多聚免疫球蛋白受体通过STAT3通路调节白细胞介素-17信号通路并预防自身免疫性肝炎

Ting Li, Tongtong Pan, Nannan Zheng, Xiong Ma, Xiaodong Wang, Fang Yan, Huimian Jiang, Yuxin Wang, Hongwei Lin, Jing Lin, Huadong Zhang, Jia Huang, Lingming Kong, Anmin Huang, Qingxiu Liu, Yongping Chen, Dazhi Chen

工程(英文) ›› 2024, Vol. 36 ›› Issue (5) : 209-222.

PDF(6052 KB)
PDF(6052 KB)
工程(英文) ›› 2024, Vol. 36 ›› Issue (5) : 209-222. DOI: 10.1016/j.eng.2024.01.006
研究论文
Article

多聚免疫球蛋白受体通过STAT3通路调节白细胞介素-17信号通路并预防自身免疫性肝炎

作者信息 +

STAT3-Dependent Effects of Polymeric Immunoglobulin Receptor in Regulating Interleukin-17 Signaling and Preventing Autoimmune Hepatitis

Author information +
History +

Abstract

One-third of patients with autoimmune hepatitis (AIH) have cirrhosis at the time of diagnosis. The relevance of these variables, although unknown, is believed to be critical in AIH because of suspected interactions between the gut microbiome and genetic factors. Dysbiosis of the gut flora and elevated polymeric immunoglobulin receptor (pIgR) levels have been observed in both patients and mouse models. Moreover, there is a direct relationship between pIgR expression and transaminase levels in patients with AIH. In this study, we aimed to explore how pIgR influences the secretion of regenerating islet-derived 3 beta (Reg3b) and the flora composition in AIH using in vivo experiments involving patients with AIH and a concanavalin A-induced mouse model of AIH. Reg3b expression was reduced in pIgR gene (Pigr)-knockout mice compared to that in wild-type mice, leading to increased microbiota disruption. Conversely, exogenous pIgR supplementation increased Reg3b expression and maintained microbiota homeostasis. RNA sequencing revealed the participation of the interleukin (IL)-17 signaling pathway in the regulation of Reg3b through pIgR. Furthermore, the introduction of external pIgR could not restore the imbalance in gut microbiota in AIH, and the decrease in Reg3b expression was not apparent following the inhibition of signal transducer and activator of transcription 3 (STAT3). In this study, pIgR facilitated the upregulation of Reg3b via the STAT3 pathway, which plays a crucial role in preserving the balance of the intestinal microbiota in AIH. Through this research, we discovered new molecular targets that can be used for the diagnosis and treatment of AIH.

关键词

/ /

Keywords

Autoimmune hepatitis / Polymeric immunoglobulin receptor / Regenerating islet-derived 3 beta / Intestinal microbiota / Signal transducer and activator of transcription 3

引用本文

导出引用
Ting Li, Tongtong Pan, Nannan Zheng. 多聚免疫球蛋白受体在调节白细胞介素-17信号传导和预防自身免疫性肝炎中的STAT3依赖性作用. Engineering. 2024, 36(5): 209-222 https://doi.org/10.1016/j.eng.2024.01.006

