熔融碳酸盐突破水热炭中碳-灰刚性屏障——从高灰分生物质废弃物到可持续平台碳材料

Zihan Wang, Leli Zhang, Yuanhui Zhang, Zhidan Liu

工程(英文) ›› 2024, Vol. 36 ›› Issue (5) : 167-177.

PDF(3294 KB)
PDF(3294 KB)
工程(英文) ›› 2024, Vol. 36 ›› Issue (5) : 167-177. DOI: 10.1016/j.eng.2024.01.009
研究论文
Article

熔融碳酸盐突破水热炭中碳-灰刚性屏障——从高灰分生物质废弃物到可持续平台碳材料

作者信息 +

Breakthrough of Carbon-Ash Recalcitrance in Hydrochar via Molten Carbonate: Engineering Mineral-Rich Biowaste Toward Sustainable Platform Carbon Materials

Author information +
History +

Abstract

The function-led design of porous hydrochar from mineral-rich biowaste for environmental applications inevitably suffers from carbon-ash recalcitrance. However, a method to alter the original carbon skeleton with ash remains elusive and hinders the availability of hydrochar. Herein, we propose a facile strategy for breaking the rigid structure of carbon-ash coupled hydrochar using phase-tunable molten carbonates. A case system was designed in which livestock manure and NaHCO3 were used to prepare the activated hydrochar, and NH3 served as the target contaminant. Due to the redox effect, we found that organic fractions significantly advanced the melting temperature of Na2CO3 below 800 °C. The Na species steadily broke the carbon-ash interaction as the thermal intensity increased and transformed inorganic constituents to facilitate ash dissolution, rebuilding the hydrochar skeleton with abundant hierarchical channels and active defect edges. The surface polarity and mesopore distribution collectively governed the five cycles NH3 adsorption attenuation process. Manure hydrochar delivered favorable potential for application with a maximum overall adsorption capacity of 100.49 mg·g−1. Integrated spectroscopic characterization and theoretical computations revealed that incorporating NH3 on the carbon surface could transfer electrons to chemisorbed oxygen, which promoted the oxidation of pyridine-N during adsorption. This work offers deep insight into the structure function correlation of hydrochar and inspires a more rational design of engineered hydrochar from high-ash biowaste.

关键词

水热炭 / 畜禽粪污 / 氨气吸附 / 脱灰 / 活性氧

Keywords

Hydrochar / Livestock manure / Ammonia adsorption / Deashing / Oxygen activation

引用本文

导出引用
Zihan Wang, Leli Zhang, Yuanhui Zhang. 熔融碳酸盐突破水热炭中碳-灰刚性屏障——从高灰分生物质废弃物到可持续平台碳材料. Engineering. 2024, 36(5): 167-177 https://doi.org/10.1016/j.eng.2024.01.009

