[1] |
R. Bleischwitz, C. Spataru, S.D. VanDeveer, M. Obersteiner, E. van der Voet, C. Johnson, et al.. Resource nexus perspectives towards the United Nations Sustainable Development Goals. Nat Sustain, 1 (12) ( 2018), pp. 737-743
|
[2] |
S. Vanhamäki, M. Virtanen, S. Luste, K. Manskinen. Transition towards a circular economy at a regional level: a case study on closing biological loops. Resour Conserv Recycling, 156 ( 2020), Article 104716
|
[3] |
D. Griggs, M. Stafford-Smith, O. Gaffney, J. Rockström, M.C. Öhman, P. Shyamsundar, et al.. Sustainable development goals for people and planet. Nature, 495 (7441) ( 2013), pp. 305-307
|
[4] |
S.K. Malyan, S.S. Kumar, R.K. Fagodiya, P. Ghosh, A. Kumar, R. Singh, et al.. Biochar for environmental sustainability in the energy-water-agroecosystem nexus. Renew Sustain Energy Rev, 149 ( 2021), Article 111379
|
[5] |
L. Xia, L. Cao, Y. Yang, C. Ti, Y. Liu, P. Smith, et al.. Integrated biochar solutions can achieve carbon-neutral staple crop production. Nat Food, 4 (3) ( 2023), pp. 236-246
|
[6] |
S. Yu, X. Dong, P. Zhao, Z. Luo, Z. Sun, X. Yang, et al.. Decoupled temperature and pressure hydrothermal synthesis of carbon sub-micron spheres from cellulose. Nat Commun, 13 (1) ( 2022), Article 3616
|
[7] |
Z.K. Zhang, Z.Y. Zhu, B.X. Shen, L.N. Liu. Insights into biochar and hydrochar production and applications: a review. Energy, 171 ( 2019), pp. 581-598
|
[8] |
J.X. Huang, Y.F. Feng, H.F. Xie, P. Wu, M.L. Wang, B.Y. Wang, et al.. A bibliographic study reviewing the last decade of hydrochar in environmental application: history, status quo, and trending research paths. Biochar, 5 (1) ( 2023), p. 12
|
[9] |
C.Y. Tang, F. Yang, M. Antonietti. Carbon materials advancing microorganisms in driving soil organic carbon regulation. Research, 2022 ( 2022), Article 9857374
|
[10] |
N.N. Guo, M. Li, X.K. Sun, F. Wang, R. Yang. Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities. Green Chem, 19 (11) ( 2017), pp. 2595-2602
|
[11] |
S. Zhuo, H. Ren, G. Xie, D. Xing, B. Liu. Conversion mechanism of biomass to nano zero-valent iron biochar: iron phase transfer and in situ reduction. Engineering, 21 ( 2023), pp. 124-134
|
[12] |
X. Xiao, B. Chen, Z. Chen, L. Zhu, J.L. Schnoor. Insight into multiple and multilevel structures of biochars and their potential environmental applications. Crit Rev Environ Sci Technol, 52 (9) ( 2018), pp. 5027-5047
|
[13] |
J. Jin, M. Wang, Y. Cao, S. Wu, P. Liang, Y. Li, et al.. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: biochar properties and environmental risk from metals. Bioresour Technol, 228 ( 2017), pp. 218-226
|
[14] |
H.G. Li, M.J. Cao, J. Watson, Y.H. Zhang, Z.D. Liu. In situ hydrochar regulates Cu fate and speciation: insights into transformation mechanism. J Hazard Mater, 410 ( 2021), Article 124616
|
[15] |
S. Yoshida, Y. Ohnishi, K. Kitagishi. Histochemistry of silicon in rice plant. Soil Sci Plant Nutr, 8 (1) ( 1962), pp. 36-41
|
[16] |
H.S. Shen, F. Sundstøl, E.R. Eng, L.O. Eik. Studies on untreated and urea-treated rice straw from three cultivation seasons: 3. histological investigations by light and scanning electron microscopy. Anim Feed Sci Technol, 80 (2) ( 1999), pp. 151-159
|
[17] |
K.B. Cantrell, P.G. Hunt, M. Uchimiya, J.M. Novak, K.S. Ro. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol, 107 ( 2012), pp. 419-428
|
[18] |
J.W. Jin, Y.N. Li, J.Y. Zhang, S.C. Wu, Y.C. Cao, P. Liang, et al.. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge. J Hazard Mater, 320 ( 2016), pp. 417-426
|
[19] |
Z.Y. Liu, Z.H. Wang, H.X. Chen, T. Cai, Z.D. Liu. Hydrochar and pyrochar for sorption of pollutants in wastewater and exhaust gas: a critical review. Environ Pollut, 268 ( 2021), Article 115910
|
[20] |
