增强多发性骨髓瘤的精准治疗

Ruogu Qi, Shanshan Wang, Jiayi Yu, Tianming Lu, Zhiqiang Bi, Weibo Liu, Yuanyuan Guo, Yong Bian, Jianliang Shen, Xuesong Zhang, Wenhao Hu

工程(英文) ›› 2024, Vol. 36 ›› Issue (5) : 178-192.

PDF(6545 KB)
PDF(6545 KB)
工程(英文) ›› 2024, Vol. 36 ›› Issue (5) : 178-192. DOI: 10.1016/j.eng.2024.01.001
研究论文
Article

增强多发性骨髓瘤的精准治疗

作者信息 +

Enhanced Precision Therapy of Multiple Myeloma Through Engineered Biomimetic Nanoparticles with Dual Targeting

Author information +
History +

摘要

多发性骨髓瘤(MM)是第二大最常见的血液恶性肿瘤。目前,多发性骨髓瘤的治疗策略受到全身毒性大和治疗效果不佳等的阻碍。本研究通过开发一种强效的MM靶向化疗纳米粒子T-PB@M来克服这些局限性,该策略巧妙利用阿伦磷酸盐对骨基质中羟基磷灰石的高亲和力,以及对骨髓瘤细胞膜的同源靶向作用,实现了对肿瘤细胞的精准打击。此外,该纳米粒子能够在低pH环境下智能触发药物释放,实现药物的按需释放,从而提高治疗效果并减少副作用。T-PB@M还能够通过激活PARP1-Caspase3-Bcl2通路,在MM细胞中有效诱导活性氧的产生,进而触发细胞凋亡。值得一提的是,T-PB@M能优先靶向涉及骨骼的部位,有效避免了全身毒性副作用的发生,显著延长了MM原位小鼠的生存期,为临床上MM的精准治疗提供了一个充满前景且极具潜力的平台。

Abstract

Multiple myeloma (MM) is the second most prevalent hematological malignancy. Current MM treatment strategies are hampered by systemic toxicity and suboptimal therapeutic efficacy. This study addressed these limitations through the development of a potent MM-targeting chemotherapy strategy, which capitalized on the high binding affinity of alendronate for hydroxyapatite in the bone matrix and the homologous targeting of myeloma cell membranes, termed T-PB@M. The results from our investigations highlight the considerable bone affinity of T-PB@M, both in vitro and in vivo. Additionally, this material demonstrated a capability for drug release triggered by low pH conditions. Moreover, T-PB@M induced the generation of reactive oxygen species and triggered cell apoptosis through the poly(ADP-ribose) polymerase 1 (PARP1)-Caspase-3-B-cell lymphoma-2 (Bcl-2) pathway in MM cells. Notably, T-PB@M preferentially targeted bone-involved sites, thereby circumventing systemic toxic side effects and leading to prolonged survival of MM orthotopic mice. Therefore, this designed target-MM nanocarrier presents a promising and potentially effective platform for the precise treatment of MM.

关键词

多发性骨髓瘤 / 硼替佐米 / 药物递送 / 双重靶向 / 可控释放

Keywords

Multiple myeloma / Bortezomib / Drug delivery / Dual targeting / Controlled release

引用本文

导出引用
Ruogu Qi, Shanshan Wang, Jiayi Yu. 具有双重靶向功能的工程仿生纳米粒子增强多发性骨髓瘤的精准治疗. Engineering. 2024, 36(5): 178-192 https://doi.org/10.1016/j.eng.2024.01.001