参考文献

[1]
R. Bleischwitz, C. Spataru, S.D. VanDeveer, M. Obersteiner, E. van der Voet, C. Johnson, et al.. Resource nexus perspectives towards the United Nations Sustainable Development Goals. Nat Sustain, 1 (12) ( 2018), pp. 737-743
[2]
S. Vanhamäki, M. Virtanen, S. Luste, K. Manskinen. Transition towards a circular economy at a regional level: a case study on closing biological loops. Resour Conserv Recycling, 156 ( 2020), Article 104716
[3]
D. Griggs, M. Stafford-Smith, O. Gaffney, J. Rockström, M.C. Öhman, P. Shyamsundar, et al.. Sustainable development goals for people and planet. Nature, 495 (7441) ( 2013), pp. 305-307
[4]
S.K. Malyan, S.S. Kumar, R.K. Fagodiya, P. Ghosh, A. Kumar, R. Singh, et al.. Biochar for environmental sustainability in the energy-water-agroecosystem nexus. Renew Sustain Energy Rev, 149 ( 2021), Article 111379
[5]
L. Xia, L. Cao, Y. Yang, C. Ti, Y. Liu, P. Smith, et al.. Integrated biochar solutions can achieve carbon-neutral staple crop production. Nat Food, 4 (3) ( 2023), pp. 236-246
[6]
S. Yu, X. Dong, P. Zhao, Z. Luo, Z. Sun, X. Yang, et al.. Decoupled temperature and pressure hydrothermal synthesis of carbon sub-micron spheres from cellulose. Nat Commun, 13 (1) ( 2022), Article 3616
[7]
Z.K. Zhang, Z.Y. Zhu, B.X. Shen, L.N. Liu. Insights into biochar and hydrochar production and applications: a review. Energy, 171 ( 2019), pp. 581-598
[8]
J.X. Huang, Y.F. Feng, H.F. Xie, P. Wu, M.L. Wang, B.Y. Wang, et al.. A bibliographic study reviewing the last decade of hydrochar in environmental application: history, status quo, and trending research paths. Biochar, 5 (1) ( 2023), p. 12
[9]
C.Y. Tang, F. Yang, M. Antonietti. Carbon materials advancing microorganisms in driving soil organic carbon regulation. Research, 2022 ( 2022), Article 9857374
[10]
N.N. Guo, M. Li, X.K. Sun, F. Wang, R. Yang. Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities. Green Chem, 19 (11) ( 2017), pp. 2595-2602
[11]
S. Zhuo, H. Ren, G. Xie, D. Xing, B. Liu. Conversion mechanism of biomass to nano zero-valent iron biochar: iron phase transfer and in situ reduction. Engineering, 21 ( 2023), pp. 124-134
[12]
X. Xiao, B. Chen, Z. Chen, L. Zhu, J.L. Schnoor. Insight into multiple and multilevel structures of biochars and their potential environmental applications. Crit Rev Environ Sci Technol, 52 (9) ( 2018), pp. 5027-5047
[13]
J. Jin, M. Wang, Y. Cao, S. Wu, P. Liang, Y. Li, et al.. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: biochar properties and environmental risk from metals. Bioresour Technol, 228 ( 2017), pp. 218-226
[14]
H.G. Li, M.J. Cao, J. Watson, Y.H. Zhang, Z.D. Liu. In situ hydrochar regulates Cu fate and speciation: insights into transformation mechanism. J Hazard Mater, 410 ( 2021), Article 124616
[15]
S. Yoshida, Y. Ohnishi, K. Kitagishi. Histochemistry of silicon in rice plant. Soil Sci Plant Nutr, 8 (1) ( 1962), pp. 36-41
[16]
H.S. Shen, F. Sundstøl, E.R. Eng, L.O. Eik. Studies on untreated and urea-treated rice straw from three cultivation seasons: 3. histological investigations by light and scanning electron microscopy. Anim Feed Sci Technol, 80 (2) ( 1999), pp. 151-159
[17]
K.B. Cantrell, P.G. Hunt, M. Uchimiya, J.M. Novak, K.S. Ro. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol, 107 ( 2012), pp. 419-428
[18]
J.W. Jin, Y.N. Li, J.Y. Zhang, S.C. Wu, Y.C. Cao, P. Liang, et al.. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge. J Hazard Mater, 320 ( 2016), pp. 417-426
[19]
Z.Y. Liu, Z.H. Wang, H.X. Chen, T. Cai, Z.D. Liu. Hydrochar and pyrochar for sorption of pollutants in wastewater and exhaust gas: a critical review. Environ Pollut, 268 ( 2021), Article 115910
[20]