S.A. Nicolae, H. Au, P. Modugno, H. Luo, A.E. Szego, M. Qiao, et al.. Recent advances in hydrothermal carbonisation: from tailored carbon materials and biochemicals to applications and bioenergy. Green Chem, 22 (15) ( 2020), pp. 4747-4800
|
[21] |
Z. Liu, X. Zhao, L. Xu, Q. Peng, X. He. A novel hierarchically lightweight porous carbon derived from egg white for strong microwave absorption. Engineering, 18 ( 2022), pp. 161-172
|
[22] |
X. Li, R. Wang, C. Shao, D. Li, S. Bai, N. Hou, et al.. Biochar and hydrochar from agricultural residues for soil conditioning: life cycle assessment and microbially mediated C and N cycles. ACS Sustain Chem Eng, 10 (11) ( 2022), pp. 3574-3583
|
[23] |
J. Guo, B. Chen. Insights on the molecular mechanism for the recalcitrance of biochars: interactive effects of carbon and silicon components. Environ Sci Technol, 48 (16) ( 2014), pp. 9103-9112
|
[24] |
Y.L. Xu, B.L. Chen. Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresour Technol, 146 ( 2013), pp. 485-493
|
[25] |
L. Han, K.S. Ro, Y. Wang, K. Sun, H. Sun, J.A. Libra, et al.. Oxidation resistance of biochars as a function of feedstock and pyrolysis condition. Sci Total Environ, 616 ( 2018), pp. 335-344
|
[26] |
Y. Wang, X. Xiao, Y. Xu, B. Chen. Environmental effects of silicon within biochar (sichar) and carbon-silicon coupling mechanisms. Crit Rev Environ Sci Technol, 53 (23) ( 2019), pp. 13570-13582
|
[27] |
X. Xiao, B. Chen, L. Zhu. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures. Environ Sci Technol, 48 (6) ( 2014), pp. 3411-3419
|
[28] |
X. Zhu, Y. Liu, F. Qian, C. Zhou, S. Zhang, J. Chen. Role of hydrochar properties on the porosity of hydrochar-based porous carbon for their sustainable application. ACS Sustain Chem Eng, 3 (5) ( 2015), pp. 833-840
|
[29] |
C. Gai, F. Zhang, Q. Lang, T. Liu, N. Peng, Z. Liu. Facile one-pot synthesis of iron nanoparticles immobilized into the porous hydrochar for catalytic decomposition of phenol. Appl Catal B, 204 ( 2017), pp. 566-576
|
[30] |
X. Zhu, M. Sun, X. Zhu, W. Guo, Z. Luo, W. Cai, et al.. Molten salt shielded pyrolysis of biomass waste: development of hierarchical biochar, salt recovery, CO2 adsorption. Fuel, 334 ( 2023), Article 126565
|
[31] |
Y.P. Xie, H.P. Yang, K. Zeng, Y.J. Zhu, J.H. Hu, Q.T. Mao, et al.. Study on CO2 gasification of biochar in molten salts: reactivity and structure evolution. Fuel, 254 ( 2019), Article 115614
|
[32] |
J.H. Shen, H.Y. Hu, M. Xu, H. Liu, K. Xu, X.J. Zhang, et al.. Interactions between molten salts and ash components during Zhundong coal gasification in eutectic carbonates. Fuel, 207 ( 2017), pp. 365-372
|
[33] |
W. Chen, M. Gong, K.X. Li, M.W. Xia, Z.Q. Chen, H.Y. Xiao, et al.. Insight into KOH activation mechanism during biomass pyrolysis: chemical reactions between O-containing groups and KOH. Appl Energy, 278 ( 2020), Article 115730
|
[34] |
B. Sajjadi, T. Zubatiuk, D. Leszczynska, J. Leszczynski, W.Y. Chen. Chemical activation of biochar for energy and environmental applications: a comprehensive review. Rev Chem Eng, 35 (7) ( 2019), pp. 777-815
|
[35] |
I.L. Egun, H.Y. He, D. Hu, G.Z. Chen. Molten salt carbonization and activation of biomass to functional biocarbon. Adv Sustainable Syst, 6 (12) ( 2022), Article 2200294
|
[36] |
S. Frangini, A. Masi.Molten carbonates for advanced and sustainable energy applications: part I. Revisiting molten carbonate properties from a sustainable viewpoint. Int J Hydrogen Energy, 41 (41) ( 2016), pp. 18739-18746
|
[37] |
J.C. Gomez-Vidal, E. Morton. Castable cements to prevent corrosion of metals in molten salts. Sol Energy Mater Sol Cells, 153 ( 2016), pp. 44-51
|
[38] |
B. Li, J.Z. Tang, X. Xie, J.T. Wei, D.L. Xu, L. Shi, et al.. Char structure evolution during molten salt pyrolysis of biomass: effect of temperature. Fuel, 331 ( 2023), Article 125747
|
[39] |
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 16, revision A.03 [software]. Wallingford CT: Gaussian, incorporated; 2016.