参考文献

[1]
A. Dao, M.M. McDonald, P.B. Savage, D.G. Little, A. Schindeler. Preventing osteolytic lesions and osteomyelitis in multiple myeloma. J Bone Oncol, 37 ( 2022), Article 100460
[2]
S.S. Makhani, D. Shively, G. Castro, P. Rodriguez de la Vega, N.C. Barengo. Association of insurance disparities and survival in adults with multiple myeloma: a non-concurrent cohort study. Leuk Res, 104 ( 2021), Article 106542
[3]
E.V. Morris, C.M. Edwards. Bone marrow adiposity and multiple myeloma. Bone, 118 ( 2019), pp. 42-46
[4]
Ghobrial IM, Detappe A, Anderson KC, Steensma DP. The bone-marrow niche in MDS and MGUS: implications for AML and MM. Nat Rev Clin Oncol 2018 ;15(4):219-33.
[5]
K. Bommert, R.C. Bargou, T. Stühmer. Signalling and survival pathways in multiple myeloma. Eur J Cancer, 42 (11) ( 2006), pp. 1574-1580
[6]
D.E. Joshua, C. Bryant, C. Dix, J. Gibson, J. Ho. Biology and therapy of multiple myeloma. Med J Aust, 210 (8) ( 2019), pp. 375-380
[7]
J. Bladé, L. Rosiñol. Complications of multiple myeloma. Hematol Oncol Clin North Am, 21 (6) ( 2007), pp. 1231-1246
[8]
O. Novosad, T. Rudiuk, L. Shevchuk, V. Kundina, A. Schmidt. Outcome of clinical experience of introducing a patient with secondary systemic AL-amyloidosis associated with multiple myeloma. Carcinogenesis, 44 (1) ( 2023), pp. 46-53
[9]
M. Andrei, J.C. Wang. Cutaneous light chain amyloidosis with multiple myeloma: a concise review. Hematol Oncol Stem Cell Ther, 12 (2) ( 2019), pp. 71-81
[10]
M. Swamydas, E.V. Murphy, J.J. Ignatz-Hoover, E. Malek, J.J. Driscoll.Deciphering mechanisms of immune escape to inform immunotherapeutic strategies in multiple myeloma. J Hematol Oncol, 15 (1) ( 2022), p. 17
[11]
Y. Yang, Y. Li, H. Gu, M. Dong, Z. Cai.Emerging agents and regimens for multiple myeloma. J Hematol Oncol, 13 (1) ( 2020), p. 150
[12]
M. Ri. Mechanism of action and determinants of sensitivity to the proteasome inhibitor bortezomib in multiple myeloma therapy. Rinsho Ketsueki, 57 (5) ( 2016), pp. 537-545
[13]
W. Chen, Y. Yang, Y. Chen, F. Du, H. Zhan. Cost-effectiveness of bortezomib for multiple myeloma: a systematic review. Clinicoecon Outcomes Res, 8 ( 2016), pp. 137-151
[14]
D. Chen, M. Frezza, S. Schmitt, J. Kanwar, Q.P. Dou. Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr Cancer Drug Targets, 11 (3) ( 2011), pp. 239-253
[15]
J. Liu, R. Zhao, X. Jiang, Z. Li, B. Zhang. Progress on the application of bortezomib and bortezomib-based nanoformulations. Biomolecules, 12 (1) ( 2021), p. 51
[16]
J. Qu, Y. Hou, Q. Chen, J. Chen, Y. Li, E. Zhang, et al.. RNA demethylase ALKBH 5 promotes tumorigenesis in multiple myeloma via TRAF1-mediated activation of NF-κB and MAPK signaling pathways. Oncogene, 41 (3) ( 2022), pp. 400-413
[17]
R. Dou, J. Qian, W. Wu, Y. Zhang, Y. Yuan, M. Guo, et al.. Suppression of steroid 5α-reductase type I promotes cellular apoptosis and autophagy via PI3K/Akt/mTOR pathway in multiple myeloma. Cell Death Dis, 12 (2) ( 2021), p. 206
[18]
D. Wu, W. Zhang, Y. Chen, H. Ma, M. Wang. Platycodin D inhibits proliferation, migration and induces chemosensitization through inactivation of the NF-κB and JAK2/STAT3 pathways in multiple myeloma cells. Clin Exp Pharmacol Physiol, 46 (12) ( 2019), pp. 1194-1200
[19]
Z. Ye, J. Chen, Z. Xuan, W. Yang, J. Chen. Subcutaneous bortezomib might be standard of care for patients with multiple myeloma: a systematic review and meta-analysis. Drug Des Devel Ther, 13 ( 2019), pp. 1707-1716