S.A. Nicolae, H. Au, P. Modugno, H. Luo, A.E. Szego, M. Qiao, et al.. Recent advances in hydrothermal carbonisation: from tailored carbon materials and biochemicals to applications and bioenergy. Green Chem, 22 (15) ( 2020), pp. 4747-4800
[21]
Z. Liu, X. Zhao, L. Xu, Q. Peng, X. He. A novel hierarchically lightweight porous carbon derived from egg white for strong microwave absorption. Engineering, 18 ( 2022), pp. 161-172
[22]
X. Li, R. Wang, C. Shao, D. Li, S. Bai, N. Hou, et al.. Biochar and hydrochar from agricultural residues for soil conditioning: life cycle assessment and microbially mediated C and N cycles. ACS Sustain Chem Eng, 10 (11) ( 2022), pp. 3574-3583
[23]
J. Guo, B. Chen. Insights on the molecular mechanism for the recalcitrance of biochars: interactive effects of carbon and silicon components. Environ Sci Technol, 48 (16) ( 2014), pp. 9103-9112
[24]
Y.L. Xu, B.L. Chen. Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresour Technol, 146 ( 2013), pp. 485-493
[25]
L. Han, K.S. Ro, Y. Wang, K. Sun, H. Sun, J.A. Libra, et al.. Oxidation resistance of biochars as a function of feedstock and pyrolysis condition. Sci Total Environ, 616 ( 2018), pp. 335-344
[26]
Y. Wang, X. Xiao, Y. Xu, B. Chen. Environmental effects of silicon within biochar (sichar) and carbon-silicon coupling mechanisms. Crit Rev Environ Sci Technol, 53 (23) ( 2019), pp. 13570-13582
[27]
X. Xiao, B. Chen, L. Zhu. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures. Environ Sci Technol, 48 (6) ( 2014), pp. 3411-3419
[28]
X. Zhu, Y. Liu, F. Qian, C. Zhou, S. Zhang, J. Chen. Role of hydrochar properties on the porosity of hydrochar-based porous carbon for their sustainable application. ACS Sustain Chem Eng, 3 (5) ( 2015), pp. 833-840
[29]
C. Gai, F. Zhang, Q. Lang, T. Liu, N. Peng, Z. Liu. Facile one-pot synthesis of iron nanoparticles immobilized into the porous hydrochar for catalytic decomposition of phenol. Appl Catal B, 204 ( 2017), pp. 566-576
[30]
X. Zhu, M. Sun, X. Zhu, W. Guo, Z. Luo, W. Cai, et al.. Molten salt shielded pyrolysis of biomass waste: development of hierarchical biochar, salt recovery, CO2 adsorption. Fuel, 334 ( 2023), Article 126565
[31]
Y.P. Xie, H.P. Yang, K. Zeng, Y.J. Zhu, J.H. Hu, Q.T. Mao, et al.. Study on CO2 gasification of biochar in molten salts: reactivity and structure evolution. Fuel, 254 ( 2019), Article 115614
[32]
J.H. Shen, H.Y. Hu, M. Xu, H. Liu, K. Xu, X.J. Zhang, et al.. Interactions between molten salts and ash components during Zhundong coal gasification in eutectic carbonates. Fuel, 207 ( 2017), pp. 365-372
[33]
W. Chen, M. Gong, K.X. Li, M.W. Xia, Z.Q. Chen, H.Y. Xiao, et al.. Insight into KOH activation mechanism during biomass pyrolysis: chemical reactions between O-containing groups and KOH. Appl Energy, 278 ( 2020), Article 115730
[34]
B. Sajjadi, T. Zubatiuk, D. Leszczynska, J. Leszczynski, W.Y. Chen. Chemical activation of biochar for energy and environmental applications: a comprehensive review. Rev Chem Eng, 35 (7) ( 2019), pp. 777-815
[35]
I.L. Egun, H.Y. He, D. Hu, G.Z. Chen. Molten salt carbonization and activation of biomass to functional biocarbon. Adv Sustainable Syst, 6 (12) ( 2022), Article 2200294
[36]
S. Frangini, A. Masi.Molten carbonates for advanced and sustainable energy applications: part I. Revisiting molten carbonate properties from a sustainable viewpoint. Int J Hydrogen Energy, 41 (41) ( 2016), pp. 18739-18746
[37]
J.C. Gomez-Vidal, E. Morton. Castable cements to prevent corrosion of metals in molten salts. Sol Energy Mater Sol Cells, 153 ( 2016), pp. 44-51
[38]
B. Li, J.Z. Tang, X. Xie, J.T. Wei, D.L. Xu, L. Shi, et al.. Char structure evolution during molten salt pyrolysis of biomass: effect of temperature. Fuel, 331 ( 2023), Article 125747
