老药新用——洛哌丁胺对胞内病原菌感染的治疗作用

刘洪涛, 李思琦, 邓乐, 史真旭, 姜晨晓, 舒婧妍, 刘源, 邓旭明, 王建锋, 郭志敏, 邱家章

工程(英文) ›› 2024, Vol. 39 ›› Issue (8) : 180-193.

PDF(4356 KB)
PDF(4356 KB)
工程(英文) ›› 2024, Vol. 39 ›› Issue (8) : 180-193. DOI: 10.1016/j.eng.2024.01.011
研究论文
Article

老药新用——洛哌丁胺对胞内病原菌感染的治疗作用

作者信息 +

Repurposing Loperamide as an Anti-Infection Drug for the Treatment of Intracellular Bacterial Pathogens

Author information +
History +

摘要

多数抗生素对细胞膜的渗透性较低,且极易在细胞内被降解,导致抗生素在细胞内难以达到有效杀菌浓度,加之耐药菌株的出现和快速传播,使得胞内菌感染的治疗面临巨大挑战。病原菌与宿主细胞相互作用机制的阐明促进了宿主导向疗法(host-directed therapy, HDT)的快速发展。HDT已发展成为最具潜力的抗胞内菌感染的方法之一。基于此,本研究采用庆大霉素保护试验从FDA批准的药物库中筛选能够抑制鼠伤寒沙门氏菌(Salmonella Typhimurium, ST)胞内增殖的药物,发现洛哌丁胺(Loperamide, LPD)可显著抑制ST的胞内增殖。机制研究结果表明LPD处理可促进感染细胞发生自噬并增强其溶酶体活性。进一步研究发现高表达的非转移性黑色素瘤糖蛋白B(glycoprotein nonmetastatic melanoma protein B, GPNMB)介导了LPD诱导的细胞自噬和对胞内菌的清除。动物实验结果表明LPD治疗可显著提升ST感染的大蜡螟幼虫和小鼠模型的存活率、降低感染小鼠靶器官的菌落定殖、缓解ST感染所致的病理损伤。综上所述,本研究为基于HDT策略抗感染药物的开发提供了一种作用机制明确的先导化合物。

Abstract

Infections caused by intracellular bacterial pathogens are difficult to treat since most antibiotics have low cell permeability and undergo rapid degradation within cells. The rapid development and dissemination of antimicrobial-resistant strains have exacerbated this dilemma. With the increasing knowledge of host-pathogen interactions, especially bacterial strategies for survival and proliferation within host cells, host-directed therapy (HDT) has attracted increased interest and has emerged as a promising anti-infection method for treating intracellular infection. Herein, we applied a cell-based screening approach to a US Food and Drug Administration (FDA)-approved drug library to identify compounds that can inhibit the intracellular replication of Salmonella Typhimurium (S. Typhimurium). This screening allowed us to identify the antidiarrheal agent loperamide (LPD) as a potent inhibitor of S. Typhimurium intracellular proliferation. LPD treatment of infected cells markedly promoted the host autophagic response and lysosomal activity. A mechanistic study revealed that the increase in host autophagy and elimination of intracellular bacteria were dependent on the high expression of glycoprotein nonmetastatic melanoma protein B (GPNMB) induced by LPD. In addition, LPD treatment effectively protected against S. Typhimurium infection in Galleria mellonella and mouse models. Thus, our study suggested that LPD may be useful for the treatment of diseases caused by intracellular bacterial pathogens. Moreover, LPD may serve as a promising lead compound for the development of anti-infection drugs based on the HDT strategy.

