脑电信号光子处理器——基于衍射光子计算单元的癫痫发作检测

Tao Yan, Maoqi Zhang, Hang Chen, Sen Wan, Kaifeng Shang, Haiou Zhang, Xun Cao, Xing Lin, Qionghai Dai

工程(英文) ›› 2024, Vol. 35 ›› Issue (4) : 56-66.

PDF(2740 KB)
PDF(2740 KB)
工程(英文) ›› 2024, Vol. 35 ›› Issue (4) : 56-66. DOI: 10.1016/j.eng.2024.01.008
研究论文
Article

脑电信号光子处理器——基于衍射光子计算单元的癫痫发作检测

作者信息 +

EEG Opto-Processor: Epileptic Seizure Detection Using Diffractive Photonic Computing Units

Author information +
History +

Highlight

・An EEG opto-processor is proposed to construct photonic neural networks that process analog EEG signals for epileptic seizure detections at high energy efficiency.

・Both free-space and integrated diffractive photonic computing units are designed to process extracranial and intracranial EEG signals efficiently and detect epileptic seizures.

・A channel selection mechanism is used to promote and validate the performance of the opto-processor for supervising clinical diagnosis.

Abstract

Electroencephalography (EEG) analysis extracts critical information from brain signals, enabling brain disease diagnosis and providing fundamental support for brain-computer interfaces. However, performing an artificial intelligence analysis of EEG signals with high energy efficiency poses significant challenges for electronic processors on edge computing devices, especially with large neural network models. Herein, we propose an EEG opto-processor based on diffractive photonic computing units (DPUs) to process extracranial and intracranial EEG signals effectively and to detect epileptic seizures. The signals of the EEG channels within a second-time window are optically encoded as inputs to the constructed diffractive neural networks for classification, which monitors the brain state to identify symptoms of an epileptic seizure. We developed both free-space and integrated DPUs as edge computing systems and demonstrated their applications for real-time epileptic seizure detection using benchmark datasets, that is, the Children’s Hospital Boston (CHB)-Massachusetts Institute of Technology (MIT) extracranial and Epilepsy-iEEG-Multicenter intracranial EEG datasets, with excellent computing performance results. Along with the channel selection mechanism, both numerical evaluations and experimental results validated the sufficiently high classification accuracies of the proposed opto-processors for supervising clinical diagnosis. Our study opens a new research direction for utilizing photonic computing techniques to process large-scale EEG signals and promote broader applications.

Keywords

Epileptic seizure detection / EEG analysis / Diffractive photonic computing unit / Photonic computing

引用本文

导出引用
Tao Yan, Maoqi Zhang, Hang Chen. . Engineering. 2024, 35(4): 56-66 https://doi.org/10.1016/j.eng.2024.01.008