[20]
P.S. Sharp, M. Stylianou, L.M. Arellano, J.C. Neves, A.M. Gravagnuolo, A. Dodd, et al.. Graphene oxide nanoscale platform enhances the anti-cancer properties of bortezomib in glioblastoma models. Adv Healthc Mater, 12 (3) ( 2023), p. 2201968
[21]
Z. Cao, P. Li, Y. Li, M. Zhang, M. Hao, W. Li, et al.. Encapsulation of nano-bortezomib in apoptotic stem cell-derived vesicles for the treatment of multiple myeloma. Small, 19 (40) ( 2023), Article 2301748
[22]
R. Wang, X. Xu, D. Li, W. Zhang, X. Shi, H. Xu, et al.. Smart pH-responsive polyhydralazine/bortezomib nanoparticles for remodeling tumor microenvironment and enhancing chemotherapy. Biomaterials, 288 ( 2022), Article 121737
[23]
J. Karges.Encapsulation of Ru (II) polypyridine complexes for tumor-targeted anticancer therapy. BME Front, 4 ( 2023), p. 0024
[24]
H. Zhang, S. Dong, Z. Li, X. Feng, W. Xu, C.M.S. Tulinao, et al.. Biointer face engineering nanoplatforms for cancer-targeted drug delivery. Asian J Pharm Sci, 15 (4) ( 2020), pp. 397-415
[25]
R.U. Khan, J. Shao, J.Y. Liao, L. Qian. pH-triggered cancer-targeting polymers: from extracellular accumulation to intracellular release. Nano Res, 16 (4) ( 2023), pp. 5155-5168
[26]
A.K. Deshantri, A. Varela Moreira, V. Ecker, S.N. Mandhane, R.M. Schiffelers, M. Buchner, et al.. Nanomedicines for the treatment of hematological malignancies. J Control Release, 287 ( 2018), pp. 194-215
[27]
X. Huang, H.M. Mahmudul, Z. Li, X. Deng, X. Su, Z. Xiao, et al.. Noble metal nanomaterials for the diagnosis and treatment of hematological malignancies. Front Biosci, 27 (2) ( 2022), p. 40
[28]
R.H. Fang, W. Gao, L. Zhang. Targeting drugs to tumours using cell membrane-coated nanoparticles. Nat Rev Clin Oncol, 20 (1) ( 2023), pp. 33-48
[29]
P. Gong, Y. Wang, P. Zhang, Z. Yang, W. Deng, Z. Sun, et al.. Immunocyte membrane-coated nanoparticles for cancer immunotherapy. Cancers, 13 (1) ( 2020), p. 77
[30]
X. Zhao, C. Yan.Research progress of cell membrane biomimetic nanoparticles for tumor therapy. Nanoscale Res Lett, 17 (1) ( 2022), p. 36
[31]
G. Caocci, M. Greco, G. La Nasa.Bone marrow homing and engraftment defects of human hematopoietic stem and progenitor cells. Mediterr J Hematol Infect Dis, 9 (1) ( 2017), p. 2017032
[32]
Y. Qu, B. Chu, X. Wei, Y. Chen, Y. Yang, D. Hu, et al.. Cancer-cell-biomimetic nanoparticles for targeted therapy of multiple myeloma based on bone marrow homing. Adv Mater, 34 (46) ( 2022), p. 2107883
[33]
Z. Mbese, B.A. Aderibigbe.Bisphosphonate-based conjugates and derivatives as potential therapeutic agents in osteoporosis, bone cancer and metastatic bone cancer. Int J Mol Sci, 22 (13) ( 2021), p. 6869
[34]
C. Jing, B. Li, H. Tan, C. Zhang, H. Liang, H. Na, et al.. Alendronate-decorated nanoparticles as bone-targeted alendronate carriers for potential osteoporosis treatment. ACS Appl Bio Mater, 4 (6) ( 2021), pp. 4907-4916
[35]
J. Klara, J. Lewandowska-Łańcucka. How efficient are alendronate-nano/biomaterial combinations for anti-osteoporosis therapy? An evidence-based review of the literature. Int J Nanomedicine, 17 ( 2022), pp. 6065-6094
[36]
Y. Xi, W. Wang, L. Ma, N. Xu, C. Shi, G. Xu, et al.. Alendronate modified mPEG-PLGA nano-micelle drug delivery system loaded with astragaloside has anti-osteoporotic effect in rats. Drug Deliv, 29 (1) ( 2022), pp. 2386-2402