关键词

胞内菌 / FDA药物 / 老药新用 / 洛哌丁胺 / 自噬 / 非转移性黑色素瘤糖蛋白B /

Keywords

Intracellular bacteria / US Food and Drug Administration (FDA)-approved drugs / Drug repurposing / Loperamide / Autophagy / Glycoprotein nonmetastatic melanoma / protein B

引用本文

导出引用
刘洪涛, 李思琦, 邓乐. 洛哌丁胺对胞内病原菌感染的治疗作用. Engineering. 2024, 39(8): 180-193 https://doi.org/10.1016/j.eng.2024.01.011

参考文献

[1]
M.A. Collier, M.D. Gallovic, K.J. Peine, A.D. Duong, E.M. Bachelder, J.S. Gunn, et al. Delivery of host cell-directed therapeutics for intracellular pathogen clearance. Expert Rev Anti Infect Ther, 11 (11) (2013), pp. 1225-1235.
[2]
A. Zumla, M. Raviglione, R. Hafner, C.F. von Reyn. Tuberculosis. N Engl J Med, 368 (2013), pp. 745-755.
[3]
J.A. Crump, S.P. Luby, E.D. Mintz. The global burden of typhoid fever. Bull WHO, 82 (5) (2004), pp. 346-353.
[4]
Y.Y. Liu, Y. Wang, T.R. Walsh, L.X. Yi, R. Zhang, J. Spencer, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis, 16 (2) (2016), pp. 161-168.
[5]
K.K. Kumarasamy, M.A. Toleman, T.R. Walsh, J. Bagaria, F. Butt, R. Balakrishnan, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis, 10 (9) (2010), pp. 597-602.
[6]
T. He, R. Wang, D. Liu, T.R. Walsh, R. Zhang, Y. Lv, et al. Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nat Microbiol, 4 (9) (2019), pp. 1450-1456.
[7]
J. Sun, C. Chen, C.Y. Cui, Y. Zhang, X. Liu, Z.H. Cui, et al. Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in Escherichia coli. Nat Microbiol, 4 (9) (2019), pp. 1457-1464.
[8]
J. Hardie, J.M. Makabenta, A. Gupta, R. Huang, R. Cao-Milán, R. Goswami, et al. Selective treatment of intracellular bacterial infections using host cell-targeted bioorthogonal nanozymes. Mater Horiz, 9 (5) (2022), pp. 1489-1494.
[9]
M.E.A. De Kraker, A.J. Stewardson, S. Harbarth. Will 10 million people die a year due to antimicrobial resistance by 2050>. PLoS Med, 13 (11) (2016), Article e1002184.
[10]
S.H.E. Kaufmann, A. Dorhoi, R.S. Hotchkiss, R. Bartenschlager. Host-directed therapies for bacterial and viral infections. Nat Rev Drug Discovery, 17 (1) (2018), pp. 35-56.
[11]
Y. Xu, P. Zhou, S. Cheng, Q. Lu, K. Nowak, A.K. Hopp, et al. A bacterial effector reveals the V-Atpase-ATG16L 1 axis that initiates xenophagy. Cell, 178 (3) (2019), pp. 552-566.e20.
[12]
P. Li, W. Jiang, Q. Yu, W. Liu, P. Zhou, J. Li, et al. Ubiquitination and degradation of GBPs by a Shigella effector to suppress host defence. Nature, 551 (7680) (2017), pp. 378-383.
[13]
A. Zumla, M. Rao, R.S. Wallis, S.H.E. Kaufmann, R. Rustomjee, P. Mwaba, et al. Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. Lancet Infect Dis, 16 (4) (2016), pp. e47-e63.
[14]
S. Pushpakom, F. Iorio, P.A. Eyers, K.J. Escott, S. Hopper, A. Wells, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discovery, 18 (1) (2019), pp. 41-58.
[15]
Y. Shi, Z. Sun, Y. Liu, J. Shu, Y. Zhang, Q. Lv, et al. Inhibition of the type III secretion system of Salmonella enterica serovar Typhimurium via treatment with fraxetin. Microbiol Spectrum, 10 (6) (2022), Article e0294922.
[16]
S. Cheng, L. Wang, Q. Liu, L. Qi, K. Yu, Z. Wang, et al. Identification of a novel Salmonella type III effector by quantitative secretome profiling. Mol Cell Proteomics, 16 (12) (2017), pp. 2219-2228.
[17]