[39]
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 16, revision A.03 [software]. Wallingford CT: Gaussian, incorporated; 2016.
[40]
T. Lu, F. Chen. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem, 33 (5) ( 2012), pp. 580-592
[41]
A.A. Raeva, N. Dongari, A.A. Artemyeva, E.I. Kozliak, D.T. Pierce, W.S. Seames. Experimental simulation of trace element evolution from the excluded mineral fraction during coal combustion using GFAAS and TGA-DSC. Fuel, 124 ( 2014), pp. 28-40
[42]
D.H. Ding, S.J. Yang, X.Y. Qian, L.W. Chen, T.M. Cai. Nitrogen-doping positively whilst sulfur-doping negatively affect the catalytic activity of biochar for the degradation of organic contaminant. Appl Catal B, 263 ( 2020), Article 118348
[43]
A.C. Ferrari, J. Robertson. Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B Condens Matter Mater Phys, 61 (20) ( 2000), pp. 14095-14107
[44]
X.C. Yan, Y. Jia, X.D. Yao. Defects on carbons for electrocatalytic oxygen reduction. Chem Soc Rev, 47 (20) ( 2018), pp. 7628-7658
[45]
Z. Wang, Z. Liu, C. Yuan, X. Zhao, Y. Zhang, Z. Liu. Construction of a novel closed-loop livestock waste valorization paradigm: bridging manure and ammonia gas via phosphate-doped hydrochar. ACS EST Eng, 2 (9) ( 2022), pp. 1732-1744
[46]
Y.K. Pan, H. Xu, M.Q. Chen, K.D. Wu, Y.Y. Zhang, D.H. Long. Unveiling the nature of room-temperature O2 activation and O2 •- enrichment on MgO-loaded porous carbons with efficient H2S oxidation. ACS Catal, 11 (10) ( 2021), pp. 5974-5983
[47]
Z.Y. Liu, Z.H. Wang, S. Tang, Z.D. Liu. Fabrication, characterization and sorption properties of activated biochar from livestock manure via three different approaches. Resour Conserv Recycl, 168 ( 2021), Article 105254
[48]
Z.Y. Zhou, P. Liu, S. Wang, Y.Z. Finfrock, Z.H. Ye, Y. Feng, et al.. Iron-modified biochar-based bilayer permeable reactive barrier for Cr(VI) removal. J Hazard Mater, 439 ( 2022), Article 129636
[49]
J.J. Yang, J.L. Wang, H. Li, Y.R. Deng, C. Yang, Q. Zhao, et al.. Nitrogen-doped biochar as peroxymonosulfate activator to degrade 2,4-dichlorophenol: preparation, properties and structure-activity relationship. J Hazard Mater, 424 ( 2022), Article 127743
[50]
Y.F. Wang, S.L. Zuo, J.X. Yang, S.H. Yoon. Evolution of phosphorus-containing groups on activated carbons during heat treatment. Langmuir, 33 (12) ( 2017), pp. 3112-3122
[51]
W. Liu, H. Jiang, H. Yu. Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev, 115 (22) ( 2015), pp. 12251-12285
[52]
F. Lian, G.N. Cui, Z.Q. Liu, L. Duo, G.L. Zhang, B.S. Xing. One-step synthesis of a novel N-doped microporous biochar derived from crop straws with high dye adsorption capacity. J Environ Manage, 176 ( 2016), pp. 61-68
[53]
A. Zhao, S.J. Liu, J.G. Yao, F.P. Huang, Z.S. He, J. Liu. Characteristics of bio-oil and biochar from cotton stalk pyrolysis: effects of torrefaction temperature and duration in an ammonia environment. Bioresour Technol, 343 ( 2022), Article 126145
[54]
L. Liu, X. Yang, S. Ahmad, X. Li, C. Ri, J. Tang, et al.. Silicon (Si) modification of biochars from different Si-bearing precursors improves cadmium remediation. Chem Eng J, 457 ( 2023), Article 141194
[55]
H. Liu, N. Lyczko, A. Nzihou, C. Eskicioglu. Incorporating hydrothermal liquefaction into wastewater treatment—part II: characterization, environmental impacts, and potential applications of hydrochar. J Clean Prod, 383 ( 2023), Article 135398
[56]
V. Kahlenberg. Structural chemistry of anhydrous sodium silicates—a review. Chimia, 64 (10) ( 2010), pp. 716-722
[57]