参考文献

[1]
R. J.A.L.M. Snijders, D.N. Assis, Y.H. Oo, M. Sebode, R. Taubert, J. Willemse, et al..Research gaps and opportunities in autoimmune hepatitis—results of the International Autoimmune Hepatitis Group Research Workshop 2022. Liver Int, 43 (7) ( 2023), pp. 1375-1384
[2]
L. Wang, Z.M. Cao, L.L. Zhang, J.M. Li, W.L. Lv. The role of gut microbiota in some liver diseases: from an immunological perspective. Front Immunol, 13 ( 2022), Article 923599
[3]
Q. Liu, W. He, R. Tang, X. Ma. Intestinal homeostasis in autoimmune liver diseases. Chin Med J, 135 (14) ( 2022), pp. 1642-1652
[4]
N. Kumar, C.P. Arthur, C. Ciferri, M.L. Matsumoto. Structure of the secretory immunoglobulin A core. Science, 367 (6481) ( 2020), pp. 1008-1014
[5]
R. Goguyer-Deschaumes, L. Waeckel, M. Killian, N. Rochereau, S. Paul. Metabolites and secretory immunoglobulins: messengers and effectors of the host-microbiota intestinal equilibrium. Trends Immunol, 43 (1) ( 2022), pp. 63-77
[6]
K.R. Simpfendorfer, N. Wang, D.L. Tull, D.P. De Souza, A. Nahid, A. Mu, et al.. Mus musculus deficient for secretory antibodies show delayed growth with an altered urinary metabolome. Mol Med, 25 (1) ( 2019), p. 12
[7]
H. Lin, J. Lin, T. Pan, T. Li, H. Jiang, Y. Fang, et al.. Polymeric immunoglobulin receptor deficiency exacerbates autoimmune hepatitis by inducing intestinal dysbiosis and barrier dysfunction. Cell Death Dis, 14 (1) ( 2023), p. 68
[8]
S. Bluemel, L. Wang, C. Martino, S. Lee, Y. Wang, B. Williams, et al.. The role of intestinal C-type regenerating islet derived-3 lectins for nonalcoholic steatohepatitis. Hepatol Commun, 2 (4) ( 2018), pp. 393-406
[9]
D. Bajic, A. Niemann, A.K. Hillmer, R. Mejias-Luque, S. Bluemel, M. Docampo, et al.. Gut microbiota-derived propionate regulates the expression of Reg 3 mucosal lectins and ameliorates experimental colitis in mice. J Crohns Colitis, 14 (10) ( 2020), pp. 1462-1472
[10]
T. Miki, O. Holst, W.D. Hardt. The bactericidal activity of the C-type lectin RegIIIβ against Gram-negative bacteria involves binding to lipid A. J Biol Chem, 287 (41) ( 2012), pp. 34844-34855
[11]
D. Standing, E. Feess, S. Kodiyalam, M. Kuehn, Z. Hamel, J. Johnson, et al.. The role of STATs in ovarian cancer: exploring their potential for therapy. Cancers, 15 (9) ( 2023), p. 2485
[12]
R. Yue, X. Wei, J. Zhao, Z. Zhou, W. Zhong. Essential role of IFN-γ in regulating gut antimicrobial peptides and microbiota to protect against alcohol-induced bacterial translocation and hepatic inflammation in mice. Front Physiol, 11 ( 2020), Article 629141
[13]
M. Jin, H. Zhang, M. Wu, Z. Wang, X. Chen, M. Guo, et al.. Colonic interleukin-22 protects intestinal mucosal barrier and microbiota abundance in severe acute pancreatitis. FASEB J, 36 (3) ( 2022), p. e22174
[14]
G. Wang, A. Tanaka, H. Zhao, J. Jia, X. Ma, K. Harada, et al.. The Asian Pacific Association for the study of the liver clinical practice guidance: the diagnosis and management of patients with autoimmune hepatitis. Hepatol Int, 15 (2) ( 2021), pp. 223-257
[15]
J. Li, F. Zhao, Y. Wang, J. Chen, J. Tao, G. Tian, et al.. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome, 5 (1) ( 2017), p. 14
[16]