L.K. Tsou, M. Lara-Tejero, J. RoseFigura, Z.J. Zhang, Y.C. Wang, J.S. Yount, et al. Antibacterial flavonoids from medicinal plants covalently inactivate type III protein secretion substrates. J Am Chem Soc, 138 (7) (2016), pp. 2209-2218.
[18]
L. Lou, P. Zhang, R. Piao, Y. Wang. Salmonella pathogenicity island 1 (SPI-1) and its complex regulatory network. Front Cell Infect Microbiol, 9 (2019), p. 270.
[19]
E. Jennings, T.L.M. Thurston, D.W. Holden. Salmonella SPI-2 Type III secretion system effectors: molecular mechanisms and physiological consequences. Cell Host Microbe, 22 (2) (2017), pp. 217-231.
[20]
T.A. Wynn, A. Chawla, J.W. Pollard. Macrophage biology in development, homeostasis and disease. Nature, 496 (7446) (2013), pp. 445-455.
[21]
R.E. Lawrence, R. Zoncu. The lysosome as a cellular centre for signalling, metabolism and quality control. Nat Cell Biol, 21 (2) (2019), pp. 133-142.
[22]
B.K. Kennedy, D.W. Lamming. The mechanistic target of rapamycin: the grand ConducTOR of metabolism and aging. Cell Metab, 23 (6) (2016), pp. 990-1003.
[23]
Y.C. Kim, K.L. Guan. mTOR: a pharmacologic target for autophagy regulation. J Clin Invest, 125 (1) (2015), pp. 25-32.
[24]
M.J.C. Van der Lienden, P. Gaspar, R. Boot, J.M.F.G. Aerts, M. van Eijk. Glycoprotein non-metastatic protein B: an emerging biomarker for lysosomal dysfunction in macrophages. Int J Mol Sci, 20 (1) (2018), p. 66.
[25]
M. Saade, G.A. de Souza, C. Scavone, P.F. Kinoshita. The role of GPNMB in inflammation. Front Immunol, 12 (2021), Article 674739.
[26]
P. Robinet, B. Ritchey, S.W. Lorkowski, A.M. Alzayed, S. DeGeorgia, E. Schodowski, et al. Quantitative trait locus mapping identifies the Gpnmb gene as a modifier of mouse macrophage lysosome function. Sci Rep, 11 (1) (2021), p. 10249.
[27]
Z. Zhu, Y. Liu, X. Li, L. Zhang, H. Liu, Y. Cui, et al. GPNMB mitigates Alzheimer’s disease and enhances autophagy via suppressing the mTOR signal. Neurosci Lett, 767 (2022), Article 136300.
[28]
P.M. Tulkens. Intracellular distribution and activity of antibiotics. Eur J Clin Microbiol Infect Dis, 10 (2) (1991), pp. 100-106.
[29]
L. Jiang, M.K. Greene, J.L. Insua, J.S. Pessoa, D.M. Small, P. Smyth, et al. Clearance of intracellular Klebsiella pneumoniae infection using gentamicin-loaded nanoparticles. J Controlled Release, 279 (2018), pp. 316-325.
[30]
B.P. Willing, S.L. Russell, B.B. Finlay. Shifting the balance: antibiotic effects on host-microbiota mutualism. Nat Rev Microbiol, 9 (4) (2011), pp. 233-243.
[31]
K. Lewis. The science of antibiotic discovery. Cell, 181 (1) (2020), pp. 29-45.
[32]
A.A. Baranova, V.A. Alferova, V.A. Korshun, A.P. Tyurin. Modern trends in natural antibiotic discovery. Life, 13 (5) (2023), p. 1073.
[33]
L.L. Ling, T. Schneider, A.J. Peoples, A.L. Spoering, I. Engels, B.P. Conlon, et al. A new antibiotic kills pathogens without detectable resistance. Nature, 517 (7535) (2015), pp. 455-459.
[34]
Y. Imai, K.J. Meyer, A. Iinishi, Q. Favre-Godal, R. Green, S. Manuse, et al. A new antibiotic selectively kills Gram-negative pathogens. Nature, 576 (7787) (2019), pp. 459-464.
[35]
T.D. Pillay, S.U. Hettiarachchi, J. Gan, I. Diaz-Del-Olmo, X.J. Yu, J.H. Muench, et al. Speaking the host language: how Salmonella effector proteins manipulate the host. Microbiology, 169 (6) (2023), Article 001342.