参考文献

[1]
Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521 (7553) (2015), pp. 436-444.
[2]
A. Craik, Y. He, J.L. Contreras-Vidal. Deep learning for electroencephalogram (EEG) classification tasks: a review. J Neural Eng, 16 (3) (2019), 031001.
[3]
Z. Gao, W. Dang, X. Wang, X. Hong, L. Hou, K. Ma, et al. Complex networks and deep learning for EEG signal analysis. Cogn Neurodyn, 15 (3) (2021), pp. 369-388.
[4]
R.T. Schirrmeister, J.T. Springenberg, L.D.J. Fiederer, M. Glasstetter, K. Eggensperger, M. Tangermann, et al. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum Brain Mapp, 38 (11) (2017), pp. 5391-5420.
[5]
P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, et al. Fully hardware-implemented memristor convolutional neural network. Nature, 577 (7792) (2020), pp. 641-646.
[6]
M.M. Waldrop. The chips are down for Moore’s law. Nature, 530 (7589) (2016), pp. 144-147.
[7]
H.J. Caulfield, S. Dolev. Why future supercomputing requires optics. Nat Photonics, 4 (5) (2010), pp. 261-263.
[8]
G. Wetzstein, A. Ozcan, S. Gigan, S. Fan, D. Englund, M. Soljačić, et al. Inference in artificial intelligence with deep optics and photonics. Nature, 588 (7836) (2020), pp. 39-47.
[9]
B.J. Shastri, A.N. Tait, T. Ferreira de Lima, W.H. Pernice, H. Bhaskaran, C.D. Wright, et al. Photonics for artificial intelligence and neuromorphic computing. Nat Photonics, 15 (2) (2021), pp. 102-114.
[10]
J. Feldmann, N. Youngblood, C.D. Wright, H. Bhaskaran, W.H. Pernice. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569 (7755) (2019), pp. 208-214.
[11]
J. Chang, V. Sitzmann, X. Dun, W. Heidrich, G. Wetzstein. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Sci Rep, 8 (1) (2018), p. 12324.
[12]
M. Miscuglio, Z. Hu, S. Li, J.K. George, R. Capanna, H. Dalir, et al. Massively parallel amplitude-only Fourier neural network. Optica, 7 (12) (2020), pp. 1812-1819.
[13]
J. Bueno, S. Maktoobi, L. Froehly, I. Fischer, M. Jacquot, L. Larger, et al. Reinforcement learning in a large-scale photonic recurrent neural network. Optica, 5 (6) (2018), pp. 756-760.
[14]
P. Antonik, N. Marsal, D. Brunner, D. Rontani. Human action recognition with a large-scale brain-inspired photonic computer. Nat Mach Intell, 1 (11) (2019), pp. 530-537.
[15]
Y. Shen, N.C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, et al. Deep learning with coherent nanophotonic circuits. Nat Photonics, 11 (7) (2017), pp. 441-446.
[16]
X. Lin, Y. Rivenson, N.T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, et al. All-optical machine learning using diffractive deep neural networks. Science, 361 (6406) (2018), pp. 1004-1008.
[17]
T. Yan, J. Wu, T. Zhou, H. Xie, F. Xu, J. Fan, et al. Fourier-space diffractive deep neural network. Phys Rev Lett, 123 (2) (2019), 023901.
[18]
M.S.S. Rahman, J. Li, D. Mengu, Y. Rivenson, A. Ozcan. Ensemble learning of diffractive optical networks. Light Sci Appl, 10 (1) (2021), p. 14.
[19]
O. Kulce, D. Mengu, Y. Rivenson, A. Ozcan. All-optical synthesis of an arbitrary linear transformation using diffractive surfaces. Light Sci Appl, 10 (2021), p. 196.
[20]
M. Veli, D. Mengu, N.T. Yardimci, Y. Luo, J. Li, Y. Rivenson, et al. Terahertz pulse shaping using diffractive surfaces. Nat Commun, 12 (2021), p. 37.
[21]
T. Zhou, X. Lin, J. Wu, Y. Chen, H. Xie, Y. Li, et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat Photonics, 15 (5) (2021), pp. 367-373.
[22]
T. Yan, R. Yang, Z. Zheng, X. Lin, H. Xiong, Q. Dai. All-optical graph representation learning using integrated diffractive photonic computing units. Sci Adv, 8 (24) (2022), eabn7630.
[23]
A.N. Tait, T.F. De Lima, E. Zhou, A.X. Wu, M.A. Nahmias, B.J. Shastri, et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci Rep, 7 (1) (2017), p. 7430.
[24]
Y. Zuo, B. Li, Y. Zhao, Y. Jiang, Y.C. Chen, P. Chen, et al. All-optical neural network with nonlinear activation functions. Optica, 6 (9) (2019), pp. 1132-1137.
[25]
A. Jha, C. Huang, P.R. Prucnal. Reconfigurable all-optical nonlinear activation functions for neuromorphic photonics. Opt Lett, 45 (17) (2020), pp. 4819-4822.
[26]
I.A.D. Williamson, T.W. Hughes, M. Minkov, B. Bartlett, S. Pai, S. Fan. Reprogrammable electro-optic nonlinear activation functions for optical neural networks. IEEE J Sel Top Quantum Electron, 26 (1) (2020), 7700412.
[27]
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stappers, et al. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589 (7840) (2021), pp. 52-58.
[28]
X. Xu, M. Tan, B. Corcoran, J. Wu, A. Boes, T.G. Nguyen, et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 589 (7840) (2021), pp. 44-51.
[29]
B. Litt, J. Echauz. Prediction of epileptic seizures. Lancet Neurol, 1 (1) (2002), pp. 22-30.
