[1] |
A. Dao, M.M. McDonald, P.B. Savage, D.G. Little, A. Schindeler. Preventing osteolytic lesions and osteomyelitis in multiple myeloma. J Bone Oncol, 37 ( 2022), Article 100460
|
[2] |
S.S. Makhani, D. Shively, G. Castro, P. Rodriguez de la Vega, N.C. Barengo. Association of insurance disparities and survival in adults with multiple myeloma: a non-concurrent cohort study. Leuk Res, 104 ( 2021), Article 106542
|
[3] |
E.V. Morris, C.M. Edwards. Bone marrow adiposity and multiple myeloma. Bone, 118 ( 2019), pp. 42-46
|
[4] |
Ghobrial IM, Detappe A, Anderson KC, Steensma DP. The bone-marrow niche in MDS and MGUS: implications for AML and MM. Nat Rev Clin Oncol 2018 ;15(4):219-33.
|
[5] |
K. Bommert, R.C. Bargou, T. Stühmer. Signalling and survival pathways in multiple myeloma. Eur J Cancer, 42 (11) ( 2006), pp. 1574-1580
|
[6] |
D.E. Joshua, C. Bryant, C. Dix, J. Gibson, J. Ho. Biology and therapy of multiple myeloma. Med J Aust, 210 (8) ( 2019), pp. 375-380
|
[7] |
J. Bladé, L. Rosiñol. Complications of multiple myeloma. Hematol Oncol Clin North Am, 21 (6) ( 2007), pp. 1231-1246
|
[8] |
O. Novosad, T. Rudiuk, L. Shevchuk, V. Kundina, A. Schmidt. Outcome of clinical experience of introducing a patient with secondary systemic AL-amyloidosis associated with multiple myeloma. Carcinogenesis, 44 (1) ( 2023), pp. 46-53
|
[9] |
M. Andrei, J.C. Wang. Cutaneous light chain amyloidosis with multiple myeloma: a concise review. Hematol Oncol Stem Cell Ther, 12 (2) ( 2019), pp. 71-81
|
[10] |
M. Swamydas, E.V. Murphy, J.J. Ignatz-Hoover, E. Malek, J.J. Driscoll.Deciphering mechanisms of immune escape to inform immunotherapeutic strategies in multiple myeloma. J Hematol Oncol, 15 (1) ( 2022), p. 17
|
[11] |
Y. Yang, Y. Li, H. Gu, M. Dong, Z. Cai.Emerging agents and regimens for multiple myeloma. J Hematol Oncol, 13 (1) ( 2020), p. 150
|
[12] |
M. Ri. Mechanism of action and determinants of sensitivity to the proteasome inhibitor bortezomib in multiple myeloma therapy. Rinsho Ketsueki, 57 (5) ( 2016), pp. 537-545
|
[13] |
W. Chen, Y. Yang, Y. Chen, F. Du, H. Zhan. Cost-effectiveness of bortezomib for multiple myeloma: a systematic review. Clinicoecon Outcomes Res, 8 ( 2016), pp. 137-151
|
[14] |
D. Chen, M. Frezza, S. Schmitt, J. Kanwar, Q.P. Dou. Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr Cancer Drug Targets, 11 (3) ( 2011), pp. 239-253
|
[15] |
J. Liu, R. Zhao, X. Jiang, Z. Li, B. Zhang. Progress on the application of bortezomib and bortezomib-based nanoformulations. Biomolecules, 12 (1) ( 2021), p. 51
|
[16] |
J. Qu, Y. Hou, Q. Chen, J. Chen, Y. Li, E. Zhang, et al.. RNA demethylase ALKBH 5 promotes tumorigenesis in multiple myeloma via TRAF1-mediated activation of NF-κB and MAPK signaling pathways. Oncogene, 41 (3) ( 2022), pp. 400-413
|
[17] |
R. Dou, J. Qian, W. Wu, Y. Zhang, Y. Yuan, M. Guo, et al.. Suppression of steroid 5α-reductase type I promotes cellular apoptosis and autophagy via PI3K/Akt/mTOR pathway in multiple myeloma. Cell Death Dis, 12 (2) ( 2021), p. 206
|
[18] |
D. Wu, W. Zhang, Y. Chen, H. Ma, M. Wang. Platycodin D inhibits proliferation, migration and induces chemosensitization through inactivation of the NF-κB and JAK2/STAT3 pathways in multiple myeloma cells. Clin Exp Pharmacol Physiol, 46 (12) ( 2019), pp. 1194-1200
|
[19] |
Z. Ye, J. Chen, Z. Xuan, W. Yang, J. Chen. Subcutaneous bortezomib might be standard of care for patients with multiple myeloma: a systematic review and meta-analysis. Drug Des Devel Ther, 13 ( 2019), pp. 1707-1716