|
[40] |
T. Lu, F. Chen. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem, 33 (5) ( 2012), pp. 580-592
|
[41] |
A.A. Raeva, N. Dongari, A.A. Artemyeva, E.I. Kozliak, D.T. Pierce, W.S. Seames. Experimental simulation of trace element evolution from the excluded mineral fraction during coal combustion using GFAAS and TGA-DSC. Fuel, 124 ( 2014), pp. 28-40
|
[42] |
D.H. Ding, S.J. Yang, X.Y. Qian, L.W. Chen, T.M. Cai. Nitrogen-doping positively whilst sulfur-doping negatively affect the catalytic activity of biochar for the degradation of organic contaminant. Appl Catal B, 263 ( 2020), Article 118348
|
[43] |
A.C. Ferrari, J. Robertson. Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B Condens Matter Mater Phys, 61 (20) ( 2000), pp. 14095-14107
|
[44] |
X.C. Yan, Y. Jia, X.D. Yao. Defects on carbons for electrocatalytic oxygen reduction. Chem Soc Rev, 47 (20) ( 2018), pp. 7628-7658
|
[45] |
Z. Wang, Z. Liu, C. Yuan, X. Zhao, Y. Zhang, Z. Liu. Construction of a novel closed-loop livestock waste valorization paradigm: bridging manure and ammonia gas via phosphate-doped hydrochar. ACS EST Eng, 2 (9) ( 2022), pp. 1732-1744
|
[46] |
Y.K. Pan, H. Xu, M.Q. Chen, K.D. Wu, Y.Y. Zhang, D.H. Long. Unveiling the nature of room-temperature O2 activation and O2 •- enrichment on MgO-loaded porous carbons with efficient H2S oxidation. ACS Catal, 11 (10) ( 2021), pp. 5974-5983
|
[47] |
Z.Y. Liu, Z.H. Wang, S. Tang, Z.D. Liu. Fabrication, characterization and sorption properties of activated biochar from livestock manure via three different approaches. Resour Conserv Recycl, 168 ( 2021), Article 105254
|
[48] |
Z.Y. Zhou, P. Liu, S. Wang, Y.Z. Finfrock, Z.H. Ye, Y. Feng, et al.. Iron-modified biochar-based bilayer permeable reactive barrier for Cr(VI) removal. J Hazard Mater, 439 ( 2022), Article 129636
|
[49] |
J.J. Yang, J.L. Wang, H. Li, Y.R. Deng, C. Yang, Q. Zhao, et al.. Nitrogen-doped biochar as peroxymonosulfate activator to degrade 2,4-dichlorophenol: preparation, properties and structure-activity relationship. J Hazard Mater, 424 ( 2022), Article 127743
|
[50] |
Y.F. Wang, S.L. Zuo, J.X. Yang, S.H. Yoon. Evolution of phosphorus-containing groups on activated carbons during heat treatment. Langmuir, 33 (12) ( 2017), pp. 3112-3122
|
[51] |
W. Liu, H. Jiang, H. Yu. Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev, 115 (22) ( 2015), pp. 12251-12285
|
[52] |
F. Lian, G.N. Cui, Z.Q. Liu, L. Duo, G.L. Zhang, B.S. Xing. One-step synthesis of a novel N-doped microporous biochar derived from crop straws with high dye adsorption capacity. J Environ Manage, 176 ( 2016), pp. 61-68
|
[53] |
A. Zhao, S.J. Liu, J.G. Yao, F.P. Huang, Z.S. He, J. Liu. Characteristics of bio-oil and biochar from cotton stalk pyrolysis: effects of torrefaction temperature and duration in an ammonia environment. Bioresour Technol, 343 ( 2022), Article 126145
|
[54] |
L. Liu, X. Yang, S. Ahmad, X. Li, C. Ri, J. Tang, et al.. Silicon (Si) modification of biochars from different Si-bearing precursors improves cadmium remediation. Chem Eng J, 457 ( 2023), Article 141194
|
[55] |
H. Liu, N. Lyczko, A. Nzihou, C. Eskicioglu. Incorporating hydrothermal liquefaction into wastewater treatment—part II: characterization, environmental impacts, and potential applications of hydrochar. J Clean Prod, 383 ( 2023), Article 135398
|
[56] |
V. Kahlenberg. Structural chemistry of anhydrous sodium silicates—a review. Chimia, 64 (10) ( 2010), pp. 716-722
|
[57] |
J. Deng, T.Y. Xiong, F. Xu, M.M. Li, C.L. Han, Y.T. Gong, et al.. Inspired by bread leavening: one-pot synthesis of hierarchically porous carbon for supercapacitors. Green Chem, 17 (7) ( 2015), pp. 4053-4060
