[1] |
Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521 (7553) (2015), pp. 436-444.
|
[2] |
A. Craik, Y. He, J.L. Contreras-Vidal. Deep learning for electroencephalogram (EEG) classification tasks: a review. J Neural Eng, 16 (3) (2019), 031001.
|
[3] |
Z. Gao, W. Dang, X. Wang, X. Hong, L. Hou, K. Ma, et al. Complex networks and deep learning for EEG signal analysis. Cogn Neurodyn, 15 (3) (2021), pp. 369-388.
|
[4] |
R.T. Schirrmeister, J.T. Springenberg, L.D.J. Fiederer, M. Glasstetter, K. Eggensperger, M. Tangermann, et al. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum Brain Mapp, 38 (11) (2017), pp. 5391-5420.
|
[5] |
P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, et al. Fully hardware-implemented memristor convolutional neural network. Nature, 577 (7792) (2020), pp. 641-646.
|
[6] |
M.M. Waldrop. The chips are down for Moore’s law. Nature, 530 (7589) (2016), pp. 144-147.
|
[7] |
H.J. Caulfield, S. Dolev. Why future supercomputing requires optics. Nat Photonics, 4 (5) (2010), pp. 261-263.
|
[8] |
G. Wetzstein, A. Ozcan, S. Gigan, S. Fan, D. Englund, M. Soljačić, et al. Inference in artificial intelligence with deep optics and photonics. Nature, 588 (7836) (2020), pp. 39-47.
|
[9] |
B.J. Shastri, A.N. Tait, T. Ferreira de Lima, W.H. Pernice, H. Bhaskaran, C.D. Wright, et al. Photonics for artificial intelligence and neuromorphic computing. Nat Photonics, 15 (2) (2021), pp. 102-114.
|
[10] |
J. Feldmann, N. Youngblood, C.D. Wright, H. Bhaskaran, W.H. Pernice. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569 (7755) (2019), pp. 208-214.
|
[11] |
J. Chang, V. Sitzmann, X. Dun, W. Heidrich, G. Wetzstein. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Sci Rep, 8 (1) (2018), p. 12324.
|
[12] |
M. Miscuglio, Z. Hu, S. Li, J.K. George, R. Capanna, H. Dalir, et al. Massively parallel amplitude-only Fourier neural network. Optica, 7 (12) (2020), pp. 1812-1819.
|
[13] |
J. Bueno, S. Maktoobi, L. Froehly, I. Fischer, M. Jacquot, L. Larger, et al. Reinforcement learning in a large-scale photonic recurrent neural network. Optica, 5 (6) (2018), pp. 756-760.
|
[14] |
P. Antonik, N. Marsal, D. Brunner, D. Rontani. Human action recognition with a large-scale brain-inspired photonic computer. Nat Mach Intell, 1 (11) (2019), pp. 530-537.
|
[15] |
Y. Shen, N.C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, et al. Deep learning with coherent nanophotonic circuits. Nat Photonics, 11 (7) (2017), pp. 441-446.
|
[16] |
X. Lin, Y. Rivenson, N.T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, et al. All-optical machine learning using diffractive deep neural networks. Science, 361 (6406) (2018), pp. 1004-1008.
|
[17] |
T. Yan, J. Wu, T. Zhou, H. Xie, F. Xu, J. Fan, et al. Fourier-space diffractive deep neural network. Phys Rev Lett, 123 (2) (2019), 023901.
|
[18] |
M.S.S. Rahman, J. Li, D. Mengu, Y. Rivenson, A. Ozcan. Ensemble learning of diffractive optical networks. Light Sci Appl, 10 (1) (2021), p. 14.
|
[19] |
O. Kulce, D. Mengu, Y. Rivenson, A. Ozcan. All-optical synthesis of an arbitrary linear transformation using diffractive surfaces. Light Sci Appl, 10 (2021), p. 196.
|
[20] |
M. Veli, D. Mengu, N.T. Yardimci, Y. Luo, J. Li, Y. Rivenson, et al. Terahertz pulse shaping using diffractive surfaces. Nat Commun, 12 (2021), p. 37.