|
[20] |
P.S. Sharp, M. Stylianou, L.M. Arellano, J.C. Neves, A.M. Gravagnuolo, A. Dodd, et al.. Graphene oxide nanoscale platform enhances the anti-cancer properties of bortezomib in glioblastoma models. Adv Healthc Mater, 12 (3) ( 2023), p. 2201968
|
[21] |
Z. Cao, P. Li, Y. Li, M. Zhang, M. Hao, W. Li, et al.. Encapsulation of nano-bortezomib in apoptotic stem cell-derived vesicles for the treatment of multiple myeloma. Small, 19 (40) ( 2023), Article 2301748
|
[22] |
R. Wang, X. Xu, D. Li, W. Zhang, X. Shi, H. Xu, et al.. Smart pH-responsive polyhydralazine/bortezomib nanoparticles for remodeling tumor microenvironment and enhancing chemotherapy. Biomaterials, 288 ( 2022), Article 121737
|
[23] |
J. Karges.Encapsulation of Ru (II) polypyridine complexes for tumor-targeted anticancer therapy. BME Front, 4 ( 2023), p. 0024
|
[24] |
H. Zhang, S. Dong, Z. Li, X. Feng, W. Xu, C.M.S. Tulinao, et al.. Biointer face engineering nanoplatforms for cancer-targeted drug delivery. Asian J Pharm Sci, 15 (4) ( 2020), pp. 397-415
|
[25] |
R.U. Khan, J. Shao, J.Y. Liao, L. Qian. pH-triggered cancer-targeting polymers: from extracellular accumulation to intracellular release. Nano Res, 16 (4) ( 2023), pp. 5155-5168
|
[26] |
A.K. Deshantri, A. Varela Moreira, V. Ecker, S.N. Mandhane, R.M. Schiffelers, M. Buchner, et al.. Nanomedicines for the treatment of hematological malignancies. J Control Release, 287 ( 2018), pp. 194-215
|
[27] |
X. Huang, H.M. Mahmudul, Z. Li, X. Deng, X. Su, Z. Xiao, et al.. Noble metal nanomaterials for the diagnosis and treatment of hematological malignancies. Front Biosci, 27 (2) ( 2022), p. 40
|
[28] |
R.H. Fang, W. Gao, L. Zhang. Targeting drugs to tumours using cell membrane-coated nanoparticles. Nat Rev Clin Oncol, 20 (1) ( 2023), pp. 33-48
|
[29] |
P. Gong, Y. Wang, P. Zhang, Z. Yang, W. Deng, Z. Sun, et al.. Immunocyte membrane-coated nanoparticles for cancer immunotherapy. Cancers, 13 (1) ( 2020), p. 77
|
[30] |
X. Zhao, C. Yan.Research progress of cell membrane biomimetic nanoparticles for tumor therapy. Nanoscale Res Lett, 17 (1) ( 2022), p. 36
|
[31] |
G. Caocci, M. Greco, G. La Nasa.Bone marrow homing and engraftment defects of human hematopoietic stem and progenitor cells. Mediterr J Hematol Infect Dis, 9 (1) ( 2017), p. 2017032
|
[32] |
Y. Qu, B. Chu, X. Wei, Y. Chen, Y. Yang, D. Hu, et al.. Cancer-cell-biomimetic nanoparticles for targeted therapy of multiple myeloma based on bone marrow homing. Adv Mater, 34 (46) ( 2022), p. 2107883
|
[33] |
Z. Mbese, B.A. Aderibigbe.Bisphosphonate-based conjugates and derivatives as potential therapeutic agents in osteoporosis, bone cancer and metastatic bone cancer. Int J Mol Sci, 22 (13) ( 2021), p. 6869
|
[34] |
C. Jing, B. Li, H. Tan, C. Zhang, H. Liang, H. Na, et al.. Alendronate-decorated nanoparticles as bone-targeted alendronate carriers for potential osteoporosis treatment. ACS Appl Bio Mater, 4 (6) ( 2021), pp. 4907-4916
|
[35] |
J. Klara, J. Lewandowska-Łańcucka. How efficient are alendronate-nano/biomaterial combinations for anti-osteoporosis therapy? An evidence-based review of the literature. Int J Nanomedicine, 17 ( 2022), pp. 6065-6094
|
[36] |
Y. Xi, W. Wang, L. Ma, N. Xu, C. Shi, G. Xu, et al.. Alendronate modified mPEG-PLGA nano-micelle drug delivery system loaded with astragaloside has anti-osteoporotic effect in rats. Drug Deliv, 29 (1) ( 2022), pp. 2386-2402