W. He, M.L. Wang, H.Q. Jiang, C.M. Steppan, M.E. Shin, M.C. Thurnheer, et al.. Bacterial colonization leads to the colonic secretion of RELMbeta/FIZZ2, a novel goblet cell-specific protein. Gastroenterology, 125 (5) ( 2003), pp. 1388-1397
[17]
W. Walters, E.R. Hyde, D. Berg-Lyons, G. Ackermann, G. Humphrey, A. Parada, et al.. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. MSystems, 1 (1) ( 2016), pp. e00009-15
[18]
N.M. Elsherbiny, M. Rammadan, E.A. Hassan, M.E. Ali, A.S.A. El-Rehim, W.A. Abbas, et al.. Autoimmune hepatitis: shifts in gut microbiota and metabolic pathways among Egyptian patients. Microorganisms, 8 (7) ( 2020), p. 1011
[19]
Y. Wei, Y. Li, L. Yan, C. Sun, Q. Miao, Q. Wang, et al.. Alterations of gut microbiome in autoimmune hepatitis. Gut, 69 (3) ( 2020), pp. 569-577
[20]
J. Lou, Y. Jiang, B. Rao, A. Li, S. Ding, H. Yan, et al.. Fecal microbiomes distinguish patients with autoimmune hepatitis from healthy individuals. Front Cell Infect Microbiol, 10 ( 2020), p. 342
[21]
S. Matsumura, J. van de Water, P. Leung, J.A. Odin, K. Yamamoto, G.J. Gores, et al.. Caspase induction by IgA antimitochondrial antibody: IgA-mediated biliary injury in primary biliary cirrhosis. Hepatology, 39 (5) ( 2004), pp. 1415-1422
[22]
I.N. Norderhaug, F.E. Johansen, H. Schjerven, P. Brandtzaeg. Regulation of the formation and external transport of secretory immunoglobulins. Crit Rev Immunol, 19 (5-6) ( 1999), pp. 481-508
[23]
T. Hendrikx, S. Lang, D. Rajcic, Y. Wang, S. McArdle, K. Kim, et al.. Hepatic pIgR-mediated secretion of IgA limits bacterial translocation and prevents ethanol-induced liver disease in mice. Gut, 72 (10) ( 2023), pp. 1959-1970
[24]
C. Chelakkot, J. Ghim, S.H. Ryu. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med, 50 (8) ( 2018), pp. 1-9
[25]
Y. Mikami, E.V. Dobschütz, O. Sommer, U. Wellner, M. Unno, U. Hopt, et al.. Matrix metalloproteinase-9 derived from polymorphonuclear neutrophils increases gut barrier dysfunction and bacterial translocation in rat severe acute pancreatitis. Surgery, 145 (2) ( 2009), pp. 147-156
[26]
L.E.A. Damasceno, D.S. Prado, F.P. Veras, M.M. Fonseca, J.E. Toller-Kawahisa, M.H. Rosa, et al.. PKM2 promotes Th 17 cell differentiation and autoimmune inflammation by fine-tuning STAT3 activation. J Exp Med, 217 (10) ( 2020), p. e20190613
[27]
J. Huang, H.Y. Lee, X. Zhao, J. Han, Y. Su, Q. Sun, et al.. Interleukin-17D regulates group 3 innate lymphoid cell function through its receptor CD93. Immunity, 54 (4) ( 2021), pp. 673-686
[28]
T.Y. Chan, C.L. Yen, Y.F. Huang, P.C. Lo, P.A. Nigrovic, C.Y. Cheng, et al.. Increased ILC3s associated with higher levels of IL-1β aggravates inflammatory arthritis in mice lacking phagocytic NADPH oxidase. Eur J Immunol, 49 (11) ( 2019), pp. 2063-2073
[29]
X. Xie, M. Zhao, S. Huang, P. Li, P. Chen, X. Luo, et al.. Luteolin alleviates ulcerative colitis by restoring the balance of NCR-ILC3/NCR+ILC 3 to repairing impaired intestinal barrier. Int Immunopharmacol, 112 ( 2022), Article 109251
[30]
Z. Zheng, B. Wang. The gut-liver axis in health and disease: the role of gut microbiota-derived signals in liver injury and regeneration. Front Immunol, 12 ( 2021), Article 775526
[31]
A. Ciesielska, M. Matyjek, K. Kwiatkowska. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci, 78 (4) ( 2021), pp. 1233-1261
