.H. Zhao, Z.L. Wang, S.X. Mao. Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett, 4 (4) (2004), pp. 587-590.
|
[40] |
I.L. Guy, S. Muensit, E.M. Goldys. Extensional piezoelectric coefficients of gallium nitride and aluminum nitride. Appl Phys Lett, 75 (26) (1999), pp. 4133-4135.
|
[41] |
K. Brenner, A.S. Ergun, K. Firouzi, M.F. Rasmussen, Q. Stedman, B. Khuri-Yakub. Advances in capacitive micromachined ultrasonic transducers. Micromachines, 10 (2) (2019), p. 152.
|
[42] |
D. Barauskas, S.J. Park, D. Pelenis, G. Vanagas, J.J. Lee, D. Viržonis, et al. CO2 and SO2 interactions with methylated poly(ethylenimine)-functionalized capacitive micromachined ultrasonic transducers (CMUTs): gas sensing and degradation mechanism. ACS Appl Mater Interfaces, 1 (7) (2019), pp. 1150-1161.
|
[43] |
Z. Zheng, N. Kim, W.S. Wong, J.T.W. Yeow. Inkjet-printed CMUT humidity sensors with high sensitivity and low hysteresis. Sens Actuators B Chem, 327 (2021), Article 128920.
|
[44] |
Z. Zheng, Y. Yao, Y.H. Sun, J.T.W. Yeow. Development of a highly sensitive humidity sensor based on the capacitive micromachined ultrasonic transducer. Sens Actuators B Chem, 286 (2019), pp. 39-45.
|
[45] |
L. Zhao, Y. Zhao, Y. Xia, Z. Li, J. Li, J. Zhang, et al. A novel CMUT-based resonant biochemical sensor using electrospinning technology. IEEE Trans Ind Electron, 66 (9) (2019), pp. 7356-7365.
|
[46] |
M.M. Mahmud, C. Seok, X. Wu, E. Şennik, A.Ö. Biliroğlu, O.J. Adelegan, et al. A low-power wearable E-nose system based on a capacitive micromachined ultrasonic transducer (CMUT) array for indoor VOC monitoring. IEEE Sens J, 21 (18) (2021), pp. 19684-19696.
|
[47] |
C. Seok, M.M. Mahmud, M. Kumar, O.J. Adelegan, F.Y. Yamaner, Ö. Oralkan. A low-power wireless multichannel gas sensing system based on a capacitive micromachined ultrasonic transducer (CMUT) array. IEEE Internet Things J, 6 (1) (2019), pp. 831-843.
|
[48] |
H.J. Lee, K.K. Park, M. Kupnik, Ö. Oralkan, B.T. Khuri-Yakub. Chemical vapor detection using a capacitive micromachined ultrasonic transducer. Anal Chem, 83 (24) (2011), pp. 9314-9320.
|
[49] |
Mahmud MM, Reese H, Joshipura A, Seok C, Yamaner FY, Daniele M, et al. Gravimetric biosensor based on a capacitive micromachined ultrasonic transducer functionalized with peptide ligands. In: Proceedings of the 2017 IEEE Sensors; 2017 Oct 29-Nov 1; Glasgow, UK. Piscataway: IEEE; 2017. p. 1-3.
|
[50] |
Lee S, Eom G, Yoon I, Park S, Kook G, Kim MK, et al. Capacitive micromachined ultrasonic transducer CMUT-based biosensor for detection of low concentration neuropeptide. Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC; 2018 Jul 18-21; Honolulu HI, USA. Piscataway: IEEE; 2018. p. 2897-900.
|
[51] |
S. Mariani, V. Robbiano, L.M. Strambini, A. Debrassi, G. Egri, L. Dähne, et al. Layer-by-layer biofunctionalization of nanostructured porous silicon for high-sensitivity and high-selectivity label-free affinity biosensing. Nat Commun, 9 (1) (2018), p. 5256.
|
[52] |
S. Carrara, L. Benini, V. Bhalla, C. Stagni, A. Ferretti, A. Cavallini, et al. New insights for using self-assembly materials to improve the detection stability in label-free DNA-chip and immuno-sensors. Biosens Bioelectron, 24 (12) (2009), pp. 3425-3429.
|
[53] |
Z.K. Li, L.B. Zhao, Z.D. Jiang, Z.Y. Ye, Y.L. Zhao. An improved method for the mechanical behavior analysis of electrostatically actuated microplates under uniform hydrostatic pressure. J Microelectromech Syst, 24 (2) (2015), pp. 474-485.
|
[54] |
L. Zhao, J. Li, Z. Li, J. Zhang, Y. Zhao, J. Wang, et al. Fabrication of capacitive micromachined ultrasonic transducers with low-temperature direct wafer-bonding technology. Sens Actuators A Phys, 264 (2017), pp. 63-75.