[36]
A.T.Y. Yeung, Y.H. Choi, A.H.Y. Lee, C. Hale, H. Ponstingl, D. Pickard, et al. A genome-wide knockout screen in human macrophages identified host factors modulating Salmonella infection. mBio, 10 (5) (2019), pp. e02169-19.
[37]
Y. Lai, L. Cui, G.H. Babunovic, S.M. Fortune, J.G. Doench, T.K. Lu. High-throughput CRISPR screens to dissect macrophage—Shigella interactions. mBio, 12 (6) (2021), Article e0215821.
[38]
Z. Wang, C. Li. Xenophagy in innate immunity: a battle between host and pathogen. Dev Comp Immunol, 109 (2020), p. 103693.
[39]
K.C. Matteucci, A.A.S. Correa, D.L. Costa. Recent advances in host-directed therapies for tuberculosis and malaria. Front Cell Infect Microbiol, 12 (2022), p. 905278.
[40]
S.A. Stanley, A.K. Barczak, M.R. Silvis, S.S. Luo, K. Sogi, M. Vokes, et al. Identification of host-targeted small molecules that restrict intracellular Mycobacterium tuberculosis growth. PLoS Pathog, 10 (2014), p. e1003946.
[41]
N.R. Degner, J.Y. Wang, J.E. Golub, P.C. Karakousis. Metformin use reverses the increased mortality associated with diabetes mellitus during tuberculosis treatment. Clin Infect Dis, 66 (2) (2018), pp. 198-205.
[42]
A. Singhal, L. Jie, P. Kumar, G.S. Hong, M.K.S. Leow, B. Paleja, et al. Metformin as adjunct antituberculosis therapy. Sci Transl Med, 6 (263) (2014), p. 263ra159.
[43]
H.C. Chiu, S.K. Kulp, S. Soni, D. Wang, J.S. Gunn, L.S. Schlesinger, et al. Eradication of intracellular Salmonellaenterica serovar Typhimurium with a small-molecule, host cell-directed agent. Antimicrob Agents Chemother, 53 (12) (2009), pp. 5236-5244.
[44]
J. Huang, J.H. Brumell. Bacteria-autophagy interplay: a battle for survival. Nat Rev Microbiol, 12 (2) (2014), pp. 101-114.
[45]
A.H. De Wilde, D. Jochmans, C.C. Posthuma, J.C. Zevenhoven-Dobbe, S. van Nieuwkoop, T.M. Bestebroer, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother, 58 (8) (2014), pp. 4875-4884.
[46]
L. Ejim, M.A. Farha, S.B. Falconer, J. Wildenhain, B.K. Coombes, M. Tyers, et al. Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat Chem Biol, 7 (6) (2011), pp. 348-350.
[47]
Y. Zhang, L. Shi, L. Lv, Y. Zhang, H. Chen. Identification of a novel adjuvant loperamide that enhances the antibacterial activity of colistin against MCR-1-positive pathogens in vitro/vivo. Lett Appl Microbiol, 76 (2) (2023), p. ovad025.
[48]
P.E. Wu, D.N. Juurlink. Clinical review: loperamide toxicity. Ann Emerg Med, 70 (2) (2017), pp. 245-252.
[49]
C.S. Graven-Nielsen, C.S. Knoph, T. Okdahl, K.L. Høyer, K. Krogh, P.M. Hellstroem, et al. Opioids in the treatment of chronic idiopathic diarrhea in humans—a systematic review and treatment guideline. J Clin Med, 12 (7) (2023), p. 2488.
[50]
P.E. Wu, D.N. Juurlink. Loperamide cardiac toxicity: pathophysiology, presentation, and management. Can J Cardiol, 38 (9) (2022), pp. 1378-1383.
[51]
H. Miller, L. Panahi, D. Tapia, A. Tran, J.D. Bowman. Loperamide misuse and abuse. J Am Pharm Assoc, 57 (2S) (2017), pp. S45-S50.
[52]
Y. Xu, M. Wang, L. Zhang, Y. Pan, W. Zhang, W. Ma, et al. Glycoprotein non-metastatic melanoma protein B restricts PRRSV replication by inhibiting autophagosome-lysosome fusion. Viruses, 15 (4) (2023), p. 920.
PDF(4356 KB)

Accesses

Citation

Detail

段落导航
相关文章

/