[1] |
G.E. Karniadakis, I.G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang. Physics-informed machine learning. Nat Rev Phys, 3 (6) (2021), pp. 422-440.
|
[2] |
M. Raissi, P. Perdikaris, G.E. Karniadakis. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys, 378 (2019), pp. 686-707.
|
[3] |
S.J. Raymond, N.J. Cecchi, H.V. Alizadeh, A.A. Callan, E. Rice, Y. Liu, et al. Physics-informed machine learning improves detection of head impacts. Ann Biomed Eng, 50 (11) (2022), pp. 1534-1545.
|
[4] |
X. Jiang, D. Wang, Q. Fan, M. Zhang, C. Lu, A.P.T. Lau. Physics-informed neural network for nonlinear dynamics in fiber optics. Laser Photonics Rev, 16 (9) (2022), p. 2100483.
|
[5] |
S. Sharma, R. Awasthi, Y.S. Sastry, P.R. Budarapu. Physics-informed neural networks for estimating stress transfer mechanics in single lap joints. J Zhejiang Univ Sci A, 22 (8) (2021), pp. 621-631.
|
[6] |
Z.P. Mao, A.D. Jagtap, G.E. Karniadakis. Physics-informed neural networks for high-speed flows. Comput Methods Appl Mech Eng, 360 (2020), Article 112789.
|
[7] |
S. Chakraborty. Transfer learning based multi-fidelity physics informed deep neural network. J Comput Phys, 426 (2021), Article 109942.
|
[8] |
X. Liu, X. Zhang, W. Peng, W. Zhou, W. Yao. A novel meta-learning initialization method for physics-informed neural networks. Neural Comput Appl, 34 (17) (2022), pp. 14511-14534.
|
[9] |
J.H. Li, W.L. Huang. Towards mesoscience: the principle of compromise in competition. Springer, Heidelberg (2014).
|
[10] |
J.H. Li, W.L. Huang, J.H. Chen, W. Ge, C.F. Hou. Mesoscience based on the EMMS principle of compromise in competition. Chem Eng J, 333 (2018), pp. 327-335.
|
[11] |
J.H. Li. Exploring the logic and landscape of the knowledge system: multilevel structures, each multiscaled with complexity at the mesoscale. Engineering, 2 (3) (2016), pp. 276-285.
|
[12] |
L. Guo, J. Wu, J.H. Li. Complexity at mesoscales: a common challenge in developing artificial intelligence. Engineering, 5 (5) (2019), pp. 924-929.
|
[13] |
J.H. Li, Y.K. Tung, M.S. Kwauk. Method of energy minimization in multi-scale modeling of particle-fluid two-phase flow. P. Basu, J.F. Large (Eds.), Circulating fluidized bed technology II, Pergamon Press, New York (1988), pp. 89-103.
|
[14] |
J.H. Li, J.Y. Zhang, W. Ge, X.H. Liu. Multi-scale methodology for complex systems. Chem Eng Sci, 59 (8-9) (2004), pp. 1687-1700.
|
[15] |
L.M. Wang, X.P. Qiu, L. Zhang, J.H. Li. Turbulence originating from the compromise-in-competition between viscosity and inertia. Chem Eng J, 300 (2016), pp. 83-97.
|
[16] |
W.L. Huang, J.H. Li. Mesoscale model for heterogeneous catalysis based on the principle of compromise in competition. Chem Eng Sci, 147 (2016), pp. 83-90.
|
[17] |
J.H. Chen, Y. Ren, W.L. Huang, L. Zhang, J.H. Li. Multilevel mesoscale complexities in mesoregimes: challenges in chemical and biochemical engineering. Annu Rev Chem Biomol Eng, 13 (1) (2022), pp. 431-455.
|
[18] |
J.Y. Zhang, W. Ge, J.H. Li. Simulation of heterogeneous structures and analysis of energy consumption in particle-fluid systems with pseudo-particle modeling. Chem Eng Sci, 60 (11) (2005), pp. 3091-3099.
|
[19] |
L. Zhang, J.H. Chen, W.L. Huang, J.H. Li. A direct solution to multi-objective optimization: validation in solving the EMMS model for gas-solid fluidization. Chem Eng Sci, 192 (2018), pp. 499-506.