[32]
S.N. Chen, Y. Tan, X.C. Xiao, Q. Li, Q. Wu, Y.Y. Peng, et al.. Deletion of TLR4 attenuates lipopolysaccharide-induced acute liver injury by inhibiting inflammation and apoptosis. Acta Pharmacol Sin, 42 (10) ( 2021), pp. 1610-1619
[33]
T. Vatanen, A.D. Kostic, E. d'Hennezel, H. Siljander, E.A. Franzosa, M. Yassour, et al.. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell, 165 (4) ( 2016), pp. 842-853
[34]
L. Muratori, A.W. Lohse, M. Lenzi. Diagnosis and management of autoimmune hepatitis. BMJ, 380 ( 2023), p. e070201
[35]
A. Cardon, S. Conchon, A. Renand. Mechanisms of autoimmune hepatitis. Curr Opin Gastroenterol, 37 (2) ( 2021), pp. 79-85
[36]
Z. Cheng, L. Yang, H. Chu. The gut microbiota: a novel player in autoimmune hepatitis. Front Cell Infect Microbiol, 12 ( 2022), Article 947382
[37]
F. Goeser, P. Münch, T.R. Lesker, P.L. Lutz, B. Krämer, D.J. Kaczmarek, et al.. Neither black nor white: do altered intestinal microbiota reflect chronic liver disease severity?. Gut, 70 (2) ( 2021), pp. 438-440
[38]
A.N. Jacobson, B.P. Choudhury, M.A. Fischbach. The biosynthesis of lipooligosaccharide from Bacteroides thetaiotaomicron. MBio, 9 (2) ( 2018), pp. e02289-e10317
[39]
B. Wang, Q. Kong, X. Li, J. Zhao, H. Zhang, W. Chen, et al.. A high-fat diet increases gut microbiota biodiversity and energy expenditure due to nutrient difference. Nutrients, 12 (10) ( 2020), p. 3197
[40]
K. Machiels, M. Joossens, S. Jo, V. De Preter, I. Arijs, V. Eeckhaut, et al.. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut, 63 (8) ( 2014), pp. 1275-1283
[41]
W.M. De Vos, H. Tilg, M. Van Hul, P.D. Cani. Gut microbiome and health: mechanistic insights. Gut, 71 (5) ( 2022), pp. 1020-1032
[42]
B. Zeng, H. Wang, J. Luo, M. Xie, Z. Zhao, X. Chen, et al.. Porcine milk-derived small extracellular vesicles promote intestinal immunoglobulin production through pIgR. Animals, 11 (6) ( 2021), p. 1522
[43]
M.L. Matsumoto. Molecular mechanisms of multimeric assembly of IgM and IgA. Annu Rev Immunol, 40 ( 2022), pp. 221-247
[44]
H. Turula, C.E. Wobus. The role of the polymeric immunoglobulin receptor and secretory immunoglobulins during mucosal infection and immunity. Viruses, 10 (5) ( 2018), p. 237
[45]
D.H. Reikvam, M. Derrien, R. Islam, A. Erofeev, V. Grcic, A. Sandvik, et al.. Epithelial-microbial crosstalk in polymeric Ig receptor deficient mice. Eur J Immunol, 42 (11) ( 2012), pp. 2959-2970
[46]
H. Schmitt, M.F. Neurath, R. Atreya. Role of the IL23/IL17 pathway in crohn’s disease. Front Immunol, 12 ( 2021), Article 622934
[47]
T.A. Willson, I. Jurickova, M. Collins, L.A. Denson. Deletion of intestinal epithelial cell STAT3 promotes T-lymphocyte STAT3 activation and chronic colitis following acute dextran sodium sulfate injury in mice. Inflamm Bowel Dis, 19 (3) ( 2013), pp. 512-525
[48]
A. Geremia, C.V. Arancibia-Cárcamo.Innate lymphoid cells in intestinal inflammation. Front Immunol, 8 ( 2017), p. 1296
[49]
J.S. Lee, C.M. Tato, B. Joyce-Shaikh, M.F. Gulen, C. Cayatte, Y. Chen, et al.. Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability. Immunity, 43 (4) ( 2015), pp. 727-738
[50]