J. Deng, T.Y. Xiong, F. Xu, M.M. Li, C.L. Han, Y.T. Gong, et al.. Inspired by bread leavening: one-pot synthesis of hierarchically porous carbon for supercapacitors. Green Chem, 17 (7) ( 2015), pp. 4053-4060
[58]
K. Koyasu, T. Ohtaki, F. Misaizu. Temperature dependence of ion mobility of carbon cluster cations: intermediate region connecting low-and high-field conditions. Bull Chem Soc Jpn, 84 (12) ( 2011), pp. 1342-1346
[59]
H.S. Shang, Y.J. Lu, F. Zhao, C. Chao, B. Zhang, H.S. Zhang. Preparing high surface area porous carbon from biomass by carbonization in a molten salt medium. RSC Adv, 5 (92) ( 2015), pp. 75728-75734
[60]
S. Yu, J. Liu, Y. Yin, M. Shen. Interactions between engineered nanoparticles and dissolved organic matter: a review on mechanisms and environmental effects. J Environ Sci, 63 ( 2018), pp. 198-217
[61]
D.W. Kang, S.E. Ju, D.W. Kim, M. Kang, H. Kim, C.S. Hong. Emerging porous materials and their composites for NH3 gas removal. Adv Sci, 7 (24) (2020), Article 2002142
[62]
C. Petit, T.J. Bandosz. Enhanced adsorption of ammonia on metal-organic framework/graphite oxide composites: analysis of surface interactions. Adv Funct Mater, 20 (1) ( 2010), pp. 111-118
[63]
W.H. Zheng, J.T. Hu, S. Rappeport, Z. Zheng, Z.X. Wang, Z.S. Han, et al.. Activated carbon fiber composites for gas phase ammonia adsorption. Microp Mesop Mat, 234 ( 2016), pp. 146-154
[64]
C. Petit, K. Kante, T.J. Bandosz. The role of sulfur-containing groups in ammonia retention on activated carbons. Carbon, 48 (3) ( 2010), pp. 654-667
[65]
N. Le-Minh, E.C. Sivret, A. Shammay, R.M. Stuetz. Factors affecting the adsorption of gaseous environmental odors by activated carbon: a critical review. Crit Rev Environ Sci Technol, 48 (4) ( 2018), pp. 341-375
[66]
E. Frackowiak, F. Beguin. Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 39 (6) ( 2001), pp. 937-950
[67]
L. Klüpfel, M. Keiluweit, M. Kleber, M. Sander. Redox properties of plant biomass-derived black carbon (biochar). Environ Sci Technol, 48 (10) ( 2014), pp. 5601-5611
[68]
M. Uchimiya, A.T. Stone. Redox reactions between iron and quinones: thermodynamic constraints. Geochim Cosmochim Acta, 70 (6) ( 2006), pp. 1388-1401
[69]
H.P. Boehm. Free radicals and graphite. Carbon, 50 (9) ( 2012), pp. 3154-3157
[70]
M. Keiluweit, P.S. Nico, M.G. Johnson, M. Kleber. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol, 44 (4) ( 2010), pp. 1247-1253
[71]
T.J. Bandosz, C. Petit. On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds. J Colloid Interface Sci, 338 (2) ( 2009), pp. 329-345
[72]
C.C. Rodrigues, D. de Moraes Jr, S.W. Da Nobrega, M.G. Barboza. Ammonia adsorption in a fixed bed of activated carbon. Bioresour Technol, 98 (4) ( 2007), pp. 886-891
[73]
C.C. Huang, H.S. Li, C.H. Chen. Effect of surface acidic oxides of activated carbon on adsorption of ammonia. J Hazard Mater, 159 (2-3) ( 2008), pp. 523-527
[74]
C. Petit, T.J. Bandosz. Removal of ammonia from air on molybdenum and tungsten oxide modified activated carbons. Environ Sci Technol, 42 (8) ( 2008), pp. 3033-3039
[75]
N.A. Travlou, M. Seredych, E. Rodríguez-Castellón, T.J. Bandosz. Insight into ammonia sensing on heterogeneous S- and N-co-doped nanoporous carbons. Carbon, 96 ( 2016), pp. 1014-1021
[76]
S. Kang, J. Chun, N. Park, S.M. Lee, H.J. Kim, S.U. Son. Hydrophobic zeolites coated with microporous organic polymers: adsorption behavior of ammonia under humid conditions. Chem Commun, 51 (59) ( 2015), pp. 11814-11817
[77]
H. Jasuja, G.W. Peterson, J.B. Decoste, M.A. Browe, K.S. Walton. Evaluation of MOFs for air purification and air quality control applications: ammonia removal from air. Chem Eng Sci, 124 ( 2015), pp. 118-124
PDF(3294 KB)

Accesses

Citation

Detail

段落导航
相关文章

/