|
[37] |
G. Laconde, M. Amblard, J. Martinez. Synthesis of α-amino acid N-carboxyanhydrides. Org Lett, 23 (16) ( 2021), pp. 6412-6646
|
[38] |
S. Kotha, M. Meshram, N.R. Panguluri, V.R. Shah, S. Todeti, M.E. Shirbhate. Synthetic approaches to star-shaped molecules with 1,3,5-trisubstituted aromatic cores. Chem Asian J, 14 (9) ( 2019), pp. 1356-1403
|
[39] |
C.G. Alves, D. de Melo-Diogo, R. Lima-Sousa, I.J. Correia. IR780 loaded sulfobetaine methacrylate-functionalized albumin nanoparticles aimed for enhanced breast cancer phototherapy. Int J Pharm, 582 ( 2020), Article 119346
|
[40] |
J. Chen, Z. Jiang, Y.S. Zhang, J. Ding, X. Chen. Smart transformable nanoparticles for enhanced tumor theranostics. Appl Phys Rev, 8 (4) ( 2021), Article 041321
|
[41] |
W.C.W. Chan.Principles of nanoparticle delivery to solid tumors. BME Front, 4 ( 2023), p. 0016
|
[42] |
H.M. Diab, A.M. Abdelmoniem, M.R. Shaaban, I.A. Abdelhamid, A.H.M. Elwahy. An overview on synthetic strategies for the construction of star-shaped molecules. RSC Adv, 9 (29) ( 2019), pp. 16606-16682
|
[43] |
Y. Ma, X. Li, L. Cai, J. Li. pH-Sensitive ε-polylysine/polyaspartic acid/zein nanofiber membranes for the targeted release of polyphenols. Food Funct, 13 (12) ( 2022), pp. 6792-6801
|
[44] |
S. Luanpitpong, M. Janan, J. Yosudjai, J. Poohadsuan, P. Chanvorachote, S. Issaragrisil.Bcl-2 family members Bcl-xL and bax cooperatively contribute to bortezomib resistance in mantle cell lymphoma. Int J Mol Sci, 23 (22) ( 2022), p. 14474
|
[45] |
X. Xu, Y. Lin, X. Zeng, C. Yang, S. Duan, L. Ding, et al.. PARP 1 might substitute HSF1 to reactivate latent HIV-1 by binding to heat shock element. Cells, 11 (15) ( 2022), p. 2331
|
[46] |
P. Pérez-Galán, G. Roué, N. Villamor, E. Montserrat, E. Campo, D. Colomer.The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and Noxa activation independent of p53 status. Blood, 107 (1) ( 2006), pp. 257-264
|
[47] |
Y. Zheng, Y. Han, Q. Sun, Z. Li. Harnessing anti-tumor and tumor-tropism functions of macrophages via nanotechnology for tumor immunotherapy. Exploration, 2 (3) ( 2022), Article 20210166
|
[48] |
F. Paterno, M. Shiller, G. Tillery, J.G. O'Leary, B. Susskind, J. Trotter, et al.. Bortezomib for acute antibody-mediated rejection in liver transplantation. Am J Transplant, 12 (9) ( 2012), pp. 2526-2531
|
[49] |
I.V. Zelepukin, A.A. Popov, V.O. Shipunova, G.V. Tikhonowski, A.B. Mirkasymov, E.A. Popova-Kuznetsova, et al.. Laser-synthesized TiN nanoparticles for biomedical applications: evaluation of safety, biodistribution and pharmacokinetics. Mater Sci Eng C Mater Biol Appl, 120 ( 2021), Article 111717
|
[50] |
X. You, L. Wang, J. Zhang, T. Tong, C. Dai, C. Chen, et al.. Effects of polymer molecular weight on in vitro and in vivo performance of nanoparticle drug carriers for lymphoma therapy. Chin Chem Lett, 34 (4) ( 2023), Article 107720
|
[51] |
D.E. Joshua, C. Bryant, C. Dix, J. Gibson, J. Ho. Biology and therapy of multiple myeloma. Med J Aust, 210 (8) ( 2019), pp. 375-380
|
[52] |
A.G. Ormond Filho, B.C. Carneiro, D. Pastore, I.P. Silva, S.R. Yamashita, F.D. Consolo, et al.. Whole-body imaging of multiple myeloma: diagnostic criteria. Radiographics, 39 (4) ( 2019), pp. 1077-1097
|
[53] |
R. Chakraborty, N.S. Majhail. Treatment and disease-related complications in multiple myeloma: implications for survivorship. Am J Hematol, 95 (6) ( 2020), pp. 672-690
|