[1] |
M.A. Collier, M.D. Gallovic, K.J. Peine, A.D. Duong, E.M. Bachelder, J.S. Gunn, et al. Delivery of host cell-directed therapeutics for intracellular pathogen clearance. Expert Rev Anti Infect Ther, 11 (11) (2013), pp. 1225-1235.
|
[2] |
A. Zumla, M. Raviglione, R. Hafner, C.F. von Reyn. Tuberculosis. N Engl J Med, 368 (2013), pp. 745-755.
|
[3] |
J.A. Crump, S.P. Luby, E.D. Mintz. The global burden of typhoid fever. Bull WHO, 82 (5) (2004), pp. 346-353.
|
[4] |
Y.Y. Liu, Y. Wang, T.R. Walsh, L.X. Yi, R. Zhang, J. Spencer, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis, 16 (2) (2016), pp. 161-168.
|
[5] |
K.K. Kumarasamy, M.A. Toleman, T.R. Walsh, J. Bagaria, F. Butt, R. Balakrishnan, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis, 10 (9) (2010), pp. 597-602.
|
[6] |
T. He, R. Wang, D. Liu, T.R. Walsh, R. Zhang, Y. Lv, et al. Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nat Microbiol, 4 (9) (2019), pp. 1450-1456.
|
[7] |
J. Sun, C. Chen, C.Y. Cui, Y. Zhang, X. Liu, Z.H. Cui, et al. Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in Escherichia coli. Nat Microbiol, 4 (9) (2019), pp. 1457-1464.
|
[8] |
J. Hardie, J.M. Makabenta, A. Gupta, R. Huang, R. Cao-Milán, R. Goswami, et al. Selective treatment of intracellular bacterial infections using host cell-targeted bioorthogonal nanozymes. Mater Horiz, 9 (5) (2022), pp. 1489-1494.
|
[9] |
M.E.A. De Kraker, A.J. Stewardson, S. Harbarth. Will 10 million people die a year due to antimicrobial resistance by 2050>. PLoS Med, 13 (11) (2016), Article e1002184.
|
[10] |
S.H.E. Kaufmann, A. Dorhoi, R.S. Hotchkiss, R. Bartenschlager. Host-directed therapies for bacterial and viral infections. Nat Rev Drug Discovery, 17 (1) (2018), pp. 35-56.
|
[11] |
Y. Xu, P. Zhou, S. Cheng, Q. Lu, K. Nowak, A.K. Hopp, et al. A bacterial effector reveals the V-Atpase-ATG16L 1 axis that initiates xenophagy. Cell, 178 (3) (2019), pp. 552-566.e20.
|
[12] |
P. Li, W. Jiang, Q. Yu, W. Liu, P. Zhou, J. Li, et al. Ubiquitination and degradation of GBPs by a Shigella effector to suppress host defence. Nature, 551 (7680) (2017), pp. 378-383.
|
[13] |
A. Zumla, M. Rao, R.S. Wallis, S.H.E. Kaufmann, R. Rustomjee, P. Mwaba, et al. Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. Lancet Infect Dis, 16 (4) (2016), pp. e47-e63.
|
[14] |
S. Pushpakom, F. Iorio, P.A. Eyers, K.J. Escott, S. Hopper, A. Wells, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discovery, 18 (1) (2019), pp. 41-58.
|
[15] |
Y. Shi, Z. Sun, Y. Liu, J. Shu, Y. Zhang, Q. Lv, et al. Inhibition of the type III secretion system of Salmonella enterica serovar Typhimurium via treatment with fraxetin. Microbiol Spectrum, 10 (6) (2022), Article e0294922.
|
[16] |
S. Cheng, L. Wang, Q. Liu, L. Qi, K. Yu, Z. Wang, et al. Identification of a novel Salmonella type III effector by quantitative secretome profiling. Mol Cell Proteomics, 16 (12) (2017), pp. 2219-2228.
|
[17] |
L.K. Tsou, M. Lara-Tejero, J. RoseFigura, Z.J. Zhang, Y.C. Wang, J.S. Yount, et al. Antibacterial flavonoids from medicinal plants covalently inactivate type III protein secretion substrates. J Am Chem Soc, 138 (7) (2016), pp. 2209-2218.