|
[20] |
H.B. Mann. Nonparametric tests against trend. Econometrica, 13 (3) (1945), pp. 245-259.
|
[21] |
M.G. Kendall. Rank correlation methods. (4th ed.), Charless Griffin, London (1975).
|
[22] |
D.R. Cox, A. Stuart. Some quick sign tests for trend in location and dispersion. Biometrika, 42 (1-2) (1955), pp. 80-95.
|
[23] |
A.M. Squires. The story of fluid catalytic cracking: the first “circulating fluidized beds”. P. Basu (Ed.), Circulating fluidized bed technology, Pergamon Press, New York (1986), pp. 1-19.
|
[24] |
L. Reh. New and efficient high-temperature processes with circulating fluid-bed reactors. Chem Eng Technol, 18 (2) (1995), pp. 75-89.
|
[25] |
L. Lu, X. Gao, J.F. Dietiker, M. Shahnam, W.A. Rogers. Machine learning accelerated discrete element modeling of granular flows. Chem Eng Sci, 245 (2021), Article 116832.
|
[26] |
Z. Yang, B.N. Lu, W. Wang. Coupling artificial neural network with EMMS drag for simulation of dense fluidized beds. Chem Eng Sci, 246 (2021), Article 117003.
|
[27] |
H. Bazai, E. Kargar, M. Mehrabi. Using an encoder-decoder convolutional neural network to predict the solid holdup patterns in a pseudo-2D fluidized bed. Chem Eng Sci, 246 (2021), Article 116886.
|
[28] |
B. Ouyang, L.T. Zhu, Y.H. Su, Z.H. Luo. A hybrid mesoscale closure combining CFD and deep learning for coarse-grid prediction of gas-particle flow dynamics. Chem Eng Sci, 248 (Pt B) ( 2022), Article 117268.
|
[29] |
P.F. Qin, Z.J. Xia, L. Guo. A deep learning approach using temporal-spatial data of computational fluid dynamics for fast property prediction of gas-solid fluidized bed. Korean J Chem Eng, 40 (1) (2023), pp. 57-66.
|
[30] |
M. Upadhyay, V.M. Nagulapati, H. Lim. Hybrid CFD-neural networks technique to predict circulating fluidized bed reactor riser hydrodynamics. J Clean Prod, 337 (2022), Article 130490.
|
[31] |
D. Gidaspow. Multiphase flow and fluidization:continuum and kinetic theory descriptions. Academic Press, New York (1994).
|
[32] |
Y. Tsuji, T. Tanaka, T. Ishida. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol, 71 (3) (1992), pp. 239-250.
|
[33] |
S. Tenneti, S. Subramaniam. Particle-resolved direct numerical simulation for gas-solid flow model development. Annu Rev Fluid Mech, 46 (1) (2014), pp. 199-230.
|
[34] |
H.H. Cui, Q. Chang, J.H. Chen, W. Ge. PR-DNS verification of the stability condition in the EMMS model. Chem Eng J, 401 (2020), Article 125999.
|
[35] |
C.S. Peskin. Numerical analysis of blood flow in the heart. J Comput Phys, 25 (3) (1977), pp. 220-252.
|
[36] |
J. Donahue, L.A. Hendricks, M. Rohrbach, S. Venugopalan, S. Guadarrama, K. Saenko, et al. Long-term recurrent convolutional networks for visual recognition and description. IEEE Trans Pattern Anal Mach Intell, 39 (4) (2017), pp. 677-691.
|
[37] |
Shi XJ, Chen ZR, Wang H, Yeung DY, Wong WK, Woo WC. Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Cortes C, Lee DD, Sugiyama M, Garnett R, editors. Proceedings of the 28th International Conference on Neural Information Processing Systems; 2015 Dec 7- 12; Montreal, QC, Canada; 2015. p. 802-10.
|
[38] |
Mathieu MM, Couprie C, LeCun Y. Deep multi-scale video prediction beyond mean square error. 2015. arXiv:1511.05440.
|
[39] |
Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process, 13 (4) (2004), pp. 600-612.
|
[40] |
Li JH. Insight: the journey ahead for AI [Internet]. Norwich: Business Chief; 2020 May 20 [cited 2024 Jan 16]. Available from:
|