L. Dupraz, M. Al, N. Rolhion, M.L. Richard, G.G. da Costa, S. Touch, et al.. Gut microbiota-derived short-chain fatty acids regulate IL-17 production by mouse and human intestinal γδ T cells. Cell Rep, 36 (1) ( 2021), Article 109332
[51]
E. Chun, S. Lavoie, D. Fonseca-Pereira, S. Bae, M. Michaud, H.R. Hoveyda, et al.. Metabolite-sensing receptor Ffar 2 regulates colonic group 3 innate lymphoid cells and gut immunity. Immunity, 51 (5) ( 2019), pp. 871-884
[52]
Y. Zhao, H. Luan, H. Jiang, Y. Xu, X. Wu, Y. Zhang, et al.. Gegen Qinlian decoction relieved DSS-induced ulcerative colitis in mice by modulating Th17/Treg cell homeostasis via suppressing IL-6/JAK2/STAT3 signaling. Phytomedicine, 84 ( 2021), Article 153519
[53]
M. Ernst, S. Thiem, P.M. Nguyen, M. Eissmann, T.L. Putoczki. Epithelial gp130/Stat3 functions: an intestinal signaling node in health and disease. Semin Immunol, 26 (1) ( 2014), pp. 29-37
[54]
A.M. Badr, L.A. Alkharashi, I.O. Sherif, A.A. Alanteet, H.N. Alotaibi, Y.F. Mahran. IL-17/Notch1/STAT3 pathway contributes to 5-fluorouracil-induced intestinal mucositis in rats: amelioration by thymol treatment. Pharmaceuticals, 15 (11) ( 2022), p. 1412
[55]
J.Y. Lee, J.A. Hall, L. Kroehling, L. Wu, T. Najar, H.H. Nguyen, et al.. Serum amyloid A proteins induce pathogenic Th 17 cells and promote inflammatory disease. Cell, 180 (1) ( 2020), pp. 79-91.e16
[56]
R. Ganesan, M. Rasool. Interleukin 17 regulates SHP-2 and IL-17RA/STAT-3 dependent Cyr 61, IL-23 and GM-CSF expression and RANKL mediated osteoclastogenesis by fibroblast-like synoviocytes in rheumatoid arthritis. Mol Immunol, 91 ( 2017), pp. 134-144
[57]
S.Y. Lee, S.H. Lee, E.J. Yang, E.K. Kim, J.K. Kim, D.Y. Shin, et al.. Metformin ameliorates inflammatory bowel disease by suppression of the STAT3 signaling pathway and regulation of the between Th17/Treg balance. PLoS One, 10 (9) ( 2015), p. e0135858
[58]
J. Wen, X. Niu, S. Chen, Z. Chen, S. Wu, X. Wang, et al.. Chitosan oligosaccharide improves the mucosal immunity of small intestine through activating SIgA production in mice: proteomic analysis. Int Immunopharmacol, 109 ( 2022), Article 108826
[59]
Y. Bai, F. Huang, R. Zhang, Q. Ma, L. Dong, D. Su, et al.. Longan pulp polysaccharide protects against cyclophosphamide-induced immunosuppression in mice by promoting intestinal secretory IgA synthesis. Food Funct, 11 (3) ( 2020), pp. 2738-2748
[60]
E. Lara-Padilla, R. Campos-Rodríguez, A. Jarillo-Luna, H. Reyna-Garfias, V. Rivera-Aguilar, A. Miliar, et al.. Caloric restriction reduces IgA levels and modifies cytokine mRNA expression in mouse small intestine. J Nutr Biochem, 22 (6) ( 2011), pp. 560-566
[61]
J. Sarkar, N.N. Gangopadhyay, Z. Moldoveanu, J. Mestecky, C.B. Stephensen. Vitamin A is required for regulation of polymeric immunoglobulin receptor (pIgR) expression by interleukin-4 and interferon-gamma in a human intestinal epithelial cell line. J Nutr, 128 (7) ( 1998), pp. 1063-1069
[62]
C. Villot, Y. Chen, K. Pedgerachny, F. Chaucheyras-Durand, E. Chevaux, A. Skidmore, et al.. Early supplementation of Saccharomyces cerevisiae boulardii CNCM I-1079 in newborn dairy calves increases IgA production in the intestine at 1 week of age. J Dairy Sci, 103 (9) ( 2020), pp. 8615-8628
PDF(6052 KB)

Accesses

Citation

Detail

段落导航
相关文章

/