|
[21] |
T. Zhou, X. Lin, J. Wu, Y. Chen, H. Xie, Y. Li, et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat Photonics, 15 (5) (2021), pp. 367-373.
|
[22] |
T. Yan, R. Yang, Z. Zheng, X. Lin, H. Xiong, Q. Dai. All-optical graph representation learning using integrated diffractive photonic computing units. Sci Adv, 8 (24) (2022), eabn7630.
|
[23] |
A.N. Tait, T.F. De Lima, E. Zhou, A.X. Wu, M.A. Nahmias, B.J. Shastri, et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci Rep, 7 (1) (2017), p. 7430.
|
[24] |
Y. Zuo, B. Li, Y. Zhao, Y. Jiang, Y.C. Chen, P. Chen, et al. All-optical neural network with nonlinear activation functions. Optica, 6 (9) (2019), pp. 1132-1137.
|
[25] |
A. Jha, C. Huang, P.R. Prucnal. Reconfigurable all-optical nonlinear activation functions for neuromorphic photonics. Opt Lett, 45 (17) (2020), pp. 4819-4822.
|
[26] |
I.A.D. Williamson, T.W. Hughes, M. Minkov, B. Bartlett, S. Pai, S. Fan. Reprogrammable electro-optic nonlinear activation functions for optical neural networks. IEEE J Sel Top Quantum Electron, 26 (1) (2020), 7700412.
|
[27] |
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stappers, et al. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589 (7840) (2021), pp. 52-58.
|
[28] |
X. Xu, M. Tan, B. Corcoran, J. Wu, A. Boes, T.G. Nguyen, et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 589 (7840) (2021), pp. 44-51.
|
[29] |
B. Litt, J. Echauz. Prediction of epileptic seizures. Lancet Neurol, 1 (1) (2002), pp. 22-30.
|
[30] |
Shoeb AH, Guttag JV. Application of machine learning to epileptic seizure detection. In:Proceedings of the 27th International Conference on Machine Learning; 2010 Jun 21-25; Haifa, Israel; 2010.
|
[31] |
M.K. Siddiqui, R. Morales-Menendez, X. Huang, N. Hussain. A review of epileptic seizure detection using machine learning classifiers. Brain Inform, 7 (2020), p. 5.
|
[32] |
M. Zhou, C. Tian, R. Cao, B. Wang, Y. Niu, T. Hu, et al. Epileptic seizure detection based on EEG signals and CNN. Front Neuroinform, 12 (2018), p. 95.
|
[33] |
H. Daoud, M.A. Bayoumi. Efficient epileptic seizure prediction based on deep learning. IEEE Trans Biomed Circuits Syst, 13 (5) (2019), pp. 804-813.
|
[34] |
Q. Zhang, H. Yu, M. Barbiero, B. Wang, M. Gu. Artificial neural networks enabled by nanophotonics. Light Sci Appl, 8 (2019), p. 42.
|
[35] |
Z. Wang, L. Chang, F. Wang, T. Li, T. Gu. Integrated photonic metasystem for image classifications at telecommunication wavelength. Nat Commun, 13 (2022), p. 2131.
|
[36] |
Z. Wang, T. Li, A. Soman, D. Mao, T. Kananen, T. Gu. On-chip wavefront shaping with dielectric metasurface. Nat Commun, 10 (2019), p. 3547.
|
[37] |
T. Fu, Y. Zang, Y. Huang, Z. Du, H. Huang, C. Hu, et al. Photonic machine learning with on-chip diffractive optics. Nat Commun, 14 (2023), p. 70.
|
[38] |
Shoeb AH. Application of machine learning to epileptic seizure onset detection and treatment [dissertation]. Cambridge: Massachusetts Institute of Technology; 2009.
|
[39] |
A.L. Goldberger, L.A. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 101 (23) (2000), pp. e215-e220.