|
[55] |
Zhao Y, Barbruni GL, Li Z, Zhao L, Jiang Z, Enz C, et al. An ASIC interface for CMUTs-based biosensors with high voltage boosting and oscillator. USA. Proceedings of the 2022 IEEE International Symposium on Circuits and Systems (ISCAS); 2022 May 27-Jun 1; Austin, TX, Piscataway: IEEE; 2022. p. 1625-9.
|
[56] |
B. Razavi. The transimpedance amplifier [a circuit for all seasons]. IEEE Solid-State Circuits Maga, 11 (1) (2019), pp. 10-97.
|
[57] |
Carrara S. Co-design of a full bio/CMOS interface. In: CarraraS, editor. Bio/CMOSinterfaces and co-design. Cham: Springer; 2023. p. 431-53.
|
[58] |
Y. Zhao, Z. Li, X. Wang, G. Luo, J. Li, Z. Li, et al. New insights for parasitic effects of label-free biosensors based on capacitive micromachined ultrasonic transducers. IEEE Sens J, 22 (21) (2022), pp. 20575-20584.
|
[59] |
S.A. Paniagua, A.J. Giordano, O.L. Smith, S. Barlow, H. Li, N.R. Armstrong, et al. Phosphonic acids for interfacial engineering of transparent conductive oxides. Chem Rev, 116 (12) (2016), pp. 7117-7158.
|
[60] |
P.J. Hotchkiss, S.C. Jones, S.A. Paniagua, A. Sharma, B. Kippelen, N.R. Armstrong, et al. The modification of indium tin oxide with phosphonic acids: mechanism of binding, tuning of surface properties, and potential for use in organic electronic applications. Acc Chem Res, 45 (3) (2012), pp. 337-346.
|
[61] |
K. Nakamura, T. Takahashi, T. Hosomi, Y. Yamaguchi, W. Tanaka, J. Liu, et al. Surface dissociation effect on phosphonic acid self-assembled monolayer formation on ZnO nanowires. ACS Omega, 7 (1) (2022), pp. 1462-1467.
|
[62] |
N.S. Tambe, B. Bhushan. Nanotribological characterization of self-assembled monolayers deposited on silicon and aluminium substrates. Nanotechnology, 16 (9) (2005), pp. 1549-1558.
|
[63] |
D.W. Allan. Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators. IEEE Trans Ultrason Ferroelectr Freq Control, 34 (6) (1987), pp. 647-654.
|
[64] |
S. Eaimkhong, M. Steiert, T.F. Harper, M.D. Cable, J. Gimzewski. Label-free biodetection using capacitive micromachined ultrasonic transducers (CMUTs) and its application for cardiovascular disease diagnostics. J Nanomed Nanotechnol, 3 (5) (2012), Article 100014.
|
[65] |
H.J. Lee, K.K. Park, Ö. Oralkan, M. Kupnik, B.T. Khuri-Yakub. A multichannel oscillator for a resonant chemical sensor system. IEEE Trans Ind Electron, 61 (10) (2014), pp. 5632-5640.
|
[66] |
G. Gonzalez. Foundations of oscillator circuit design. Artech House Inc., Norwood (2007).
|
[67] |
B. Razavi. Design of analog CMOS integrated circuits. McGraw-Hill, New York (2000).
|
[68] |
C. Seok, O.J. Adelegan, A.Ö. Biliroğlu, F.Y. Yamaner, Ö. Oralkan. A wearable ultrasonic neurostimulator—part II: a 2D CMUT phased array system with a flip-chip bonded ASIC. IEEE Trans Biomed Circuits Syst, 15 (4) (2021), pp. 705-718.
|
[69] |
C.D. Herickhoff, R. van Schaijk. CMUT technology developments. Z Med Phys, 33 (3) (2023), pp. 256-266.
|
[70] |
Lee HJ, Park KK, Cristman P, Oralkan Ö, Kupnik M, Khuri-Yakub BT. The effect of parallelism of CMUT cells on phase noise for chem/bio sensor applications. In: Proceedings of 2008 IEEE Ultrasonics Symposium; 2008 Nov 2-5; Beijing, China. Piscataway: IEEE; 2008. p. 1951-4.
|
[71] |
Park KK, Lee HJ, Crisman P, Kupnik M, Oralkan Ö, Khuri-Yakub BT. Optimum design of circular CMUT membranes for high quality factor in air. In: Proceedings of 2008 IEEE Ultrasonics Symposium; 2008 Nov 2-5; Beijing, China. Piscataway: IEEE; 2008. p. 504-7.
|