[37]
G. Laconde, M. Amblard, J. Martinez. Synthesis of α-amino acid N-carboxyanhydrides. Org Lett, 23 (16) ( 2021), pp. 6412-6646
[38]
S. Kotha, M. Meshram, N.R. Panguluri, V.R. Shah, S. Todeti, M.E. Shirbhate. Synthetic approaches to star-shaped molecules with 1,3,5-trisubstituted aromatic cores. Chem Asian J, 14 (9) ( 2019), pp. 1356-1403
[39]
C.G. Alves, D. de Melo-Diogo, R. Lima-Sousa, I.J. Correia. IR780 loaded sulfobetaine methacrylate-functionalized albumin nanoparticles aimed for enhanced breast cancer phototherapy. Int J Pharm, 582 ( 2020), Article 119346
[40]
J. Chen, Z. Jiang, Y.S. Zhang, J. Ding, X. Chen. Smart transformable nanoparticles for enhanced tumor theranostics. Appl Phys Rev, 8 (4) ( 2021), Article 041321
[41]
W.C.W. Chan.Principles of nanoparticle delivery to solid tumors. BME Front, 4 ( 2023), p. 0016
[42]
H.M. Diab, A.M. Abdelmoniem, M.R. Shaaban, I.A. Abdelhamid, A.H.M. Elwahy. An overview on synthetic strategies for the construction of star-shaped molecules. RSC Adv, 9 (29) ( 2019), pp. 16606-16682
[43]
Y. Ma, X. Li, L. Cai, J. Li. pH-Sensitive ε-polylysine/polyaspartic acid/zein nanofiber membranes for the targeted release of polyphenols. Food Funct, 13 (12) ( 2022), pp. 6792-6801
[44]
S. Luanpitpong, M. Janan, J. Yosudjai, J. Poohadsuan, P. Chanvorachote, S. Issaragrisil.Bcl-2 family members Bcl-xL and bax cooperatively contribute to bortezomib resistance in mantle cell lymphoma. Int J Mol Sci, 23 (22) ( 2022), p. 14474
[45]
X. Xu, Y. Lin, X. Zeng, C. Yang, S. Duan, L. Ding, et al.. PARP 1 might substitute HSF1 to reactivate latent HIV-1 by binding to heat shock element. Cells, 11 (15) ( 2022), p. 2331
[46]
P. Pérez-Galán, G. Roué, N. Villamor, E. Montserrat, E. Campo, D. Colomer.The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and Noxa activation independent of p53 status. Blood, 107 (1) ( 2006), pp. 257-264
[47]
Y. Zheng, Y. Han, Q. Sun, Z. Li. Harnessing anti-tumor and tumor-tropism functions of macrophages via nanotechnology for tumor immunotherapy. Exploration, 2 (3) ( 2022), Article 20210166
[48]
F. Paterno, M. Shiller, G. Tillery, J.G. O'Leary, B. Susskind, J. Trotter, et al.. Bortezomib for acute antibody-mediated rejection in liver transplantation. Am J Transplant, 12 (9) ( 2012), pp. 2526-2531
[49]
I.V. Zelepukin, A.A. Popov, V.O. Shipunova, G.V. Tikhonowski, A.B. Mirkasymov, E.A. Popova-Kuznetsova, et al.. Laser-synthesized TiN nanoparticles for biomedical applications: evaluation of safety, biodistribution and pharmacokinetics. Mater Sci Eng C Mater Biol Appl, 120 ( 2021), Article 111717
[50]
X. You, L. Wang, J. Zhang, T. Tong, C. Dai, C. Chen, et al.. Effects of polymer molecular weight on in vitro and in vivo performance of nanoparticle drug carriers for lymphoma therapy. Chin Chem Lett, 34 (4) ( 2023), Article 107720
[51]
D.E. Joshua, C. Bryant, C. Dix, J. Gibson, J. Ho. Biology and therapy of multiple myeloma. Med J Aust, 210 (8) ( 2019), pp. 375-380
[52]
A.G. Ormond Filho, B.C. Carneiro, D. Pastore, I.P. Silva, S.R. Yamashita, F.D. Consolo, et al.. Whole-body imaging of multiple myeloma: diagnostic criteria. Radiographics, 39 (4) ( 2019), pp. 1077-1097
[53]
R. Chakraborty, N.S. Majhail. Treatment and disease-related complications in multiple myeloma: implications for survivorship. Am J Hematol, 95 (6) ( 2020), pp. 672-690
PDF(6545 KB)

Accesses

Citation

Detail

段落导航
相关文章

/