|
[18] |
L. Lou, P. Zhang, R. Piao, Y. Wang. Salmonella pathogenicity island 1 (SPI-1) and its complex regulatory network. Front Cell Infect Microbiol, 9 (2019), p. 270.
|
[19] |
E. Jennings, T.L.M. Thurston, D.W. Holden. Salmonella SPI-2 Type III secretion system effectors: molecular mechanisms and physiological consequences. Cell Host Microbe, 22 (2) (2017), pp. 217-231.
|
[20] |
T.A. Wynn, A. Chawla, J.W. Pollard. Macrophage biology in development, homeostasis and disease. Nature, 496 (7446) (2013), pp. 445-455.
|
[21] |
R.E. Lawrence, R. Zoncu. The lysosome as a cellular centre for signalling, metabolism and quality control. Nat Cell Biol, 21 (2) (2019), pp. 133-142.
|
[22] |
B.K. Kennedy, D.W. Lamming. The mechanistic target of rapamycin: the grand ConducTOR of metabolism and aging. Cell Metab, 23 (6) (2016), pp. 990-1003.
|
[23] |
Y.C. Kim, K.L. Guan. mTOR: a pharmacologic target for autophagy regulation. J Clin Invest, 125 (1) (2015), pp. 25-32.
|
[24] |
M.J.C. Van der Lienden, P. Gaspar, R. Boot, J.M.F.G. Aerts, M. van Eijk. Glycoprotein non-metastatic protein B: an emerging biomarker for lysosomal dysfunction in macrophages. Int J Mol Sci, 20 (1) (2018), p. 66.
|
[25] |
M. Saade, G.A. de Souza, C. Scavone, P.F. Kinoshita. The role of GPNMB in inflammation. Front Immunol, 12 (2021), Article 674739.
|
[26] |
P. Robinet, B. Ritchey, S.W. Lorkowski, A.M. Alzayed, S. DeGeorgia, E. Schodowski, et al. Quantitative trait locus mapping identifies the Gpnmb gene as a modifier of mouse macrophage lysosome function. Sci Rep, 11 (1) (2021), p. 10249.
|
[27] |
Z. Zhu, Y. Liu, X. Li, L. Zhang, H. Liu, Y. Cui, et al. GPNMB mitigates Alzheimer’s disease and enhances autophagy via suppressing the mTOR signal. Neurosci Lett, 767 (2022), Article 136300.
|
[28] |
P.M. Tulkens. Intracellular distribution and activity of antibiotics. Eur J Clin Microbiol Infect Dis, 10 (2) (1991), pp. 100-106.
|
[29] |
L. Jiang, M.K. Greene, J.L. Insua, J.S. Pessoa, D.M. Small, P. Smyth, et al. Clearance of intracellular Klebsiella pneumoniae infection using gentamicin-loaded nanoparticles. J Controlled Release, 279 (2018), pp. 316-325.
|
[30] |
B.P. Willing, S.L. Russell, B.B. Finlay. Shifting the balance: antibiotic effects on host-microbiota mutualism. Nat Rev Microbiol, 9 (4) (2011), pp. 233-243.
|
[31] |
K. Lewis. The science of antibiotic discovery. Cell, 181 (1) (2020), pp. 29-45.
|
[32] |
A.A. Baranova, V.A. Alferova, V.A. Korshun, A.P. Tyurin. Modern trends in natural antibiotic discovery. Life, 13 (5) (2023), p. 1073.
|
[33] |
L.L. Ling, T. Schneider, A.J. Peoples, A.L. Spoering, I. Engels, B.P. Conlon, et al. A new antibiotic kills pathogens without detectable resistance. Nature, 517 (7535) (2015), pp. 455-459.
|
[34] |
Y. Imai, K.J. Meyer, A. Iinishi, Q. Favre-Godal, R. Green, S. Manuse, et al. A new antibiotic selectively kills Gram-negative pathogens. Nature, 576 (7787) (2019), pp. 459-464.
|
[35] |
T.D. Pillay, S.U. Hettiarachchi, J. Gan, I. Diaz-Del-Olmo, X.J. Yu, J.H. Muench, et al. Speaking the host language: how Salmonella effector proteins manipulate the host. Microbiology, 169 (6) (2023), Article 001342.