|
[58] |
K. Koyasu, T. Ohtaki, F. Misaizu. Temperature dependence of ion mobility of carbon cluster cations: intermediate region connecting low-and high-field conditions. Bull Chem Soc Jpn, 84 (12) ( 2011), pp. 1342-1346
|
[59] |
H.S. Shang, Y.J. Lu, F. Zhao, C. Chao, B. Zhang, H.S. Zhang. Preparing high surface area porous carbon from biomass by carbonization in a molten salt medium. RSC Adv, 5 (92) ( 2015), pp. 75728-75734
|
[60] |
S. Yu, J. Liu, Y. Yin, M. Shen. Interactions between engineered nanoparticles and dissolved organic matter: a review on mechanisms and environmental effects. J Environ Sci, 63 ( 2018), pp. 198-217
|
[61] |
D.W. Kang, S.E. Ju, D.W. Kim, M. Kang, H. Kim, C.S. Hong. Emerging porous materials and their composites for NH3 gas removal. Adv Sci, 7 (24) (2020), Article 2002142
|
[62] |
C. Petit, T.J. Bandosz. Enhanced adsorption of ammonia on metal-organic framework/graphite oxide composites: analysis of surface interactions. Adv Funct Mater, 20 (1) ( 2010), pp. 111-118
|
[63] |
W.H. Zheng, J.T. Hu, S. Rappeport, Z. Zheng, Z.X. Wang, Z.S. Han, et al.. Activated carbon fiber composites for gas phase ammonia adsorption. Microp Mesop Mat, 234 ( 2016), pp. 146-154
|
[64] |
C. Petit, K. Kante, T.J. Bandosz. The role of sulfur-containing groups in ammonia retention on activated carbons. Carbon, 48 (3) ( 2010), pp. 654-667
|
[65] |
N. Le-Minh, E.C. Sivret, A. Shammay, R.M. Stuetz. Factors affecting the adsorption of gaseous environmental odors by activated carbon: a critical review. Crit Rev Environ Sci Technol, 48 (4) ( 2018), pp. 341-375
|
[66] |
E. Frackowiak, F. Beguin. Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 39 (6) ( 2001), pp. 937-950
|
[67] |
L. Klüpfel, M. Keiluweit, M. Kleber, M. Sander. Redox properties of plant biomass-derived black carbon (biochar). Environ Sci Technol, 48 (10) ( 2014), pp. 5601-5611
|
[68] |
M. Uchimiya, A.T. Stone. Redox reactions between iron and quinones: thermodynamic constraints. Geochim Cosmochim Acta, 70 (6) ( 2006), pp. 1388-1401
|
[69] |
H.P. Boehm. Free radicals and graphite. Carbon, 50 (9) ( 2012), pp. 3154-3157
|
[70] |
M. Keiluweit, P.S. Nico, M.G. Johnson, M. Kleber. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol, 44 (4) ( 2010), pp. 1247-1253
|
[71] |
T.J. Bandosz, C. Petit. On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds. J Colloid Interface Sci, 338 (2) ( 2009), pp. 329-345
|
[72] |
C.C. Rodrigues, D. de Moraes Jr, S.W. Da Nobrega, M.G. Barboza. Ammonia adsorption in a fixed bed of activated carbon. Bioresour Technol, 98 (4) ( 2007), pp. 886-891
|
[73] |
C.C. Huang, H.S. Li, C.H. Chen. Effect of surface acidic oxides of activated carbon on adsorption of ammonia. J Hazard Mater, 159 (2-3) ( 2008), pp. 523-527
|
[74] |
C. Petit, T.J. Bandosz. Removal of ammonia from air on molybdenum and tungsten oxide modified activated carbons. Environ Sci Technol, 42 (8) ( 2008), pp. 3033-3039
|
[75] |
N.A. Travlou, M. Seredych, E. Rodríguez-Castellón, T.J. Bandosz. Insight into ammonia sensing on heterogeneous S- and N-co-doped nanoporous carbons. Carbon, 96 ( 2016), pp. 1014-1021
|
[76] |
S. Kang, J. Chun, N. Park, S.M. Lee, H.J. Kim, S.U. Son. Hydrophobic zeolites coated with microporous organic polymers: adsorption behavior of ammonia under humid conditions. Chem Commun, 51 (59) ( 2015), pp. 11814-11817
|
[77] |
H. Jasuja, G.W. Peterson, J.B. Decoste, M.A. Browe, K.S. Walton. Evaluation of MOFs for air purification and air quality control applications: ammonia removal from air. Chem Eng Sci, 124 ( 2015), pp. 118-124
|