|
[40] |
Li A, Inati S, Zaghloul K, Crone N, Anderson W, Johnson E, et al. Epilepsy-iEEG-Multicenter-Dataset. 2021. OpenNeuro: ds003029:1.0.3.
|
[41] |
J.A. French, T.A. Pedley. Initial management of epilepsy. N Engl J Med, 359 (2) (2008), pp. 166-176.
|
[42] |
Z. Zhou, B. Yin, J. Michel. On-chip light sources for silicon photonics. Light Sci Appl, 4 (11) (2015), p. e358.
|
[43] |
Z.H. Zhou, X.Y. Liu. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans Knowl Data Eng, 18 (1) (2005), pp. 63-77.
|
[44] |
J. Birjandtalab, M.B. Pouyan, D. Cogan, M. Nourani, J. Harvey. Automated seizure detection using limited-channel EEG and non-linear dimension reduction. Comput Biol Med, 82 (2017), pp. 49-58.
|
[45] |
A.T. Tzallas, M.G. Tsipouras, D.I. Fotiadis. Epileptic seizure detection in EEGs using time-frequency analysis. IEEE Trans Inf Technol Biomed, 13 (5) (2009), pp. 703-710.
|
[46] |
P. Boonyakitanont, A. Lek-Uthai, K. Chomtho, J. Songsiri. A review of feature extraction and performance evaluation in epileptic seizure detection using EEG. Biomed Signal Process Control, 57 (2020), 101702.
|
[47] |
M. Li, J. Yao. All-optical short-time Fourier transform based on a temporal pulse-shaping system incorporating an array of cascaded linearly chirped fiber Bragg gratings. IEEE Photonics Technol Lett, 23 (20) (2011), pp. 1439-1441.
|
[48] |
X. Xie, J. Li, F. Yin, K. Xu, Y. Dai. STFT based on bandwidth-scaled microwave photonics. J Lightwave Technol, 39 (6) (2021), pp. 1680-1687.
|
[49] |
W.O. Tatum, R. Ellen. Grass lecture: extraordinary EEG. Neurodiagn J, 54 (1) (2014), pp. 3-21.
|
[50] |
T. Alotaiby, F.E. Abd El-Samie, S.A. Alshebeili, I. Ahmad. A review of channel selection algorithms for EEG signal processing. EURASIP J Adv Signal Process, 2015 (2015), p. 66.
|
[51] |
R.C. Chen, C. Dewi, S.W. Huang, R.E. Caraka. Selecting critical features for data classification based on machine learning methods. J Big Data, 7 (2020), p. 52.
|
[52] |
L. Breiman. Random forests. Mach Learn, 45 (1) (2001), pp. 5-32.
|
[53] |
M.B. Kursa. Robustness of random forest-based gene selection methods. BMC Bioinformatics, 15 (2014), p. 8.
|
[54] |
Powers DM. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. 2020. arXiv:201016061.
|
[55] |
D. Devarriya, C. Gulati, V. Mansharamani, A. Sakalle, A. Bhardwaj. Unbalanced breast cancer data classification using novel fitness functions in genetic programming. Expert Syst Appl, 140 (2020), 112866.
|
[56] |
A. Krizhevsky, I. Sutskever, G.E. Hinton. ImageNet classification with deep convolutional neural networks. Commun ACM, 60 (6) (2017), pp. 84-90.
|
[57] |
F. Ashtiani, A.J. Geers, F. Aflatouni. An on-chip photonic deep neural network for image classification. Nature, 606 (7914) (2022), pp. 501-506.
|
[58] |
N. Even-Chen, D.G. Muratore, S.D. Stavisky, L.R. Hochberg, J.M. Henderson, B. Murmann, et al. Power-saving design opportunities for wireless intracortical brain-computer interfaces. Nat Biomed Eng, 4 (10) (2020), pp. 984-996.
|
[59] |
C. Wu, H. Yu, S. Lee, R. Peng, I. Takeuchi, M. Li. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat Commun, 12 (2021), p. 96.
|