|
[36] |
A.T.Y. Yeung, Y.H. Choi, A.H.Y. Lee, C. Hale, H. Ponstingl, D. Pickard, et al. A genome-wide knockout screen in human macrophages identified host factors modulating Salmonella infection. mBio, 10 (5) (2019), pp. e02169-19.
|
[37] |
Y. Lai, L. Cui, G.H. Babunovic, S.M. Fortune, J.G. Doench, T.K. Lu. High-throughput CRISPR screens to dissect macrophage—Shigella interactions. mBio, 12 (6) (2021), Article e0215821.
|
[38] |
Z. Wang, C. Li. Xenophagy in innate immunity: a battle between host and pathogen. Dev Comp Immunol, 109 (2020), p. 103693.
|
[39] |
K.C. Matteucci, A.A.S. Correa, D.L. Costa. Recent advances in host-directed therapies for tuberculosis and malaria. Front Cell Infect Microbiol, 12 (2022), p. 905278.
|
[40] |
S.A. Stanley, A.K. Barczak, M.R. Silvis, S.S. Luo, K. Sogi, M. Vokes, et al. Identification of host-targeted small molecules that restrict intracellular Mycobacterium tuberculosis growth. PLoS Pathog, 10 (2014), p. e1003946.
|
[41] |
N.R. Degner, J.Y. Wang, J.E. Golub, P.C. Karakousis. Metformin use reverses the increased mortality associated with diabetes mellitus during tuberculosis treatment. Clin Infect Dis, 66 (2) (2018), pp. 198-205.
|
[42] |
A. Singhal, L. Jie, P. Kumar, G.S. Hong, M.K.S. Leow, B. Paleja, et al. Metformin as adjunct antituberculosis therapy. Sci Transl Med, 6 (263) (2014), p. 263ra159.
|
[43] |
H.C. Chiu, S.K. Kulp, S. Soni, D. Wang, J.S. Gunn, L.S. Schlesinger, et al. Eradication of intracellular Salmonellaenterica serovar Typhimurium with a small-molecule, host cell-directed agent. Antimicrob Agents Chemother, 53 (12) (2009), pp. 5236-5244.
|
[44] |
J. Huang, J.H. Brumell. Bacteria-autophagy interplay: a battle for survival. Nat Rev Microbiol, 12 (2) (2014), pp. 101-114.
|
[45] |
A.H. De Wilde, D. Jochmans, C.C. Posthuma, J.C. Zevenhoven-Dobbe, S. van Nieuwkoop, T.M. Bestebroer, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother, 58 (8) (2014), pp. 4875-4884.
|
[46] |
L. Ejim, M.A. Farha, S.B. Falconer, J. Wildenhain, B.K. Coombes, M. Tyers, et al. Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat Chem Biol, 7 (6) (2011), pp. 348-350.
|
[47] |
Y. Zhang, L. Shi, L. Lv, Y. Zhang, H. Chen. Identification of a novel adjuvant loperamide that enhances the antibacterial activity of colistin against MCR-1-positive pathogens in vitro/vivo. Lett Appl Microbiol, 76 (2) (2023), p. ovad025.
|
[48] |
P.E. Wu, D.N. Juurlink. Clinical review: loperamide toxicity. Ann Emerg Med, 70 (2) (2017), pp. 245-252.
|
[49] |
C.S. Graven-Nielsen, C.S. Knoph, T. Okdahl, K.L. Høyer, K. Krogh, P.M. Hellstroem, et al. Opioids in the treatment of chronic idiopathic diarrhea in humans—a systematic review and treatment guideline. J Clin Med, 12 (7) (2023), p. 2488.
|
[50] |
P.E. Wu, D.N. Juurlink. Loperamide cardiac toxicity: pathophysiology, presentation, and management. Can J Cardiol, 38 (9) (2022), pp. 1378-1383.
|
[51] |
H. Miller, L. Panahi, D. Tapia, A. Tran, J.D. Bowman. Loperamide misuse and abuse. J Am Pharm Assoc, 57 (2S) (2017), pp. S45-S50.
|
[52] |
Y. Xu, M. Wang, L. Zhang, Y. Pan, W. Zhang, W. Ma, et al. Glycoprotein non-metastatic melanoma protein B restricts PRRSV replication by inhibiting autophagosome-lysosome fusion. Viruses, 15 (4) (2023), p. 920.
|