[30]
Shoeb AH, Guttag JV. Application of machine learning to epileptic seizure detection. In:Proceedings of the 27th International Conference on Machine Learning; 2010 Jun 21-25; Haifa, Israel; 2010.
[31]
M.K. Siddiqui, R. Morales-Menendez, X. Huang, N. Hussain. A review of epileptic seizure detection using machine learning classifiers. Brain Inform, 7 (2020), p. 5.
[32]
M. Zhou, C. Tian, R. Cao, B. Wang, Y. Niu, T. Hu, et al. Epileptic seizure detection based on EEG signals and CNN. Front Neuroinform, 12 (2018), p. 95.
[33]
H. Daoud, M.A. Bayoumi. Efficient epileptic seizure prediction based on deep learning. IEEE Trans Biomed Circuits Syst, 13 (5) (2019), pp. 804-813.
[34]
Q. Zhang, H. Yu, M. Barbiero, B. Wang, M. Gu. Artificial neural networks enabled by nanophotonics. Light Sci Appl, 8 (2019), p. 42.
[35]
Z. Wang, L. Chang, F. Wang, T. Li, T. Gu. Integrated photonic metasystem for image classifications at telecommunication wavelength. Nat Commun, 13 (2022), p. 2131.
[36]
Z. Wang, T. Li, A. Soman, D. Mao, T. Kananen, T. Gu. On-chip wavefront shaping with dielectric metasurface. Nat Commun, 10 (2019), p. 3547.
[37]
T. Fu, Y. Zang, Y. Huang, Z. Du, H. Huang, C. Hu, et al. Photonic machine learning with on-chip diffractive optics. Nat Commun, 14 (2023), p. 70.
[38]
Shoeb AH. Application of machine learning to epileptic seizure onset detection and treatment [dissertation]. Cambridge: Massachusetts Institute of Technology; 2009.
[39]
A.L. Goldberger, L.A. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 101 (23) (2000), pp. e215-e220.
[40]
Li A, Inati S, Zaghloul K, Crone N, Anderson W, Johnson E, et al. Epilepsy-iEEG-Multicenter-Dataset. 2021. OpenNeuro: ds003029:1.0.3.
[41]
J.A. French, T.A. Pedley. Initial management of epilepsy. N Engl J Med, 359 (2) (2008), pp. 166-176.
[42]
Z. Zhou, B. Yin, J. Michel. On-chip light sources for silicon photonics. Light Sci Appl, 4 (11) (2015), p. e358.
[43]
Z.H. Zhou, X.Y. Liu. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans Knowl Data Eng, 18 (1) (2005), pp. 63-77.
[44]
J. Birjandtalab, M.B. Pouyan, D. Cogan, M. Nourani, J. Harvey. Automated seizure detection using limited-channel EEG and non-linear dimension reduction. Comput Biol Med, 82 (2017), pp. 49-58.
[45]
A.T. Tzallas, M.G. Tsipouras, D.I. Fotiadis. Epileptic seizure detection in EEGs using time-frequency analysis. IEEE Trans Inf Technol Biomed, 13 (5) (2009), pp. 703-710.
[46]
P. Boonyakitanont, A. Lek-Uthai, K. Chomtho, J. Songsiri. A review of feature extraction and performance evaluation in epileptic seizure detection using EEG. Biomed Signal Process Control, 57 (2020), 101702.
[47]
M. Li, J. Yao. All-optical short-time Fourier transform based on a temporal pulse-shaping system incorporating an array of cascaded linearly chirped fiber Bragg gratings. IEEE Photonics Technol Lett, 23 (20) (2011), pp. 1439-1441.
[48]
X. Xie, J. Li, F. Yin, K. Xu, Y. Dai. STFT based on bandwidth-scaled microwave photonics. J Lightwave Technol, 39 (6) (2021), pp. 1680-1687.
[49]
W.O. Tatum, R. Ellen. Grass lecture: extraordinary EEG. Neurodiagn J, 54 (1) (2014), pp. 3-21.
[50]
T. Alotaiby, F.E. Abd El-Samie, S.A. Alshebeili, I. Ahmad. A review of channel selection algorithms for EEG signal processing. EURASIP J Adv Signal Process, 2015 (2015), p. 66.
[51]
R.C. Chen, C. Dewi, S.W. Huang, R.E. Caraka. Selecting critical features for data classification based on machine learning methods. J Big Data, 7 (2020), p. 52.
[52]
L. Breiman. Random forests. Mach Learn, 45 (1) (2001), pp. 5-32.
[53]
M.B. Kursa. Robustness of random forest-based gene selection methods. BMC Bioinformatics, 15 (2014), p. 8.
[54]
Powers DM. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. 2020. arXiv:201016061.
[55]
D. Devarriya, C. Gulati, V. Mansharamani, A. Sakalle, A. Bhardwaj. Unbalanced breast cancer data classification using novel fitness functions in genetic programming. Expert Syst Appl, 140 (2020), 112866.
[56]
A. Krizhevsky, I. Sutskever, G.E. Hinton. ImageNet classification with deep convolutional neural networks. Commun ACM, 60 (6) (2017), pp. 84-90.
[57]
F. Ashtiani, A.J. Geers, F. Aflatouni. An on-chip photonic deep neural network for image classification. Nature, 606 (7914) (2022), pp. 501-506.
[58]
N. Even-Chen, D.G. Muratore, S.D. Stavisky, L.R. Hochberg, J.M. Henderson, B. Murmann, et al. Power-saving design opportunities for wireless intracortical brain-computer interfaces. Nat Biomed Eng, 4 (10) (2020), pp. 984-996.
[59]
C. Wu, H. Yu, S. Lee, R. Peng, I. Takeuchi, M. Li. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat Commun, 12 (2021), p. 96.
PDF(2740 KB)

Accesses

Citation

Detail

段落导航
相关文章

/